代数法化简逻辑函数

合集下载

逻辑代数的基本定律和规则

逻辑代数的基本定律和规则

逻辑代数的基本定律和规则一、逻辑代数的基本公式(一)、逻辑常量运算公式(二)、逻辑变量、常量运算公式变量A的取值只能为0或为1,分别代入验证。

二、逻辑代数的基本定律逻辑代数的基本定律是分析、设计逻辑电路,化简和变换逻辑函数式的重要工具。

这些定律和普通代数相似,有其独特性。

(一)、与普通代数相似的定律交换律、结合律、分配律(二)、吸收律与学生一同验证以上四式。

第④式的推广:由表4可知,利用吸收律化简逻辑函数时,某些项或因子在化简中被吸收掉,使逻辑函数式变得更简单。

(三)、摩根定律三、逻辑代数的三个重要规则(一)、代入规则对于任一个含有变量A的逻辑等式,可以将等式两边的所有变量A用同一个逻辑函数替代,替代后等式仍然成立。

这个规则称为代入规则。

代入规则的正确性是由逻辑变量和逻辑函数值的二值性保证的。

例题:(二)、(三)、若两函数相等,其对偶式也相等。

(可用于变换推导公式)。

讨论三个规则的正确性。

逻辑涵数的公式化简法一、化简的意义与标准1、化简逻辑函数的意义根据逻辑问题归纳出来的逻辑函数式往往不是最简逻辑函数式,对逻辑函数进行化简和变换,可以得到最简的逻辑函数式和所需要的形式,设计出最简洁的逻辑电路。

这对于节省元器件,优化生产工艺,降低成本和提高系统的可靠性,提高产品在市场的竞争力是非常重要的。

2、逻辑函数式的几种常见形式和变换3、逻辑函数的最简与-或式对与或式而言:最简:二、逻辑函数的代数化简法1、并项法三、代数化简法举例在实际化简逻辑函数时,需要灵活运用上述几种方法,才能得到最简与-或式.四、作业:。

逻辑代数基本原理及公式化简

逻辑代数基本原理及公式化简

2.1.3 逻辑代数的基本规则
4、附加公式
附加公式二: 一个包含有变量x、x 的函数f,可展开为 x·f和
x·f的逻辑或。 一个包含有变量x、x 的函数f,可展开为(x+f)和
(x+f)的逻辑与。
利用附加公式一,可以改写为:
2.1.3 逻辑代数的基本规则
4、附加公式
例题:化简函数 AB BD (A B)(A B)(B E)
2.1.2 逻辑代数的基本公式
基本公式验证方法: 真值表 利用基本定理化简公式 例:真值表验证摩根定律
A B A B A+B A+B A B 00 1 1 1 1 01 1 1 0 0 10 1 1 0 0 11 0 0 0 0
A______•____B______
__ __
A B
__ __
A B A • B
2.1.2 逻辑代数的基本公式
真值表 利用基本定理化简公式 例:证明包含律
AB AC BC AB AC
证明:
AB(C C) AC(B B ) BC(A A) 1律、互补律 ABC ABC ABC ABC ABC ABC 分配律 ABC ABC ABC ABC 重叠律 AB AC 分配律、互补律
比较两种方法,应用反演规则比较方便。
2.1.3 逻辑代数的基本规则
2、反演规则
例题:求下列函数的反函数 1、F AB CD 2、F A B BCD
2.1.3 逻辑代数的基本规则
3、对偶规则
如果将逻辑函数F 中所有的“”变成“+”,“+”变
成“”,“0”变成“1”,“1”变成“0”, 则所得到的新
A
F
A1 F
非门 (A是输入,F是输出)

第3章 逻辑代数基础

第3章 逻辑代数基础

15
3.3.3 配项法
利用公式 A A 1 给某一个与项配项,然后将其拆分 成两项,再和其它项合并。 例3-9 化简
F AB AC BC
利用公式A+A=A,为某项配上所能合并的项
例3-10 化简
F ABC ABC ABC ABC
16
3.3.4
利用公式7
消去冗余项法
(利用 A A 1 的公式)
(1)F ABC ABC
(2)F ABC ABC BC
14
3.3.2 吸收法
利用公式 A AB A 和
例3-8 化简
A AB A B
(1) F AB ABCD( E F )
(2)F AB C ACD BCD
注 意 变 量 顺 序 !
34
例子:将 AB AC BC用卡诺图表示。 F
方法一:将一般形式的逻辑函数化为标准与或表达式;

