数学:3.3《代数式求值》课件(北师大版七年级上)
2024年新人教版七年级数学上册《第3章3.2 第2课时 公式中的代数式求值》教学课件

因此,这条跑道的周长
约为 300 m.
b
a
追问1 在第(2)问的基础上,若小优在此跑道上 跑步,平均速度为 v 米/分,则跑两圈用时多少分?
行程问题:路程 = 速度×时间 s = vt t s
v
解:跑道周长为 300 m,则跑两圈路程为 600 m.
因为小优平均速度为 v 米/分, 所以小优跑两圈用时 600 分.
(2) a,b 分别表示梯形的上底和下底,h 表示梯形的高,
则梯形的面积 S =
a bh
2
,当 a = 2 cm,b = 4 cm,
h = 5 cm 时,S = 15 cm2.
方法总结
1. 熟练掌握公式; 2. 根据题意列代数式并化简; 3. 将数据代入求值.
典例精析
例1 如图,某学校操场最内侧的跑道由两段直道和两段 弯道组成,其中直道长为 a,半圆形弯道的直径为 b. (1)用代数式表示这条跑道的周长.
系并准确求值.
导入新课
有些同类事物中的某种数量关系常常可以用公式来描述. b
b
bh c
h
a
a
C = 2(a + b) C = 4a
S = ab
S = a2
C = πd r C = 2πr d S = πr2 a
a
a
C=a+b+c
S ah
a bh
S 2
2
S = 6a2
S = 2(ab + bc + ac)
义务教育(2024年)新人教版 七年级数学上册
《第3章 代数式》 系列教学课件
新知一览
代数式
列代数式表示 数量关系
代数式的值
3.2代数式-代数式求值(教案)

一、教学内容
本节课选自七年级数学教材第三章第二节《代数式-代数式求值》。教学内容主要包括:
1.代数式的概念:通过具体例子让学生理解代数式的含义,并学会用字母表示数。
2.代数式的求值:使学生掌握代数式求值的方法,包括代入法、直接计算法和化简法。
3.代数式的性质:让学生了解代数式的性质,如交换律、结合律等,并运用这些性质进行代数式的求值。
5.培养学生的合作交流意识:在小组讨论和互动中,让学生学会倾听、表达、交流与合作,提高团队协作能力。
本节课将围绕以上核心素养目标展开教学,关注学生个体差异,促进全面发展。
三、教学难点与重点
1.教学重点
(1)代数式的概念:理解代数式的含义,学会用字母表示数,并能正确书写代数式。
举例:学生需掌握如下的代数式概念:3x、4y-2、5a^2+7b等。
(2)代数式的求值:掌握代入法、直接计算法和化简法求代数式的值。
举例:给定代数式2x+3y,当x=3,y=4时,求代数式的值。
(3)代数式的性质:了解代数式的交换律、结合律等性质,并能运用性质简化计算过程。
举例:掌握(a+b)+c=a+(b+c)的性质,并应用于代数式的求值。
2.教学难点
(1)字母表示数的抽象性:学生往往难以理解字母表示数的概念,需要通过具体实例和引导来加强认识。
(4)代数式性质的运用:学生可能难以理解性质如何应用于代数式的求值。
举例:引导学生运用交换律、结合律等性质简化代数式的求值过程,如2a+3b+b+2a的简化。
在教学过程中,针对上述重点和难点内容,教师应采用丰富的教学方法和手段,如举例讲解、小组讨论、互动提问等,以帮助学生透彻理解核心知识,突破学习难点。同时,关注学生的个体差异,给予个性化指导,确保每位学生都能掌握本节课的知识点。
2.2 代数式的值 课件(共18张PPT)华东师大版(2024)数学七年级上册

知1-讲
感悟新知
知1-讲
特别提醒数值代入时应注意:1. 用负数代替字母时,要给它添上括号;2. 用负数或分数代替乘方运算中底数的字母时,要添上括号;3. 用数代替字母时,省略的乘号要还原 .
感悟新知
3. 一般地,代数式的值不是固定不变的,它随着代数式中字母取值的变化而变化 .
知1-讲
知1-练
感悟新知
2.2 代数式的值
第二章 整式及其加减
知1-讲
感悟新知
知识点
代数式பைடு நூலகம்值
1
1. 代数式的值 一般地,用数值代替代数式里的字母,按照代数式中的运算计算得出的结果,叫做代数式的值 .
感悟新知
2. 求代数式的值的一般步骤(1) 代入: 用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数都不能改变;(2) 计算: 按照代数式指明的运算,根据有理数的运算法则进行计算 .
知1-练
感悟新知
[中考 · 巴中] [教材 P94 习题 A 组 T3 ]若 x 满 足 x2+3x - 5=0,则代数式2x2+6x - 3 的值为( )A.5 B.7 C.10 D. - 13
例3
B
解:由 x 2+3x - 5=0,得 x2+3x=5.所以 2x 2+6x - 3=2(x 2+3x) - 3=2× 5 - 3=7.
