(完整版)数理统计试题及答案
数理统计学考试题及答案

数理统计学考试题及答案一、单项选择题(每题3分,共30分)1. 下列哪个选项是描述数据集中趋势的统计量?A. 方差B. 标准差C. 平均数D. 极差答案:C2. 假设检验中,若原假设为H0:μ=μ0,备择假设为H1:μ≠μ0,则该检验属于:A. 单尾检验B. 双尾检验C. 左尾检验D. 右尾检验答案:B3. 以下哪个分布是描述二项分布的?A. 正态分布B. t分布C. F分布D. 泊松分布答案:A4. 以下哪个选项是描述数据离散程度的统计量?A. 众数B. 中位数C. 极差D. 均值答案:C5. 以下哪个选项是描述数据分布形态的统计量?A. 偏度B. 方差C. 标准差D. 均值答案:A6. 以下哪个选项是描述数据分布集中趋势的统计量?A. 偏度B. 峰度C. 众数D. 标准差答案:C7. 以下哪个选项是描述数据分布离散程度的统计量?A. 偏度B. 峰度C. 标准差D. 均值答案:C8. 以下哪个选项是描述数据分布形态的统计量?A. 均值B. 方差C. 偏度D. 众数答案:C9. 以下哪个选项是描述数据分布集中趋势的统计量?A. 极差B. 标准差C. 均值D. 偏度答案:C10. 以下哪个选项是描述数据分布离散程度的统计量?A. 均值B. 众数C. 方差D. 偏度答案:C二、多项选择题(每题4分,共20分)1. 以下哪些统计量可以用来描述数据的集中趋势?A. 均值B. 中位数C. 众数D. 方差答案:ABC2. 以下哪些统计量可以用来描述数据的离散程度?A. 极差B. 方差C. 标准差D. 均值答案:ABC3. 以下哪些统计量可以用来描述数据的分布形态?A. 偏度B. 峰度C. 均值D. 方差答案:AB4. 以下哪些分布是描述连续型随机变量的?A. 正态分布B. 泊松分布C. 二项分布D. t分布答案:AD5. 以下哪些检验是用于检验总体均值的?A. t检验B. 方差分析C. 卡方检验D. F检验答案:A三、计算题(每题10分,共50分)1. 给定一组数据:2, 4, 6, 8, 10,求其平均数和标准差。
本科数理统计试题及答案

本科数理统计试题及答案一、选择题(每题2分,共20分)1. 以下哪项不是数理统计中的基本概念?A. 总体B. 样本C. 变量D. 常数2. 随机变量X的概率分布函数F(x)满足什么条件?A. 非负B. 单调递增C. 右连续D. 所有选项3. 以下哪个统计量是度量数据离散程度的?A. 均值B. 方差C. 众数D. 标准差4. 假设检验中,拒绝原假设的决策规则是基于什么?A. p值B. 置信区间C. 样本均值D. 样本方差5. 以下哪项不是参数估计的方法?A. 最大似然估计B. 贝叶斯估计C. 插值估计D. 矩估计6. 两个独立随机变量X和Y的协方差Cov(X,Y)为0意味着什么?A. X和Y是独立的B. X和Y是相同的C. X和Y的方差为0D. X和Y的均值相等7. 以下哪项是描述总体分布特征的参数?A. 样本均值B. 样本方差C. 总体均值D. 总体方差8. 在回归分析中,如果自变量和因变量之间存在线性关系,那么回归系数的符号表示什么?A. 正相关B. 负相关C. 无相关D. 强相关9. 以下哪项是描述数据集中趋势的统计量?A. 极差B. 四分位数C. 变异系数D. 标准差10. 以下哪项是假设检验中的两类错误?A. 第一类错误和第二类错误B. 系统误差和随机误差C. 抽样误差和非抽样误差D. 总体误差和样本误差二、填空题(每题2分,共20分)1. 统计学中的“大数定律”表明,随着样本量的增大,样本均值会______总体均值。
2. 如果随机变量X服从标准正态分布,则其概率密度函数为______。
3. 在统计学中,一个数据集的中位数是将数据集从小到大排列后位于______位置的数值。
4. 相关系数的取值范围是______。
5. 假设检验的原假设通常表示为______,备择假设表示为______。
6. 在回归分析中,如果回归系数为正,则表示自变量和因变量之间存在______关系。
7. 统计学中的“中心极限定理”说明,即使总体分布未知,只要样本量足够大,样本均值的分布将近似为______分布。
数理统计考试试题及答案

一、(满分12分)设X X X n ,,,12为来自均匀分布θU (0,)的随机样本,θθ,ˆˆ12分别为未知参数θ的矩估计量和最大似然估计量。
(1)证明nT n =+θθ和ˆˆ112都是未知参数θ的无偏估计; (2)比较两个估计量的优劣性.二、(满分14分)设X 服从伽玛分布Γαβ(,),其特征函数为=−−βϕαt itX ()(1).(1) 利用特征函数法求X 的数学期望和方差; (2)设X X X n ,,,12是独立同分布的随机变量,其概率密度为,⎩≤⎨=>⎧λλx f x e x x 0,0.(),0-试用特征函数法证明:∑=Γ=λY X n i i n~(,)1 三、(满分14分)从两个独立的正态总体中抽取如下样本值: 甲(X ) 4.4 4.0 2.0 4.8 乙(Y )5.01.03.20.4经计算得x s y s ====3.8, 1.547, 2.4, 4.45312*2*2,在显著性水平=α0.05下,能否认为两个总体同分布? 四、(满分10分)设X X X ,,,129是总体μσX N ~(,)2的一个样本.记Y X Y X k k k k ∑∑===63,=,11171269SS X Y Z Y Y k k ∑=−=−=2(),12()7212229求统计量 Z 的分布。
五、(满分14分)设X X X n ,,,12是总体X 的一个样本,X 的密度函数为f x x x ⎩⎨=<<⎧−θθθ他其0,.(;),01,1>θ0求未知参数g =θθ()1的最大似然估计量gθ()ˆ,并求g θ()的有效估计量.六、 (满分20分)观测某种物质吸附量y 和温度x 时,得到数据如下:x i 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 y i4.85.77.08.310.912.413.113.615.3应用线性模型N y a bx ⎩⎨⎧=++εσε~(0,)2(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)在温度x =60时,求吸附量y 0的置信水平为α−=10.95的预测区间; (4) 若要使吸附量在5-10之间,温度应该如何控制(=α0.05).七、 (满分16分) 为了观察燃烧温度是否对砖块的密度有显著性影响,今在4种温度下做试验,得砖块密度的观察值如下: 温度(摄氏度) 砖块密度100 21.8 21.9 21.7 21.6 21.7 125 21.7 21.4 21.5 21.4 150 22.9 22. 8 22.8 22.6 22.5 17521.9 21.7 21.8 21.4试问燃烧温度对砖块密度是否有显著影响?(=α0.01) 附注:计算中可能用到的数据如下:t r F F t F F ===Φ=====5(7) 2.3646,(7)0.6664,(1,7) 5.59,(1.96)0.976(3,3)15.5,(6) 2.4469,(2,15) 3.68,(3,14) 5.50.9750.050.950.9750.9750.950.99一、(满分12分)解:(1)总体X 的密度函数为总体X 的分布函数为0,0(),01,x x F x x x θθθθ≤⎧⎪⎪=<<⎨⎪≥⎪⎩;由于2θ=EX ,得X 2ˆ1=θθ的矩估计量为 1ˆ[2]2θθ===E E X EX ,故的无偏估计量。