A
BC 00 01 11 10

0 1
0 1
1 1
1 0
1 1
35
例子:将 F

m(4,5,9,11,12,13,14,15)用卡诺图表示。
按照格雷码顺序进行行和列的排列,使得每行和每列的相邻方格 之间仅有一位变量发生变化。
BC
C
00 01
m1 m5
A
0 1
11
m3 m7
பைடு நூலகம்10
m2 m6
AB 00 01 11 10
0 m0 m2 m6 m4
1 m1 m3 m7 m5
32
m0 m4
3变量卡诺图
CD AB 00 00 m0 m4 m12 m8 01 m1 m5 m13 m9 11 m3 m7 m15 m11 10 m2 m6 m14 m10

第二章-逻辑函数及其简化

第二章-逻辑函数及其简化

A 0 0 1 1
B 0 1 0 1
Y 1 0 0 1
例2 有X、Y、Z三个输入变量,当其中两个或两个以上取值 为1时,输出F为1;其余输入情况输出均为0。试写出描述此 问题的逻辑函数表达式。 解:三个输入变量有23=8种不同组合,根据已知条件可得真值表 如 下:
由真值表可知,使F=1的输入变量组合有4个,所以F的与—或 表达式为:
F XYZ X Y Z XY Z XYZ
2)逻辑函数的表示方法
(1)真值表 逻辑函数的真值表具有唯一性。逻辑函数有n个变量时, 共有2n个不同的变量取值组合。在列真值表时,变量取值 的组合一般按n位二进制数递增的方式列出。用真值表表 示逻辑函数的优点是直观、明了,可直接看出逻辑函数值 和变量取值之间的关系。
对偶关系
A(A+B)=AB
4)包含律
证明:
AB+AC+BC=AB+AC
AB+AC+BC =AB+AC+(A+A)BC =AB+AC+ABC+ABC =AB(1+C)+AC(1+B) =AB+AC
对偶关系
5) 关于异或和同或运算
对偶数个变量而言, 有 A1A2... An=A1 A2 ... An
对奇数个变量而言, 有 A1A2... An=A1 A2 ... An
异或和同或的其他性质:
A 0= A 1= A A= A (B C)=(A B ) C A (B C)=AB AC
A 1=A A 0 =A A A= 1 A (B C)=(A B) C A+(B C )=(A+B) (A+C)

卡诺图化简法一全文

卡诺图化简法一全文

m0
0
m1如何根据输入1变量组 m2合写出相应最2小项?
m3
3
m4
4
m5
5
m6
6
m7
7
例如 ABC 101 5 m5
m4 4 100 ABC
2. 最小项的基本性质
(1) 对任意一最小项,只有一组变量取值使它的值为1,而
其余各种变量取值均使其值为0。 (2) 不同的最小项,使它的值为1的那组变量取值也不同。 (3) 对于变量的任一组取值,任意两个最小项的乘积为0。 (4) 对于变量的任一组取值,全体最小项的和为1。
每一个与项都是最小项的与或逻辑式称为标 准与或式,又称最小项表达式。
任何形式的逻辑式都可以转化为标准与或式, 而且逻辑函数的标准与或式是唯一的。
[例] 将逻辑式 Y ABC AB C D 化为标准与或式。
解:(1) 利用摩根定律和分配律把逻辑函数式展开为与或式。
Y ABC AB C D ABC AB (C D) ABC ABC ABD 普通与或式,非标准与或式
CD
AB
C D CD CD C D
同一行最 左与最右 AB ABC D ABCD ABCD ABC D
方格相邻
AB ABC D ABCD ABCD ABC D 卡诺图特点: 循环相邻性 AB ABC D ABCD ABCD ABC D
同一列最 上与最下 ቤተ መጻሕፍቲ ባይዱ格相邻
AB ABC D ABCD ABCD ABC D
(2) 找出真值表中Y=1 对应的最小项,在 卡诺图相应方格中 填1,其余不填。
BC A 00 01 11 10
0 10 1 3 12
1 14 5 7 16
已 [例] 已知 Y AD AB(C BD),试画出Y的卡诺图。 知 解:(1) 将逻辑式转化为与或式

