simulink 正弦波调制
simulink常用模块

SIMILINK模块库按功能进行分为以下8类子库:(l)Continuous (连续模块)(2)Discrete (离散模块)(3)Function&Tables (函数和平台模块)(4)Math (数学模块)(5)Nonlinear (非线性模块)(6)Signals&Systems (信号和系统模块)(7)Sinks (接收器模块)(8)Sources (输入源模块)连续模块(Continuous)continuous.mdlIntegrator :输入信号积分Derivative :输入信号微分State-Space :线性状态空间系统模型Transfer-Fcn:线性传递函数模型Zero-Pole:以零极点表示的传递函数模型Memory :存储上一时刻的状态值TransportDelay:输入信号延时一个固定时间再输出VariableTransportDelay :输入信号延时一个可变时间再输出离散模块(Discrete)discrete.mdlDiscrete-timeIntegrator :离散时间积分器DiscreteFilter:IIR 与FIR 滤波器DiscreteState-Space :离散状态空间系统模型DiscreteTransfer-Fcn :离散传递函数模型DiscreteZero-Pole:以零极点表示的离散传递函数模型First-OrderHold: 一阶采样和保持器Zero-OrderHold:零阶采样和保持器UnitDelay: 一个采样周期的延时函数和平台模块(Function&Tables)fUnction.mdl尸5:用自定义的函数(表达式)进行运算MATLAB Fcn :利用matlab的现有函数进行运算S-Function:调用自编的S函数的程序进行运算Look-UpTable:建立输入信号的查询表(线性峰值匹配)Look-UpTable(2-D):建立两个输入信号的查询表(线性峰值匹配)数学模块(Math)math.mdlSum:加减运算Product:乘运算DotProduct :点乘运算Gain:比例运算MathFunction:包括指数函数、对数函数、求平方、开根号等常用数学函数TrigonometricFunction:m角函数,包括正弦、余弦、正切等MinMax :最值运算Abs:取绝对值Sign:符号函数LogicalOperator:逻辑运算RelationalOperator :关系运算ComplextoMagnitude-Angle :由复数输入转为幅值和相角输出Magnitude-AngletoComplex :由幅值和相角输入合成复数输出ComplextoReal-Imag :由复数输入转为实部和虚部输出Real-ImagtoComplex :由实部和虚部输入合成复数输出非线性模块(Nonlinear)nonlinear.mdlSaturation:饱和输出,让输出超过某一值时能够饱和。
Simulink仿真AM调制解调系统

大连理工大学实验报告学院(系):专业:班级:姓名:学号:组:实验时间:实验室:实验台:指导教师签字:成绩:实验名称: Simulink 仿真 AM 调制解调系统一、实验程序和结果:利用 matlab 中的 simulink功能,对系统进行仿真。
1.语音信号的调制与解调( 1)各部分参数设计:①输入的调制信号:调制信号的频率为20Hz,载波信号的频率为200Hz,二者的采样频率均为1000Hz,满足采样频率的要求。
② 随机信号模拟的干扰:在实际仿真时,随机信号模拟信道的干扰信号,但在进行仿真时,并无图像输出。
大概设置存在问题。
③ 带通滤波器的参数设置:滤波器为带通滤波器,下限通带频率为 150Hz,阻带频率为 100Hz ;上限通带频率为 250Hz,阻带频率为300Hz.采样频率为 1000Hz.④ 低通滤波器:低通滤波器的上限通带截止频率为25Hz,阻带频率为30Hz;采样频率为1000Hz。
( 3)各处时域频域波形:A.调制信号:时域图像:频域图像:时域波形:频域波形:C.调制后信号波形:时域波形:频域波形:D.加入噪声后图像:时域波形:频域波形:E.带通滤波器后信号图像:时域波形:频域波形:F.通过低通滤波器后信号图像:时域波形:频域波形:2、结果分析该系统使用乘法器对低频信号进行幅度调制,用低频信号u 控制高频载波u0 的幅度。