解题秘方:根据条件求出字母的取值,然后代入求值 .
知1-练
感悟新知
2-1.如果 |a+3| 与(b - 2)2互 为 相 反 数,那 么代数式(a+b)2 024的值是( )A.1 B. - 1 C.0 D.± 1
A
[母题 教材 P92 练习 T2] 当 a=2, b=-1 时,求下列各代数式的值: (1)(a-b) 2;(2)(a+b)(a-b) .
3.1 代数式(教案)北师大版(2024)数学七年级上册

第三章整式及其加减3.1代数式第1课时用字母表示数1.能用字母表示数量关系.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识;2.理解代数式的概念,能用代数式表示简单实际问题中的数量关系.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示教材第77页图3-1,提出问题:(1)按图3-1的方式,搭2个正方形需要________根火柴棒,搭3个正方形需要________根火柴棒.(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.学生小组交流后回答,教师讲评,并进一步讲解第(4)题的两种思考方法:第一个正方形用4根,每增加一个正方形增加3根,那么搭x个正方形就需要火柴棒[4+3(x-1)]根.上面的一排和下面的一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了[x+x+(x+1)]根火柴棒.教师:今天这节课,我们就来学习用字母表示数.二、探究新知1.用含字母的式子表示数量关系教师:通过探究,我们发现字母可以表示任何一个数.(1)在上面的活动中,我们借助字母表示正方形的个数与小棒的根数之间的关系,这样做有什么好处?(2)在以前的学习中还有哪些地方用到了字母?这些字母都表示什么?与同伴进行交流.学生汇报答案后,教师讲评:列代数式时,先找出题目中表示运算关系的词,然后理清关系,分清运算顺序,最后按代数式的书写格式规范地列出代数式.2.代数式的概念(1)今年李华m岁,去年李华________岁,5年后李华________岁.(2)a个人n天完成一项工作,那么平均每人每天的工作量为________.(3)某商店上月的收人为a元,本月收人比上月收入的2倍还多10元,本月收人是________元.(4)如果正方体的棱长是a-1,那么正方体的体积是________,表面积是________.学生独立完成后汇报答案.教师点评、分析:像这样用运算符号把数和字母连接而成的式子叫作代数式.课件出示练习:指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.学生思考后举手回答.教师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?学生讨论交流,教师指导、评价.3.代数式的书写要求(1)数字与字母、字母与字母相乘,“×”通常用“·”表示或省略不写,并把数字写在字母的前面.带分数与字母相乘时,应把带分数化为假分数;注:数字与数字相乘,“×”不能用“·”表示,也不可省略.(2)除法运算应写成分数的形式;(3)代数式中相同字母或因式的积用乘方形式表示;(4)代数式为和或差的形式,且后面有单位时,要把代数式用括号括起来.三、课堂练习1.教材第78页“随堂练习”.2.填空.(1)一个三角形的三条边的长分别是a,b,c,则这个三角形的周长为a+b+c;(2)张强比王华大3岁,当张强a岁时,王华的年龄是(a-3)岁;(3)圆的半径是R厘米,它的面积是πR2.四、课堂小结通过本节课的学习,你有什么收获?先让学生举手分享自己的收获,教师再简单归纳:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数和公式,这样给我们研究问题带来了很大的方便.五、课后作业教材第82页习题3.1第1,2,3题.本节课的内容是今后进一步学习代数知识的基础.用字母表示数对学生来说比较抽象,在教学过程中,用实物或生活事例讲解,让学生体会、认识到用字母表示数在实际生活和学习中的广泛应用,感受到数学就在身边,体现了数学与生活的联系.同时,重视引导学生经历用字母表示数的过程,初步感受代数的思想,在解决问题的过程中深化了对数学知识的认识.本节课讲练相结合,鼓励学生参与其中,调动他们的学习积极性.第2课时列代数式1.理解代数式的概念,能用代数式表示简单实际问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示问题:如图为一阶梯的纵截面,一只老鼠沿阶梯的两边A -B -C 的路线逃跑,一只猫同时沿阶梯(折线)A -C -B 的路线去追,结果在距离C 点0.6 m 的D 处猫捉住老鼠,已知老鼠的速度是猫的89 ,你能求出阶梯A -C 的长度吗?教师:要想解决这个问题,让我们先来学习本节课的内容.二、探究新知1.列代数式课件出示问题:列代数式,并求值.某景点的门票价格:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37名成人、15名学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费(10x +5y )元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.