2 逻辑函数及其化简

2 逻辑函数及其化简

=AB A B D A B D
AB A B ( D D )
AB AB
AB A B
A B &
&
AB
&
L
& &
AB
AB A B
(1-38)
利用逻辑代数的基本公式:
例2:
F ABC ABC ABC ABC AB (C C ) ABC AB 提出A A( BC B) A(C B) AC AB
A B( A A) A B
例如:A ABC DC A BC DC 被吸收
(1-17)
3.混合变量的吸收:
AB AC BC AB AC
1 证明: AB AC BC AB AC ( A A) BC
AB AC ABC ABC AB AC
普通代 数不适 用!
(1-15)
三、吸收规则 1.原变量的吸收: A+AB=A
证明:A+AB=A(1+B)=A•1=A
利用运算规则可以对逻辑式进行化简。 例如:
AB CD AB D( E F ) AB CD
被吸收
(1-16)
2.反变量的吸收:
A AB A B
证明:A AB A AB AB
2、逻辑函数的化简方法
化简的主要方法: 1.公式法(代数法) 2.图解法(卡诺图法) 代数化简法: 运用逻辑代数的基本定律和恒等式进行化简的方法。 并项法:
A A 1
AB( C C ) AB
(1-36)
L AB C ABC
吸收法:

第2章 逻辑代数与逻辑化简


L ABC ABC ABC ABC
反之,由函数表达式也可以转换成真值表。 例2 写出函数 L A B
A B
真值表。
解:该函数有两个变量,有4种取值的可能 组合,将他们按顺序排列起来即得真值表。
逻辑函数及其表示方法(4)
3.逻辑图——逻辑图是由逻辑符号及它们之间的连线而构成的图形。 由函数表达式可以画出其相应的逻辑图。 例3 画出下列函数的逻辑图: 解:可用两个非门、两个与门 和一个或门组成。
∴等式成立 同理可得
AB A C BCD AB A C
逻辑代数的运算规则(4)
基本逻辑定理 (1)对偶定理 若已知等式
F G
1 0
F
1 0
0 1
" " " " " " " "
F
D
G
0 1
F的对偶式
" " " G的对偶式 " " " " "
L A B A B
由逻辑图也可以写出其相应 的函数表达式。 例4 写出如图所示逻辑图的函数表达式。 解:可由输入至输出逐步 写出逻辑表达式:
L AB BC AC
逻辑函数及其表示方法(5)
逻辑函数的标准形式 考查逻辑函数: F f ( A, B) AB AB AB 化简,有: 最小项 A AB 0 AB 0 AB 1 AB 1 B 0 1 0 1 标准“与或” 式
0 1 0 1
A 0 1
Y 1 0
0 1 0 1
&
≥1
A A
1
Y Y
逻辑 符号

数电 第二章 逻辑代数基础(3)


3、将合并后的各个乘积项进行逻辑相加。
数字电子技术
16

注意:
• 每一个1必须被圈,不能遗漏。
• 某一个1可以多次被圈,但每个圈至少包含一个新的1。
• 圈越大,则消去的变量越多,合并项越简单。圈内1 的个数应是2n(n=0,1,2…)。
• 合并时应检查是否最简。 • 有时用圈0的方法更简便,但得到的化简结果是原函 数的反函数。
在存在约束项的情况下,由于约束项的值始终等于0, 所以既可以将约束项写进逻辑函数式中,也可以将 约束项从函数式中删掉,而不影响函数值。
数字电子技术
21
二.任意项
在输入变量的某些取值下函数值是1 还是 0皆可,并不影响电路的功能。
由于任意项的取值不影响电路的功能。所 以既可以把任意项写入函数式中,也可以不 写进去。
数字电子技术
28
例: 例1 Y
ABC D ABCD ABC D
给定约束条件为: ABCD+ABC D+ABC D+AB C D+ABCD+ABCD+ABCD=0
AB
00 00 0 01 0
CD
01 1 x 0 x
AD
AD
Y BC 00 A 0 0 1 1
数字电子技术
01 1 1 1
11 1 0
10 1 1
13
二、用卡诺图化简函数
例1: 将 Y ( A, B, C ) AC AC BC BC 化简为最简与或式。 Y BC 00 A 0 0 1 1
01 1 1
11 1 0
10 1 1
Y BC 00 A 0 0 1 1
ABC D ABCD ABC D