再利用想干解调的方法将原信号还原。
由输出波形可知,该系统基本实现了预定的功能。
但加噪声后的波形输出幅度波动较大,原因是带通滤波器对噪声的滤波效果不理想,导致解调后的波形含有剩余的噪声分量,主要是f0 附近的噪声对波形造成了影响。
二、自选系统的系统函数为H(s)=(s^2+8s+10)/(s^2+5s+4)。
( 1)系统框图:采用冲击信号作为输入(幅度为1),仿真信号进过系统后的单位冲击响应。
( 3)输入信号时域波形:输出信号时域波形:。
(完整word版)8PSK调制以及解调的SIMULINK仿真图

摘要8PSK意为正交相移键控,是一种数字调制方式。
四相相移键控信号简称“8PSK”。
在数字信号的调制方式中8PSK是目前最常用的一种数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。
调制技术是通信领域里非常重要的环节,一种好的调制技术不仅可以节约频谱资源而且可以提供良好的通信性能。
8PSK调制是一种具有较高频带利用率和良好的抗噪声性能的调制方式,在数字移动通信中已经得到了广泛的应用。
本次设计在理解8PSK调制解调原理的基础上应用MATLAB语言来完成仿真,仿真出了8PSK的调制以及解调的仿真图,包括已调信号的波形,解调后的信号波形,眼图和误码率。
在仿真的基础上分析比较了各种调制方法的性能,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。
在现代通信系统中,调制与解调是必不可少的重要手段。
所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。
解调则是调制的相反过程,而从已调制信号中恢复出原信号。
本课程设计主要介绍通过进行8PSK调制解调的基带仿真,对实现中影响该系统性能的几个重要问题进行了研究。
针对8PSK的特点,调制前后发生的变化,加上噪声后波形出现的各种变化,通过星座图、眼图、波形图等来观察。
关键字:8PSK ;调制解调;MATLAB ;分析与仿真目录摘要 (1)前言 (4)1 绪论 (4)1.1通信技术的历史和发展 (4)1.2数字调制的发展现状和趋势 (5)1.3 设计要求 (5)2 8PSK调制解调的基本原理设计 (7)2.1 8PSK数字调制原理 (7)2.2 8PSK的解调原理 (8)2.3、高斯噪声、眼图 (9)3 无线信道 (10)3.1 信道的概述 (10)3.2 无线信道 (10)4 8PSK仿真图形分析 (11)4.1 MATLAB软件的介绍 (11)4.2 8PSK调制解调系统的仿真 (11)4.2.1 8PSK调制解调 (11)4.2.3 误码率及眼图 (13)4.2.4 菜单设计 (16)总结 (18)参考文献 (18)致谢 (19)附录 (20)前言信息化的社会,数字技术快速发展,数字器件也广泛的利用,数字信号的处理技术也越来越重要。
simulink各模块中文详解

simulink各模块中文详解Simulink是一种基于模块化建模方式的仿真软件,它可以用来进行系统级的设计、建模和仿真。
Simulink提供了丰富的模块库,包括信号处理、控制系统、通信系统等各个领域的模块,这些模块可以通过连接线连接起来,构成一个完整的系统模型。
在Simulink中,每个模块都有特定的功能和参数设置,下面我们将对Simulink的一些常用模块进行中文详解。
一、信号源模块信号源模块是Simulink中最基础的模块之一,它用于生成各种不同类型的信号。
常见的信号源模块包括正弦波信号源、方波信号源、脉冲信号源等。
这些信号源模块可以设置信号的幅值、频率、起始时间等参数,用于模拟各种不同的输入信号。
二、数学运算模块数学运算模块用于进行各种数学运算,比如加法、减法、乘法、除法等。
Simulink提供了各种数学运算模块,包括加法器、乘法器、除法器等。
这些模块可以对输入信号进行各种数学运算,生成输出信号。
三、滤波器模块滤波器模块用于对信号进行滤波处理,常见的滤波器模块包括低通滤波器、高通滤波器、带通滤波器等。
这些模块可以通过设置滤波器的截止频率、阶数等参数,对输入信号进行滤波,去除不需要的频率成分,得到所需的输出信号。
四、控制系统模块控制系统模块用于建立和仿真各种控制系统,包括PID控制器、状态空间模型、传递函数模型等。