因此,他们应付门票费445元.学生思考后汇报答案,教师追问:代数式10x+5y还可以表示什么?.教师:通过上面的练习,同学们思考一下,实际问题中该怎样列代数式呢?关键是什么?学生分小组讨论后汇报答案,教师点评并进一步指出:(1)列代数式,要以不改变原题叙述的数量关系为原则(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系列成代数式,是为今后学习列方程解应用题做准备,一定要牢固掌握.课件出示问题:营养学家通常用身体质量指数(简称BMI)衡量人体胖瘦程度,这个指数等于人体体重(单位:kg)与人体身高(单位:m)平方的商.对于成年人来说,BMI在18.5与24之间,体重适中;BMI低于18.5,体重过轻;BMI高于24,体重超重.(1)设一个人的体重为w kg,身高为h m,请用含w,h的代数式表示这个人的BMI.(2)张老师的身高为1.75 m,体重为65 kg,他的体重是否适中?(3)BMI对未成年人的胖瘦程度也有一定参考意义,请计算你的BMI.2.求代数式的值填写下表,并观察5n+6和n2这两个代数式的值的变化情况.(1)随着n的值逐渐变大,5n+6和n2这两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生举手回答,教师进一步讲解:我们知道,表示数的字母具有任意性和确定性,如5n+6中n可取任何有理数,当给出未知数(字母)的值时,如n=5,则5n+6就是一个确定的值.一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.课件出示练习:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.学生解答并写出解答过程,教师点评并提出问题:求代数式的值应分哪几步?学生:求代数式的值的步骤:(1)代入;(2)计算.教师点评,并指出求代数式的值时需注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.三、课堂练习1.教材第79页“随堂练习”第1~3题.四、课堂小结1.怎样列代数式?2.怎样求代数式的值?3.列代数式时应该注意哪些事项?五、课后作业1.教材第82页习题3.1第2,3,4题.代数式是以后数学学习的基础.本节课通过生动的实例,导入新课.在教学过程中,讲练相结合,使学生深刻了解列代数及求代数式的值的意义.在课堂上,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错、归纳、创新中学习新知识.利用实际例子,引出代数式在实际背景下所表示的意义,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.在解题的过程中,注意规范学生的书写格式,对于发现的问题及时处理.第3课时整式1.理解单项式及单项式的系数、次数的概念,会确定一个单项式的系数和次数;2.掌握多项式及其项、次数的概念,会确定一个多项式的项和次数;3.理解整式的概念,会判断一个代数式是否为整式.重点掌握单项式、多项式及其相关概念和整式的概念.难点单项式的系数和次数,多项式的次数与项数.一、导入新课课件出示问题:请用含字母的式子表示:一个组合柜如图3-2所示,内部用隔板纵向分隔成5个独立的小柜子(如图3-3),柜门由5个完全相同的长方形组成.(1)若要在5个柜门的周边都贴上装饰条,则所需装饰条的总长度是多少?(2)若要给柜门外表面喷漆,则需要喷漆的面积是多少(边框缝隙忽略不计)?(3)设柜子的进深为c(如图3-2),则整个柜子的容积是多少(柜门、隔板及背板的厚度忽略不计)?二、探究新知1.单项式教师:观察上面所列代数式,它们包含哪些运算?有何共同运算特征?学生小组讨论后,派代表回答,教师适当点拨.并讲解单项式的概念:即由数与字母的乘积组成的代数式称为单项式,单独一个数或一个字母也是单项式,如5ab,5abc,3v,6p.课件出示问题:下列代数式中哪些是单项式?(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5.学生完成后举手回答.教师直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式的系数的概念并板书:单项式中的数字因数叫作这个单项式的系数.接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式的次数的概念并板书:单项式中所有字母的指数和叫作单项式的次数.课件出示练习:判断下列说法是否正确.(1)-7xy2的系数是7;(2)-x 2y 3和x 3都没有系数;(3)-ab 3c 2的次数是0+3+2;(4)-a 3的系数是-1;(5)-32x 2y 3的次数是7;(6)πr 2h 的系数是π.学生完成后汇报答案,教师点评并强调:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和时不能省略.2.多项式课件出示问题:(1)一个数比x 的2倍小3,则这个数是________;(2)x 的13 与y 的12 的差是________.