3. 布尔代数与逻辑函数化简


F AB CD E
F A B C D E
G A B C D E
对偶规则:如果两个函数相等,则它们的对偶函数也相等。 利用对偶规则,可以使要证明及要记忆的公式数目减少一半。例如:
A B A B A
A( B C ) AB AC
( A B) ( A B ) A
3.1.2
基本法则
(1)代入法则:逻辑等式中的任何变量A,如果将所有出现 A的位置都用另一个逻辑函数Z代替,则等式仍然成立。这个规 则称为代入法则。 例如,已知等式 AB A B ,用函数Y=AC代替等式中 的A,根据代入法则,等式仍然成立,即有:
( AC ) B AC B A B C
2、吸收法 (1)利用公式A+AB=A,消去多余的项。 是另 项 是 Y1 A B A BCD( E F ) A B 多外 的 另 运用摩根定律 余 一 因 外 如 的个 子 一 果 。乘 , 个 乘 Y2 A B CD ADB A BCD AD B 积则乘积 项这积项 ( A AD) ( B BCD) A B (2)利用公式A+AB=AB,消去多余的变量。 因项 的 Y AB C A C D BC D 子 的 反 Y AB A C B C 如 AB C C ( A B) D 是 因 是 果 多子 另 一 AB ( A B )C 余, 一 个 AB C ( A B) D 的则 个 乘 AB ABC AB C AB D 。这 乘 积 个积项 AB C AB C D
双重否定律: A A
分别令A=0及 A=1代入这些 公式,即可证 明它们的正确 性。
(3)基本定理

电子技术基础-6.6 逻辑代数的公式法化简


二、逻辑函数化简的意义与标准
F1 ABC ABC ABC ABC
A B C A B C A B C A B C
&
&
≥1
F1
&
&
二、逻辑函数化简的意义与标准
F2 AB AC BC
A B A C B C
F3 AB AC
A B
&
&
≥1
&
&
≥1
F3
F2
A
C
&
二、逻辑函数化简的意义与标准
三、逻辑函数的公式法化简方法
2、吸收法 (1)利用公式A+AB=A,消去多余的项。 余这 一 的另 个 Y1 AB ABCD (E F) AB 如 。 外 乘 运用摩根定律 一积果 个项乘 Y2 A B C D ADB A BC D AD B 乘的积 ( A AD) (B BC D ) AB 积因项 项子是 是,另 多则外
F AB AC 与——或表达式 ( A C)(A B) 或——与表达式
AB AC
与非——与非表达式
A C A B 或非——或非表达式
AB AC
与——或——非表达式
其中,与—或表达式是逻辑函数的最基本表达形式。
一、逻辑函数不同表达形式之间的转换
1. 与非-与非表达式
Y AB AC
一、逻辑函数不同表达形式之间的转换
3、或与表达式
Y AB AC
Y ( A B)(A C)
将与或非式用摩根定律展开,即得或与表达式。
一、逻辑函数不同表达形式之间的转换 4、或非-或非表达式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数法化简逻辑函数
代数法化简逻辑函数可以说是逻辑设计中最基本的内容之一,其重要性不言而喻。


文将从代数法的基本原理入手,详细阐述代数法在逻辑函数化简中的应用方法和技巧,希
望能够对读者有所帮助。

一、代数法的基本原理
代数法的基本原理是代数演算,即符号代数中的运算法则。

在逻辑函数化简的过程中,代数法主要依靠真值表和布尔代数基本公式进行逻辑运算,从而消减逻辑表达式的项数,
达到化简的目的。

1)交换律:$A\cdot B=B\cdot A,A+B=B+A$
二、代数法的应用方法和技巧
1)确定最简逻辑表达式的步骤:
(1)列出逻辑表达式的真值表;
(3)用代数法和 Karnaugh 图方法进行化简。

2)代数法的化简方法:
(1)先运用交换律、结合律等基本公式进行运算;
(2)使用吸收律时,尝试让 $A$ 和 $B$ 相乘或相加,从而达到消减项数的目的;
(3)使用德摩根定律将项数变小;
(4)根据分配律和结合律,可以把具有相同的项因式进行合并,从而达到消减项数的目的。