这些模块可以通过设置控制器的参数,对输入信号进行控制,使系统输出达到期望值。
五、状态空间模块状态空间模块用于建立和仿真线性时不变系统的状态空间模型。
状态空间模型描述了系统的状态变量和输入输出关系,可以通过状态空间模块进行系统的分析和控制。
六、通信系统模块通信系统模块用于建立和仿真各种通信系统,包括调制解调器、信道模型、误码率计算器等。
这些模块可以模拟通信系统的发送、传输和接收过程,对信号进行调制解调、传输信道建模等操作。
七、数据存储模块数据存储模块用于存储和读取仿真过程中的数据,包括存储器、查找表、文件读写模块等。
第六章 Simulink

From File参数设置
传递函数(Transfer function) 参数设置
Numerator为分子多项式系数 Denominator为分母多项式系数
传递函数模块参数设置
示波器(Scope) 参数设置
Y坐标变焦 打开参数对话框 X-Y坐标变焦 X坐标变焦
纵坐标的 自动刻度
恢复保存 过的坐标 设置 浮动示波器 把当前的 坐标设置 保存
点击新建模型窗
Simulink库浏览器
一个例子:建构脉冲输出模型
一个例子:建构脉冲输出模型
2. 建构模型。 (1) 打开函数库的Sources模块库,选择信号源。 (2) 打开函数库的Sinks模块库,将scope模块拖到模 型建构窗口。 (3) 连接两个模块。 (4) 调整模块参数。
一个例子:建构脉冲输出模型
运用基本命令构建模型
(2) 信号线操作:
连接模块。 移动线段。 分割线段。 分支线段。
运用基本命令构建模型
(3)对模型的其他操作
模块参数的改变。 插入模块。 信号线标识。 分离模块。 复原操作。 对模型的注释。
常用的Source库信源模块
名称 功能 说明
Clock
(连续)仿真时 钟
输出每个仿真步 点的时刻
Zero-Order Hold
First-Order Hold Unit Delay
零阶保持器
一阶保持器 采样保持,延迟一个周期
正弦信号参数设置
Amplitude为正弦幅值(以A表 示) Bias为幅值偏移值 (以B表示) Frequency为正弦频率 (以w表 示) Phase为初始相角 (以p表示) Sample time为采样时间 正弦信号可表示为 A*sin(wt+p)+B
simulink常用模块

连续模块(Continuous)Integrator:输入信号积分Derivative:输入信号微分State-Space:线性状态空间系统模型Transfer-Fcn:线性传递函数模型Zero-Pole:以零极点表示的传递函数模型Memory:存储上一时刻的状态值Transport Delay:输入信号延时一个固定时间再输出Variable Transport Delay:输入信号延时一个可变时间再输出离散模块(Discrete)discrete.mdlDiscrete-time Integrator:离散时间积分器Discrete Filter:IIR与FIR滤波器Discrete State-Space:离散状态空间系统模型Discrete Transfer-Fcn:离散传递函数模型Discrete Zero-Pole:以零极点表示的离散传递函数模型First-Order Hold:一阶采样和保持器Zero-Order Hold:零阶采样和保持器Unit Delay:一个采样周期的延时函数和平台模块(Function&Tables) function.mdlFcn:用自定义的函数(表达式)进行运算MATLAB Fcn:利用matlab的现有函数进行运算S-Function:调用自编的S函数的程序进行运算Look-Up Table:建立输入信号的查询表(线性峰值匹配)Look-Up Table(2-D):建立两个输入信号的查询表(线性峰值匹配)数学模块(Math )math.mdlSum:加减运算Product:乘运算Dot Product:点乘运算Gain:比例运算Math Function:包括指数函数、对数函数、求平方、开根号等常用数学函数Trigonometric Function:三角函数,包括正弦、余弦、正切等MinMax:最值运算Abs:取绝对值Sign:符号函数Logical Operator:逻辑运算Relational Operator:关系运算Complex to Magnitude-Angle:由复数输入转为幅值和相角输出Magnitude-Angle to Complex:由幅值和相角输入合成复数输出Complex to Real-Imag:由复数输入转为实部和虚部输出Real-Imag to Complex:由实部和虚部输入合成复数输出非线性模块(Nonlinear )nonlinear.mdlSaturation:饱和输出,让输出超过某一值时能够饱和。