教师:观察以上两小题所得出的代数式,它们与单项式有何区别与联系?学生思考后举手回答,教师补充完善.教师引导学生自己归纳出多项式的概念,并补充完善:像这样,几个单项式的和叫作多项式.在多项式中,每个单项式叫作多项式的项.其中,不含字母的项,叫作常数项.例如,多项式x 2-2x +5有三项,它们是x 2,-2x ,5,其中5是常数项.一个多项式含有几项,就叫作几项式.多项式中次数最高的项的次数,叫作这个多项式的次数.例如,多项式2x2+3x-1是一个二次三项式.单项式和多项式统称为整式.课件出示练习:判断下列说法是否正确.(1)多项式a3-a2b+ab2-b3的项为a3,a2b,ab2,b3,次数为12;(2)多项式3n4-2n2+1的次数为4,常数项为1.学生完成后汇报答案,教师点评并强调:多项式的次数不是所有项的次数之和,而是最高次项的次数.三、课堂练习1.请列出下列问题中的代数式,并指出其中:①哪些是单项式?单项式的系数和次数分别是多少?②哪些是多项式?多项式的次数是多少?(1)如图3-4,一个十字形花坛铺满了草皮,这个花坛草地面积是多少?(2)当水结冰时,其体积大约会比原来增加1/9,x m3的水结成冰后体积是多少?(3)如图3-5,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a ,b ,c .这个箱子露在外面的表面积是多少?(4)某件商品的成本价为a 元,按成本价提高15%标价,后又以八折(即按标价的80%)销售,这件商品的售价为多少元?2.教材第82页“随堂练习”.3.填空.(1)若正方形的边长为a ,则正方形的面积是a 2;(2)若三角形的一边长为a ,且这边上的高为h ,则这个三角形的面积为12 ah ;(3)若正方体的棱长为x ,则正方体的表面积是6x 2;(4)若m 为有理数,则它的相反数是-m ;(5)小明每个月从零花钱中储存x 元钱用来捐款,一年下来小明捐款12x 元.【答案】1.(1)ab -4c 2,多项式,次数是2 (2)109 x ,单项式,次数是1 (3)ab +ac +bc ,多项式,次数是2 (4)0.92a ,单项式,次数是1四、课堂小结1.单项式及单项式的系数、次数分别是什么?2.多项式及其次数、项数、常数项分别是什么?3.什么是整式?五、课后作业教材第82页习题3.1第5,6,8,9题.“整式”属于“代数式”的领域,是在学习了用字母表示数,用代数式表示实际问题中的数量关系的基础上,进一步研究用含字母的式子表示实际问题的数量关系.整式是代数式中最基本的式子,是实际的需要,也是今后学习分式、一元二次方程等知识的基础,起到承前启后的作用.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念.对概念和纯文字的叙述,不要仅追求精确的形式,而是更加去注重其实质的理解与领悟.。
北师大版七年级数学上册《代数式》第2课时教案

第三章整式及其加减3.2代数式第2课时一、教学目标1.会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法;2.掌握求代数式值的方法;3.能解释代数式求值的实际应用.二、教学重点及难点重点:了解代数式的值的概念,掌握求代数式值的一般方法;难点:能利用代数式求值的过程找规律.三、教学准备多媒体课件四、教学过程【复习巩固】列代数式:1.x的10倍与y的5倍的和.2.甲乙两地相距150千米,一辆汽车的行驶速度为a千米/时,用代数式表示:①这辆汽车从甲地到乙地需要行驶多长时间?②若速度增加2千米/时,则需要多长时间?加速后可以早到多长时间?设计意图:正确列出代数式是基本要求,还要能利用代数式解决一些实际问题,这就是本节课探究的内容:求代数式的值.让学生明确学习目标.板书:3.2 代数式第2课时【新知讲解】探究一:代数式的值的定义活动1.引导学生得出游戏过程实际是一个计算程序(如下图):代数式的值的概念:像这样,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值.通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化.活动2.字母的取值①代数式中的字母取值必须使这个代数式有意义.如在代数式1x -3中,x 不能取3,因为当x =3时,分母x -3=0,代数式1x -3无意义.①实际问题中,字母的取值要符合实际情况.如当x 表示人数时,x 不能取负数和分数. 下列代数式中,a 不能取0的是( B ).A. 13a B.3a C.2a -5D .2a -b解析:代数式中字母的取值必须使这个代数式有意义,由分母不能为0可知,B 选项中的a 不能取0.故选B . 探究二:求代数式的值 活动1.直接代值法:(1)步骤:第一步:代入,用具体数值代替代数式里的字母;第二步:计算,按照代数式中指明的运算,计算出结果.(2)注意事项:①一个代数式中的同一个字母,只能用同一个数值去代替;②如果代数式里省略乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号;③代入时,不能改变原式中的运算符号及数字;④运算时,要注意运算顺序,即先算平方,再算乘除,最后算加减,有括号的要先算括号里面的.