数理统计全套标准答案

习题一、基本概念1.解:设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏ 555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ2.解:因为0110,(),1,n k k k x x k F x x x x nx x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293 =--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯=7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.248.解:由已知条件得:(1,),1()i X Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().ni X i Y B n p p F μ==-∑9.解:1) )1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2) λλλ======DX ES nn DX X D EX X E 2,, 3) ()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4) 1,1,2======DX ES nn DX X D EX X E μ 10.解:1) ()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)ni i n S n S D X X D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)ni i D X X n σ=∴-=-∑11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1) ()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)222211,2u u X u E u e du u du +∞+∞---∞-===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,162u n n⎛⎫⎛⎫⎛=Φ-Φ-=Φ-≥⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解:设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-()()12()2()12P T P T p P T p pP T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X XX N nnn S n t n σσχσ+++++-=-=∴---=- 又2)2211111()0,(),(0,)n n n n n E X X D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N n nσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P X P X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mi i X N m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m nii m Xn χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)mii XN m σ=∑,21~(0,)m nii m XN n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故 222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解:由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解:1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a X P 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P cT P cS X P c S X P c X S P μμμ27.解:22cov(,)(,)1()()1cov(,)()1(,)1i j i j i j i j i j i j X X X X r X X X X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=--=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1. 解: 矩估计()1 3.40.10.20.90.80.70.766X =+++++= ()()11111ln ln(1)ln nnni ii i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln ni i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X X X x dx x EX αααααααα所以12112ˆˆ,11ln nii X n X X αα=⎛⎫ ⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解:1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤=2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3.1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x ni i i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑ 2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x x λλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+== 3)解:矩估计:()2,212b a a bEX DX -+== 联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni naX b X ≤≤≤≤== 4) 解:矩估计:ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解:矩法:()/0()(1)(2)x