几个简单的simulink仿真模型
一频分复用和超外差接收机仿真目的1熟悉Simulink模型仿真设计方法2掌握频分复用技术在实际通信系统中的应用3理解超外差收音机的接收原理内容设计一个超外差收接收机系统,其中发送方的基带信号分别为1000Hz的正弦波和500Hz的方波,两路信号分别采用1000kHz和1200kHz的载波进行幅度调制,并在同一信道中进行传输。
要求采用超外差方式对这两路信号进行接收,并能够通过调整接收方的本振频率对解调信号进行选择。
原理超外差接收技术广泛用于无线通信系统中,基本的超外差收音机的原理框图如图所示:图1-1超外差收音机基本原理框图从图中可以看出,超外差接收机的工作过程一共分为混频、中频放大和解调三个步骤,现分别叙述如下:混频:由天线接收到的射频信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,并可根据调整控制电压随时调整振荡频率,使得器振荡频率始终比接收信号频率高一个中频频率,这样,接受信号与本机振荡在混频器中进行相乘运算后,其差频信号的频率成分就是中频频率。
其频谱搬移过程如下图所示:图1-2 超外差接收机混频器输入输出频谱中频放大:从混频模块输出的信号中包含了高频和中频两个频率成分,这样一来只要采用中频带通滤波器选出进行中频信号进行放大,得到中频放大信号。
解调:将中频放大后的信号送入包络检波器,进行包络检波,并解调出原始信号。
步骤1、设计两个信号源模块,其模块图如下所示,两个信号源模块的载波分别为1000kHz,和1200kHz,被调基带信号分别为1000Hz的正弦波和500Hz的三角波,并将其封装成两个子系统,如下图所示:图1-2 信源子系统模型图2、为了模拟接收机距离两发射机距离不同引起的传输衰减,分别以Gain1和Gain2模块分别对传输信号进行衰减,衰减参数分别为0.1和0.2。
最后在信道中加入均值为0,方差为0.01的随机白噪声,送入接收机。
3、接收机将收到的信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,其中压控振荡器由输入电压进行控制,设置Slider Gain模块,使输入参数在500至1605可调,从而实现本振的频率可控。
2FSK的simulink仿真
1、二进制频移键控(FSK)频移键控是利用两个不同频率f1和f2的振荡源来代表信号1和0,用数字信号的1和0去控制两个独立的振荡源交替输出。
对二进制的频移键控调制方式,其有效带宽为B=2xF+2Fb,xF是二进制基带信号的带宽也是FSK信号的最大频偏,由于数字信号的带宽即Fb值大,所以二进制频移键控的信号带宽B较大,频带利用率小。
2-FSK功率谱密度的特点如下:(1) 2FSK信号的功率谱由连续谱和离散谱两部分构成,•离散谱出现在f1和f2位置;(2) 功率谱密度中的连续谱部分一般出现双峰。
若两个载频之差|f1 -f2|≤fs,则出现单峰。
2、设计2FSK仿真模型如下图所示:FSK基带调制仿真系统框图FSK基带调制仿真系统的框图由伯努利二进制随机数产生器,频谱仪,基带M-FSK调制与解调器,加性高斯白噪声信道,速率转换器及显示器构成。
3、主要参数设置如下:1)Bernoulli Random Binary Generator (伯努利二进制随机数产生器)位置:Communications Blockset\Comm Sources伯努利二进制随机数产生器的主要参数2)Spectrum Scope (频谱仪)用来显示对数字调制后信号的测量。
位置:DSP Blockset\DSP Sinks(a)(b)(C)频谱仪的主要参数一3)AWGN Channel(加性高斯白噪声信道)模拟加性高斯白噪声环境,使传输环境相同,FSK的信噪比为-3dB,其余两个为-6 dB。