活动2.直接代入法求代数式的值.练一练: 当a =12,b =3时,求代数式2a 2+6b -3ab 的值.解析:直接将a =12,b =3代入2a 2+6b -3ab 中即可求得.解:原式=2×(12)2+6×3-3×12×3=12+18-92=14.方法总结:(1)代入时要“对号入座”,避免代错字母;(2)代入后要恢复省略的乘号; (3)分数的立方、平方运算,要用括号括起来. 活动2.整体代入法求值.已知x -2y =3,则代数式6-2x +4y 的值为( ) A.0 B.-1 C.-3 D.3解析:此题无法直接求出x 、y 的值,这时,我们就要考虑特殊的求值方法.根据已知x -2y =3及所求6-2x +4y ,只要把6-2x +4y 变形后,再整体代入即可求解. 因为x -2y =3,所以6-2x +4y =6-2(x -2y )=6-2×3=0.故选A . 活动3.利用程序图求代数式的值.有一数值转换器,原理如图所示.若开始输入的x 的值是5,则发现第1次输出的结果是8,第2次输出的结果是4,…,则第2019次输出的结果是 .解析:按如图所示的程序,当输入x =5时,第1次输出5+3=8;当输入x =8时,第2次输出12×8=4;当输入x =4时,第3次输出12×4=2;当输入x =2时,第4次输出12×2=1;当输入x =1时,第5次输出1+3=4;则第6次输出12×4=2,第7次输出12×2=1,……,不难看出,从第2次开始,其运算结果按4,2,1三个数为一周期循环出现.因为(2019-1)÷3=671…2,所以第2019次输出的结果为2.归纳:求代数式的值常用的方法有:直接代入计算、整体代入计算、按指定的程序代入计算. (1)直接代入计算当已知一个代数式中各字母的取值时,可以用直接代入计算的方法. (2)整体代入计算已知一个含有字母的代数式的值,求另一个代数式的值时,可以选用整体代入的方法. 整体代入步骤:①对已知代数式或所求代数式进行适当变形;①整体代入求值.运用整体思想求代数式的值就是将一个代数式(的值)作为一个整体代入到欲求值的代数式中,从而求出代数式的值的方法.解答此类问题时,要从整体上分析已知代数式与欲求值的代数式之间结构的异同,从整体上把握解题思路,寻求解决问题的方法. (3)按指定的程序代入计算按指定的程序代入计算,即数值转换机.给出一个代数式,或提供运算程序,给出字母的取值,代入求值即可.【典型例题】例1:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.注意:如果代数式中省略乘号,代入后需添上乘号.例2. 列代数式,并求值.某公园的门票价格是:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x人、学生y人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?解:(1)该旅游团应付的门票费是(10x+5y)元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.∴因此,他们应付445元门票费.例3在计算机上可以设置运算程序,输入一组数据,计算机就会呈现运算结果,就好像一个“数值转换机”.下面是一组“数值转换机”,请填写下表,并写出第1个图的输出结果,写出第2个图的运算过程.解:第1个图的输出结果是6x-3,第2个图的运算过程是-3,x-3,×6.趣,提高学生学习兴趣,激发学生求知欲望.同时,该例子也体现了数学建模思想,培养了学生的抽象思维能力和建模能力.而思考题的设置让学生体会到代数式所表达出的丰富的实际背景或几何背景.例4.如图就是小明设计的一个程序.当输入x的值为3时,你能求出输出的值吗?-3例5.人体血液的质量约占人体体重的6%~7.5%.(1)如果某人体重是a kg,那么他的血液质量大约在什么范围内?(2)亮亮体重是35 kg,他的血液质量大约在什么范围内?(3)估计你自己的血液质量.解:(1)6%a kg~7.5% a kg.(2)当a=35时,35×6%=2.1(kg),35×7.5%=2.625(kg),所以亮亮的血液质量大约在2.1 kg到2.625 kg之间.(3)用自己的体重分别乘6%和7.5%,即为自己的血液质量的范围.【随堂练习】1.当a=2,b=-1,c =-3时,求下列各代数式的值.(1)b2-4ac;(2)a2+b2+c2+2ab+2bc+2ac;(3)(a+b+c)2.解:(1)当a=2,b =-1,c=-3时,b2-4ac=(-1)2-4×2×(-3)=1+24=25.(2)当a=2,b=-1,c=-3时,a 2+b 2+c 2+2ab +2bc +2ac=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3) =4+1+9-4+6-12 =4.(3)当a =2,b =-1,c =-3时,(a +b +c )2 =(2-1-3)2 = 4.注:1.比较(2)、( 3 ) 两题的运算结果,你有什么想法?2.换 a =3 , b =-2 , c =4 ,再试一试,检验你的猜想是否正确. 3.对于这一猜想,我们通过学习,将来有能力证实它的正确性. 2. 已知x =12,y =3,求代数式2x 2y -4x 2y +10x 2y 的值.