txEX e dx t edt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰X αβ=+=22220()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()i M X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ==-==极大似然估计:()()/1111exp ,ln ln i nx n i n L e nx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n n L L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x t x EX dx dte dt X θθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫== ⎪⎝⎭∏∏222ln ln43ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;1,ln ln i nx n nx i L e e L n nx λλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。
数理统计考试题及答案

1、 离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni i p2、 设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y相互独立的条件是)()(),(y F x F y x F Y X ∙=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +⋅⋅⋅++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +⋅⋅⋅++=ξ~)10(2χ,查表得025.0ξ=20.54、 设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=n i iXY 122)(1μσ,则EY=n解:∑=-=n i iXY 122)(1μσ~)(2n χ,E 2χ=n ,D 2χ=2n二、设设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=6122)(51i iX X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σμN X ,所以有)5(~)(126122χσ∑=-i iX X,则⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎭⎫⎝⎛≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi i i i X X P X X P sP s P 查2χ分布表得=≤)5665.2(22σs P ⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752三.设总体X 的概率密度为f(x)=(1),(01)0a x x α⎧+<<⎨⎩,其他,其中α>0,求参数α的矩估计和极大似然估计量。
数理统计试题及答案

数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。
则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。
若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。
随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。
则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。
解答:总共的可能抽取组合数为C(10,3) = 120。
抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。
所以,抽到1个次品的概率为4005/120 = 33.375%。
2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。
问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。
设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。
要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。
首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。
数理统计课后题答案完整版

第一章3. 解:因为i i x ay c-=所以 i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以 x a c y =+ 成立因为 ()2211n x i i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为 ()2211n y i i s y yn ==-∑所以 222xys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=- 2710yx=+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s == 7解:*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i j i j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n sn n n n +-++++-=+++-+=+++12. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni i i i n E X E x Ex n n n n DX D x Dx n nn n λλλλ============∑∑∑∑13.解:(),ix U a b 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中()1,1i x U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni ii i E X E x Ex n n DX D x Dx n nn ==========∑∑∑∑14.解:因为()2,iXN μσ 0i X Eμσ-= 1i X Dμσ-=所以 ()0,1i X N μσ- 1,2,,in =⋅⋅⋅由2χ分布定义可知()222111nniii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以 ()2Yn χ15. 