3)化简策略:
(1)找出不变式,即在不同的输入下其输出恒为 $1$ 或 $0$ 的项,从而消减不必要的项数。

(2)固定变量值,即将已知的变量的值置为 $1$ 或 $0$,从而达到减少运算的目
的。

(3)将复杂的逻辑表达式分解为小的逻辑块,进行单独化简,最后合并成一个简化的表达式。

三、实例分析
下面通过一个实例来说明代数法的具体应用。

已知逻辑表达式 $F=(A+B)\cdot(C+B)$,并要求用代数法化简。

| A | B | C | F |
|:-:|:-:|:-:|:-:|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |
(3)运用代数法进行化简:
$=A'\cdot C'+A'\cdot B+B'\cdot C'+B'\cdot B+A\cdot C$
$=A+C'$
通过对逻辑表达式进行化简,最终得到 $F$ 的最简逻辑表达式为 $A+C'$。

四、总结在逻辑函数化简之前需要对逻辑表达式进行真值表分析,根据真值表得出逻辑表达式的覆盖项和簇合项。

随后,在代数法的应用过程中,我们可以运用基本的代数公式和技巧,例如交换律、结合律、分配律、吸收律和德摩根定律等,来对逻辑表达式进行化简。

并且,还需要注意化简时的策略和方法,例如找出不变式,固定变量值以及分解逻辑表达式成小的逻辑块等,从而达到化简的最佳效果。

除了代数法,还有其它的化简方法,例如karnaugh图法和映射法等。

而在实际的工程设计过程中,通常会综合运用多种化简方法,来达到更好的化简效果。

代数法化简逻辑函数是逻辑设计中最基本、常用、重要的内容之一。

在代数法的应用过程中,我们需要充分理解其基本原理和运用方法,灵活采取化简策略和技巧,从而有效地化简逻辑函数,提高逻辑设计的效率和精确度。

除了基本的代数公式和技巧,代数法的
应用还包括多项式化简和质因数分解等,在实际工程设计中,我们需要对多种代数化简方
法进行综合应用,以达到更好的化简效果。

在代数法的应用中,我们也需要注意一些化简技巧和策略,例如:
1. 同一元素的相加或相乘可以合并,从而减少表达式中元素的个数。

2. 找出不变式或是数学归纳法,当某些输入的变量固定时,输出的结果也是固定的,可以大幅简化逻辑表达式。

3. 根据逻辑表达式的特性,采用对称性、重复性等特点,进行化简。

4. 使用公因数约减法或传递性法则,将不用的项消除或合并,简化逻辑表达式。

代数法化简在逻辑设计中不仅是基础和重中之重,也是高效、准确和优化操作的必备
技能。

通过代数法的运用,不仅可以提高设计的效率和准确性,还可以为后续工作,例如
元器件选型和自动化设计提供有力的支撑。

在实际工程设计中,代数法化简逻辑函数的应
用也具有一定的难度。

针对一些复杂的逻辑函数,通过代数法化简可能会比较困难,而此
时我们需要考虑结合karnaugh图法、映射法等其他化简方法,以取得更好的化简效果。

逻辑函数的化简还需要考虑多种条件和要素,例如:
1. 化简逻辑函数的目的:化简逻辑函数的主要目的是减少逻辑表达式所需变量的数
量和逻辑门的个数。

2. 逻辑函数的性质:在进行逻辑函数化简之前,需要对逻辑函数的特性和属性进行
深入了解,包括逻辑表达式的真值表、函数的输入输出特性等。

3. 逻辑函数的复杂度:不同的逻辑函数的复杂度是不同的,有些函数可以简单运用
基本的代数公式和技巧进行化简,而有些则需要采用复杂的化简方法。

代数法化简逻辑函数是逻辑设计中非常重要的基础内容。

在实际工程设计中,我们需
要熟练掌握代数法的基本原理和应用方法,灵活运用化简技巧和策略,合理选择化简方法,以达到更好的化简效果。

逻辑函数化简还需要结合其他方法和要素,加强逻辑函数特性和
属性的分析,提高逻辑函数的化简效率和准确性,为后续的工程设计提供有力的支持。

相关文档
最新文档