分析:分别将x =12,y =3代入代数式中,再按照指定的运算进行计算;也可以先求出x 2y的值,然后再整体代入. 解:2x 2y -4x 2y +10x 2y =8x 2y ;当x =12,y =3时,原式=8×212⎛⎫⎪⎝⎭×3=6.3.已知x +y =2 013, xy =2 012,求xy -2(x +y )的值.分析:由于条件是关于x +y ,xy 的值,故应考虑用整体代入的方法计算,即将xy 看成一个整体,将x +y 看成一个整体.解:xy -2(x +y )=2 012-2×2 013=-2014.4.(1)按如图所示的程序计算,若开始输入的数为x =3,则最后输出的结果是( D ).A .6B .21C .156D .231解析:按照本题的运算程序,是否输出结果,关键是看每次计算的结果是否大于100,在输出结果之前的计算可以是多次反复循环的.第一次:输入的数x =3,则x (x +1)2=3×(3+1)2=6,因为6<100,所以不能输出结果,而是进入“否”程序,回到“输入”,再进行计算;第二次:输入的数x =6(此时输入的数已变为第一次的计算结果),则x(x +1)2=6×(6+1)2=21,因为21<100,所以再次进入“否”程序,回到“输入”,再进行计算;第三次:输入的数x =21(此时输入的数已变为第二次的计算结果),则x(x +1)2=21×(21+1)2=231,因为231>100,所以进入“是”程序,“输出结果”231,故选D .5.在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1 min 叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃).(1)用代数式表示该地当时的温度;(2)当蟋蟀1 min 叫的次数分别是80,100和120时,该地当时的温度约是多少? 分析:把握各数量之间的关系,是解决此类问题的关键. 解:(1)用x 表示蟋蟀1 min 叫的次数,则该地当时的温度为37x ℃⎛⎫+⎪⎝⎭; (2)把x 等于80,100和120分别代入37x+,得 8010131477≈+=,10012131777≈+=,12014132077≈+=. 因此,当蟋蟀1 min 叫的次数分别是80,100和120时,该地当时的温度大约分别是14 ①,17 ①和20 ①.设计意图:掌握代数式值的计算方法,渗透整体代入的数学思想.六、课堂小结1.本节课主要学习了何为代数式的值、如何求代数式的值. 2.在求代数式的值时,要注意运算方法.3.通过代数式的学习,初步体会数学模型的思想.并学会由特殊到一般、由具体到抽象的数学思想方法.设计意图:组织学生以互相提问的形式把重点知识、数学方法总结出来.学生的学习基础、归纳能力决定了学生会有不同的想法.因此,学生在倾听别人想法的同时,也完善了自己对本节知识的理解.同时这样设计也增强了教师与学生、学生与学生之间的交流,提高了课堂效率.七、板书设计。
第07讲 代数式的有关概念及求值-2021-2022学年七年级数学上册讲义(机构专用,北师大版)

教师讲义【例9】原产量n 千克增产20%之后的产量应为( )A .(1-20%)n 千克B .(1+20%)n 千克C .n +20%千克D .n ×20%千克【例10】甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示( )A .(x +y )B .(x -y )C .3(x -y )D .3(x +y )【例11】三角形一边为a +3,另一边为a +7,它的周长是2a +b +23,求第三边( )A .b -13B .2a +13C .b +13D .a +b -13【例12】公路全长P 米,骑车n 小时可到,如想提前一小时到,则需每小时走_______米.( )A .nP +1 B .1-n P C .1+nP P D .1+n P【例13】当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.【例14】当61x y ==-,时,代数式12(2)33x y y -++的值是( ) A .5- B .2- C .23-D .23【例15】已知:a =12,b =3,求 的值。
【例16】当x=13,y=3时,求下列代数式的值: (1)3x 2-2y 2+1; (2)2()1x y xy --。
其中a=5,b=7; (2)3x 2-2xy+y 2,其中x =1,y= ;19、(1)20、小明读一本共m 页的书,第一天读了该书的13,第二天读了剩下的15. (1)用代数式表示小明两天共读了多少页.(2)求当m=120时,小明两天读的页数.