解:因为()0,1iX N1,2,,i n =⋅⋅⋅()1230,3X X X N ++0=1=所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C =16. 解:(1)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200ny n nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311n i Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩ (4)因为()20,iX N σ 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故()242000yY y f y y σ-⎧>=≤⎩17.解:因为 ()Xt n存在相互独立的U ,V()0,1UN ()2Vn χ 使X = ()221Uχ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑所以()1nniX Yt m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n mn mi ii n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2Xn χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故 {}PX c ≤≈Φ第 二 章 1.,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e xλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1x λ∧= 2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b 2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii in i i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。
(完整版)数理统计考试题及答案

(完整版)数理统计考试题及答案1、离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y 相互独⽴的条件是)()(),(y F x F y x F Y X ?=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +++=ξ~)10(2χ,查表得025.0ξ=20.54、设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=ni iXY 122)(1µσ,则EY=n解:∑=-=ni iXY 122)(1µσ~)(2n χ,E 2χ=n ,D 2χ=2n⼆、设设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=612)(51i i X X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σµN X ,所以有)5(~)(126122χσ∑=-i i X X ,则≤-= ≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01) 0a x x α?+<,其他,其中α>0,求参数α的矩估计和极⼤似然估计量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(本题15分,每题3分)
1、总体)3,20(~N X 的容量分别为10,15的两独立样本均值差~Y X -________;
2、设1621,...,,X X X 为取自总体)5.0,0(~2N X 的一个样本,若已知0.32)16(2
01.0=χ,则
}8{16
1
2∑=≥i i X P =________;
3、设总体),(~2
σμN X ,若μ和2
σ均未知,n 为样本容量,总体均值μ的置信水平为
α-1的置信区间为),(λλ+-X X ,则λ的值为________;
4、设n X X X ,...,,21为取自总体),(~2σμN X 的一个样本,对于给定的显著性水平α,已知关于2
σ检验的拒绝域为χ2≤)1(21--n αχ,则相应的备择假设1H 为________;
5、设总体),(~2σμN X ,2σ已知,在显著性水平0.05下,检验假设00:μμ≥H ,01:μμ<H ,
拒绝域是________。
1、)2
1
0(,N ; 2、0.01; 3、n
S n t )
1(2
-α; 4、2
02σσ<; 5、05.0z z -≤。
二、选择题(本题15分,每题3分)
1、设321,,X X X 是取自总体X 的一个样本,α是未知参数,以下函数是统计量的为(
)。
(A ))(321X X X ++α (B )321X X X ++ (C )3211
X X X α
(D )23
1)(31α-∑=i i X
2、设n X X X ,...,,21为取自总体),(~2σμN X 的样本,X 为样本均值,21
2
)(1X X n S i n i n -=∑=,
则服从自由度为1-n 的t 分布的统计量为( )。
(A )
σμ)
-X n ( (B )n S X n )(μ- (C )σ
μ)--X n (1 (D )n S X n )(1μ--
3、设n X X X ,,,21 是来自总体的样本,2
)(σ=X D 存在, 21
2
)(11X X n S i n
i --=∑=, 则( )。
(A )2S 是2σ的矩估计
(B )2S 是2σ的极大似然估计
(C )2S 是2σ的无偏估计和相合估计
(D )2S 作为2σ的估计其优良性与分布有关
4、设总体),(~),,(~2
2
2211σμσμN Y N X 相互独立,样本容量分别为21,n n ,样本方差分别为2
221,S S ,在显著性水平α下,检验2221122210:,:σσσσ<≥H H 的拒绝域为( )。
(A )
)1,1(122
122
--≥n n F s s α (B )
)1,1(122
12
122
--≥-
n n F
s s α
(C )
)1,1(212
122
--≤n n F s s α (D )
)1,1(212
12
122
--≤-
n n F
s s α
5、设总体),(~2σμN X ,2
σ已知,μ未知,n x x x ,,,21 是来自总体的样本观察值,已
知μ的置信水平为0.95的置信区间为(4.71,5.69),则取显著性水平05.0=α时,检验假设0.5:,0.5:10≠=μμH H 的结果是( )。
(A )不能确定 (B )接受0H (C )拒绝0H (D )条件不足无法检验 1、B ; 2、D ; 3、C ; 4、A ; 5、B.