六、课堂小结 学生总结,老师补充 七、课后作业1、a 与b 的平方差可表示为 .2、2x +3y 可以解释为 .3、某商店钢笔每枝a 元,铅笔每枝b 元,小明买了3枝钢笔和2枝铅笔,应付 元.4、个位数字是a ,十位数字是b 的两位数可表示为 ,交换个位与十位数字后的两位数是 .5、一项工程,甲队单独完成需a 天,乙队单独完成需b 天,两队合作要 天完成.6、当n 为整数时,偶数可表示为 ,奇数可表示为 .7、下列各式:⑴132ab ⑵ x ﹒2 ⑶ 30%a ⑷ m -2℃ ⑸ 232y x ⑹ a -b ÷c ,其中不符合代数式书写要求的有( )A 、5个B 、4个C 、3个D 、2个8、如果两个数的和是10,其中一个数用字母x 表示,那么表示这两个数的积的代数式是( ) A 、10x B 、x (10+x ) C 、x (10-x ) D 、x (x -10)③②①22、求代数式的值:(1)(3a-2b)2,其中a= ,b= ; (2)(a+b)2-(a-b)2,其中a = ,b =23、用火柴棒按下面的方式搭成图形. (1)根据上述图形填写下表.(2)第n 个图形需要火柴棒根数为s ,写出用n 表示s 的公式.(3)当n=10时,求出s 值.附答案: 典型例题:例1: B 例2:C 例3:C 例4:B 例5.9n 例6:x +5 例7:a 3 例8:4h 例9:a240例10:(1)(20)x x -;(2)22n -,2n ,22n +;(3)23a +;(4)95x %;(5)3(1)2m m - 例11:⑴(5+3)t =8t ⑵(5-3)t =2t ⑶ 5(m +n )+3n ⑷ 5(m +n )-3n 例12:第一个猴子摘走15m 个,还剩1(1)5m m --个,第二个猴子摘走11(1)55m m --个, 还剩41(1)155m m ⎡⎤---⎢⎥⎣⎦个,第三个猴子摘走11111(1)15555m m m m ⎡⎤------⎢⎥⎣⎦个, 还剩11111111(1)11(1)15555555m m m m m m m m ⎧⎫⎡⎤-------------⎨⎬⎢⎥⎣⎦⎩⎭个 例13:解:当x=7,y=4,z=0时,图形编号 ① ② ③ 火柴棒根数x(2x-y+3z)=7×(2×7-4+3×0) =7×(14-4)=70.例14:B 例15:解:===3 课堂练习1、x+y2、2x -23、2n ,5n4、b a 433+5、13+n6、21)32x y -+(7、()mx ny +,ax8、2mn m n+ 9、)]1(2[-+n x 10、C 11、B 12、D 13、D 14、A 15、D 16、B 17、B18、(1)111++b a ;(2))3%(20+a ;(3)34-xy ;(4)222)(b a b a ++. 19、(1) (2) 20、(1)715m (2)56 课后作业 1、a 2-b 2 2、2个x 和3个y 的和 3、3a +2b 4、10b +a ,10a +b 5、ba ab + 6、2n ,2n +1或2n -1 7、B 8、C 9、D 10、D 11、B 12、C 13、C 14、B 15、C 16、ab 17、10x +y 18、1÷(y x 11+) 19、2n 20、(1)2m ;4m ;8m (2)n m 2 21、(1)2321+6×21=2621 (2)2321+(m -1)·21 22、(1)1 (2)23、(1)7 12 17 (2)s=5n+2 (3)52。
2024年人教版七年级数学上册 3.2 第1课时 实际问题中的代数式求值(课件)
y2
2yLeabharlann 11 22
2
1 2
1
1 4
.
代数式中省略 的乘号,代入 求值时要加上.
例1 根据下列 x,y 的值,分别求代数式 2x + 3y 的值.
(1)x = 15,y = 12;
(2)x
=
1,y
=
1 2
;
解:(1)当 x = 15,y = 12 时,
2x + 3y = 2×15 + 3×12 = 66;
求 a + b 的值.
解:因为 |a| = 6,|b| = 3, 所以 a = ±6,b = ±3. 因为 ab < 0, 所以 a = 6,b = -3 或 a = -6,b = 3. ①当 a = 6,b = -3 时,a + b = 6 + (-3) = 3. ②当 a = -6,b = 3 时,a + b = (-6) + 3 = -3. 综上所述,a + b 的值为 3 或 -3.
重点:求代数式的值. 难点:根据代数式求值推断列代数式和求代数式的值
的意义.
游戏规则:三个人一组,老师报一个数,要求 x
第一位同学把此数加 1 后传给第二位同学,
x+ 1
第二位同学把听到的数平方后报给第三位同学, (x + 1)2
第三位同学把听到的数减 3 后报出结果. 看看哪三位同学计算得又快又好?
(x + 1)2 - 3
比如:1 → 2 → 4 → 1.
知识点1:代数式的值
思考:当 x = 5 时,( x + 1)2 - 3 = 33 . 实际上是在用具体的数字 5 在代替式子 (x + 1)2 - 3 中的字母 x,然后计算结果 (5 + 1)2 - 3 = 33.
3.3代数式的值(苏科版七年级上册数学课件)
例2 .当x=2,y=-3时,求代数式x(x-y)的值
解:当x=2,y=-3时
x(x-y) = 2×[2-(-3)] =2 ×5 =10
从这个例题可以看到, (1)代数式中的字母用负数来替代时,负数要添上括 号。并且注意改变原来的括号。 (2)数字与数字相乘,要写“×”号,因此,如果原代 数式中有乘法运算,当其中的字母用数字在替代时, 要恢复“×”号。
注意: 1. 代数式里不只一个字母的时候, 在代值的时候不要代错,比如a=2,b=1, 不能做成a=1,b=2。
2. 要按照有理数的运算顺序计算。
3. 注意解题格式。
例3.
某企业去年的年产值为 a 亿元,今年比去年
增长了10%,如果明年还能按这个速度增长,
请你预测一下,该企业明年的年产值将能达
到多少亿元? 如果去年的年产值是2亿元,那么预计明年的年产值 是多少亿元?
x3 + y3
;
(2)甲、乙两数和的立方为
( x + y)3 ;
(3)甲、乙两数的平方差与甲、乙两数的差 的平方比是
(x2 - y2) : ( x - y )2
。
学习目标:
点此播放视频课件
1) 会用具体数值代替代数式中的字母,按其 代数式指明的运算顺序进行计算. 2) 能用基本公式进行计算. 3) 能解释代数式值的实际意义. 重点: 在求值过程中,代数式中的运算符号和 运算顺序都不能改变. 难点: 利用代数式求值推断代数式所反映的规律.
n(a+b) 算出这堆钢管的根数。当 2
n=6,a=5,b=10时,求这堆钢管的根数。
a
解:当n=6,a=5,b=10时 n (a+b)/2 = 6×(5+10)/2 =45 答:当n=6,a=5,b=10时, 这堆钢管有45根。
初中数学北师大七年级上册 整式及其加减数学七年级上册代数式求值问题(专题)
代数式求值问题成都高新新源学校 岳小燕教学目标:1.掌握代数式求值的基本题型与解题方法2.能准确进行计算3.在代数式求值过程中,感受整体思想的运用教学重、难点:重点:能准确进行代数式求值的计算难点:对整体思想的灵活运用教学过程:一. 知识梳理1. 若x=-1,则代数式x 2−1的值为 02. 当a+b=3时,则(a +b )2-(a+b )+2的值为 83. 用具体 数 代替代数式中的 字母 所得的数值,叫做这个代数式的值.设计意图:从低起点入手,唤醒学生对基本知识的回忆,为后续问题做好铺垫工作. 二.典型题型探究1. 字母代值型例1:(代数式中字母的值已知)已知x=-1,求3x 2 -1-2x-5+3x-x 2的值.解:原式=2x 2 + x -6方法小结:先化简再求值设计意图:从最简单的例题出发,让学生独立思考,感知本题既可以直接代入求值,也可以先化简再求值,而后者明显更优越,从而渗透代数式求值问题的基本思路:先化简再代入求值.例2:(代数式中字母的值能求出) 已知02)3(22=++-y x ,求)22(26222x xy y x x ---的值.解:由题可知:x-3=0,y+2=0所以:x=3,y=-2原式=10x 2−2x 2y+4xy把x=3,y=-2代入原式=102方法小结:先求出字母的值,再化简代入求值设计意图:本例是对上一个例题的拓展,从字母的值已知到未知,可以想办法求出字母的值,转化成例1的形式,渗透数学转化思想.变式练习:已知m x 2y 与x 4y n 是同类项,求)52(3)3(+-+-n m n m 的值。
解:由题可知:m=2,n=1原式=4m-9n+15把m=2,n=1代入原式=4设计意图:加深学生的理解,巩固提升. 2.整体代值型例3:(代数式中字母的值不能求出)已知x 2+x=1,求2x 2+2x-3的值。
解:原式=2(x 2+x )-3把x 2+x =1代入原式=-1数学方法: 整体代入整体代换的步骤为:(1) 变形得出整体 ;(2) 整体代入 ;(3) 计算设计意图:问题呈螺旋上升,由字母的值可求到没法求,那该怎么办呢?从而渗透数学整体思想,其难点在于把谁看作整体?引发学生去思考如何得到这个整体?变式1:12-+x x =3,求代数式x x 3132++的值。
3.1 代数式(三)——整式+课件+2024-2025学年北师大版(2024)数学七年级上册
叫作多项式.如:5ab+1,
a-b等.
(2)多项式的项和次数:
①多项式的项:多项式中的每个 单项式
叫作 常数项
.其中不含字母的项
.如:b2-b-1的项分别为b2,-b,-1,常数
项是-1.
②多项式的次数:多项式中 次数最高
的项的
次数.如:b2-b-1的最高次项为b2,因此该多项式的次数
为
2 .
(3)一个多项式含有几项,就叫作几项式.
·数学
(2)单项式的系数与次数:
①单项式的系数:单项式中的 数字
数是3,-xy2的系数是 -1
因数.如:3x的系
.
②单项式的次数:一个单项式中,所有 字母
指数和
的
.如:x2y3的次数是5,-xy2的次数是 3
.特
别地,单项式如果是单独一个非零的数字,其次数为0.
·数学
+
1.(1)式子:-a, , ,
,m3n2,xy-1,0,
,
其中是单项式的有( B )
A.6个
B.5个
C.4个
D.3个
·数学
(2)(人教7上P91改编)写出下列各单项式的系数和次数:
单项式
系数
次数
30a
-x3
30
1
-1
3
ab2c3
y
1
1
1
6
-
-
4
πr2
π
2
·数学
多项式
(1)多项式的概念:几个单项式的 和
盒的长、宽、高分别是x cm,y cm,z cm,写出这个包装盒