三、(本题14分) 设随机变量X 的概率密度为:⎪⎩⎪⎨⎧<<=其他θ
θx x x f 0,
0,
2)(2,其中未知
参数0>θ,n X X ,,1 是来自X 的样本,求(1)θ的矩估计;(2)θ的极大似然估计。
解:(1) θθθ32
2)()(0
2
2
===⎰⎰∞
+∞-x d x
x d x f x X E ,
令θ32
)ˆ(==X X
E ,得X 23
ˆ=θ为参数θ的矩估计量。
(2)似然函数为:),,2,1(,022),(1
212n i x x x x L i n
i i n
n
n
i i
i =<<==∏∏
==θθθθ,
, 而)(θL 是θ的单调减少函数,所以θ的极大似然估计量为},,,max{ˆ21n
X X X =θ。
四、(本题14分)设总体),0(~2σN X ,且1021,x x x 是样本观察值,样本方差22=s , (1)求2
σ的置信水平为0.95的置信区间;(2)已知)1(~2
2
2
χσX Y =
,求⎪⎪⎭
⎫
⎝⎛32σX D 的置信水平为0.95的置信区间;(70.2)9(2975.0=χ,023.19)9(2
025.0=χ)。
解:
(1)2
σ的置信水平为0.95的置信区间为⎪⎪⎭
⎫ ⎝⎛)9(18,)9(182975.02025.0χχ,即为(0.9462,6.6667)
;
(2)⎪⎪⎭⎫ ⎝⎛32σX D =22
2
2222)]1([11σχσσσ==⎪⎪⎭
⎫ ⎝⎛D X D ;
由于2322σσ=⎪⎪⎭⎫ ⎝⎛X D 是2σ的单调减少函数,置信区间为⎪
⎪⎭
⎫ ⎝⎛222,2σσ, 即为(0.3000,2.1137)。
五、(本题10分)设总体X 服从参数为θ的指数分布,其中0>θ未知,n X X ,,1 为取自总体X 的样本, 若已知)2(~2
21
n X U n
i i χθ
∑==
,求: (1)θ的置信水平为α-1的单侧置信下限;
(2)某种元件的寿命(单位:h )服从上述指数分布,现从中抽得容量为16的样本,测得样本均值为5010(h ),试求元件的平均寿命的置信水平为0.90的单侧置信下限。
)585.42)32(,985.44)31((210.0205.0==χχ。
解:(1) ,1)2(2,1)2(222αχθαχθαα-=⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧>∴-=⎭⎬⎫⎩⎨⎧<n X n P n X n P
即θ的单侧置信下限为)
2(22
n X n αχθ=
;(2)706.3764585.425010162=⨯⨯=θ。
六、(本题14分)某工厂正常生产时,排出的污水中动植物油的浓度)1,10(~N X ,今阶段性抽取10个水样,测得平均浓度为10.8(mg/L ),标准差为1.2(mg/L ),问该工厂生产是
否正常?(22
0.0250.0250.9750.05,(9) 2.2622,(9)19.023,(9) 2.700t αχχ====)
解:(1)检验假设H 0:σ2=1,H 1:
σ
2≠1; 取统计量:2
2
2
)1(σχs n -=
;
拒绝域为:χ2≤)9()1(2975.022
1χχ
α
=--
n =2.70或χ2
≥2025.022
)1(χχα=-n =19.023,
经计算:96.121
2.19)1(22
2
2
=⨯=-=
σχs n ,由于)023.19,700.2(96.122∈=χ2,
故接受H 0,即可以认为排出的污水中动植物油浓度的方差为σ2=1。
(2)检验假设101010
≠'='μμ:,:H H ; 取统计量:10
/10S X t -=~ )9(2
αt ;
拒绝域为2622.2)9(025.0=≥t t ;1028.210
/2.1108.10=-=
t <2.2622 ,所以接受0
H ', 即可以认为排出的污水中动植物油的平均浓度是10(mg/L )。
综上,认为工厂生产正常。
七、(本题10分)设4321,,,X X X X 为取自总体)4,(~2μN X 的样本,对假设检验问题
5:,5:10≠=μμH H ,(1)在显著性水平0.05下求拒绝域;(2)若μ=6,求上述检验所犯的第二类错误的概率β。
解:(1) 拒绝域为96.12
5
4
/45025.0=≥-=
-=
z x x z ; (2)由(1)解得接受域为(1.08,8.92),当μ=6时,接受0H 的概率为
921.02608.12692.8}92.808.1{=⎪⎭
⎫
⎝⎛-Φ-⎪⎭⎫
⎝⎛-Φ=<<=X P β。
八、(本题8分)设随机变量X 服从自由度为),(n m 的F 分布,(1)证明:随机变量X
1
服从 自由度为),(m n 的F 分布;(2)若n m =,且05.0}{=>αX P ,求}1
{α
>X P 的值。
证明:因为),(~n m F X ,由F 分布的定义可令n
V m
U X //=,其中)(~),(~22n V m U χχ,U 与V 相互独立,所以
),(~//1m n F m U n V X =。
当n m =时,X 与X 1服从自由度为),(n n 的F 分布,故有=>}{αX P }1
{α>X P ,
从而 95.005.01}{1}1
{1}1{}1{=-=>-=>-=<=>ααααX P X
P X P X P 。