位置:Communications Blockset\Channels加性高斯白噪声信道的主要参数4)Real-Imag to Complex位置:math operations\real-imag to complex5)M-FSK Modulator Baseband (基带M-FSK调制器)位置:Communications Blockset\Modulation\Digital Baseband Modulation基带M-FSK调制器的主要参数6)MSK Demodulator Baseband (基带MSK解调器)位置:Communications Blockset\Modulation\Digital Baseband Modulation基带M-FSK解调器的主要参数7)rate transition(速率转换器)位置:signal attributes\rate transition8)scope(示波器)位置:simulink\sinks\scope9)sine wave(正弦波)位置:singnal\singnal processing sources\sine wave框图中的其余模块的参数用的是系统默认参数。
simulink pwm梯形波
simulink pwm梯形波摘要:一、引言二、Simulink 介绍三、PWM(脉冲宽度调制)技术四、Simulink 中的PWM 模块五、PWM 梯形波的生成与调整六、PWM 梯形波在实际应用中的优势七、总结正文:一、引言在现代电子技术中,脉冲宽度调制(PWM)被广泛应用于各种领域,如电源管理、电机控制等。
Simulink 是MATLAB 中的一种工具,可以方便地模拟和设计各种电子电路,包括PWM 电路。
本文将介绍如何使用Simulink 生成和调整PWM 梯形波。
二、Simulink 介绍Simulink 是一个基于MATLAB 的图形化仿真环境,用户可以通过搭建各种模块来模拟和设计复杂的电子系统。
Simulink 中包含了丰富的库,包括模拟、数字、通信、控制等各个方面,方便用户进行各种仿真和分析。
三、PWM(脉冲宽度调制)技术脉冲宽度调制是一种模拟信号处理技术,通过改变脉冲的宽度来调节信号的占空比,从而实现对模拟信号的精确控制。
PWM 技术具有较高的调制精度和较低的传输误差,因此在电子领域得到了广泛的应用。
四、Simulink 中的PWM 模块在Simulink 中,PWM 模块位于Simulink Library Browser 的Analog Modules 子库中。
用户可以通过拖拽PWM 模块到Simulink 模型中,然后连接相应的输入和输出端口来实现PWM 功能。
五、PWM 梯形波的生成与调整要在Simulink 中生成PWM 梯形波,需要按照以下步骤操作:1.从Simulink Library Browser 中拖拽一个PWM 模块到模型中;2.连接PWM 模块的输入端口到信号源,例如,一个正弦波信号;3.将PWM 模块的输出端口连接到一个示波器模块,以便观察生成的PWM 波形;4.在PWM 模块的属性编辑器中,设置PWM 信号的频率、占空比和脉冲宽度等参数;5.运行Simulink 模型,观察生成的PWM 梯形波形。
Simulink仿真平台及通信模块简介
常见问题与解决方案
模块兼容性问题
在使用Simulink通信模块时,可能会遇 到模块兼容性问题。例如,某些模块可 能无法与其他模块正确连接或出现错误 。此时需要检查模块的兼容性和连接方 式,确保模块之间的正确连接。
发展
随着技术的不断进步和应用需求的不断增长,Simulink也在不断更新和扩展,支持更多的算法和工具箱,满足不 同领域的需求。
02
Simulink通信模块介绍
信号源模块
信号源模块
产生模拟或数字信号,作为通信系统的输入。
信号源分类
正弦波、方波、三角波等。
应用场景
用于测试和验证通信系统的性能。
参数设置
物理层协议
Simulink支持多种物理层协议, 如以太网协议、光纤通信协议等, 可以模拟不同协议下的信号传输 性能。
数据链路层协议
Simulink支持多种数据链路层协 议,如PPP协议、HDLC协议等, 可以模拟不同协议下的数据链路 层行为。
卫星通信系统仿真
卫星轨道和运动
Simulink支持多种卫星轨道和运动模型,如地球同步轨道、 太阳同步轨道等,可以模拟不同轨道和运动下的卫星信号 传输特性。
卫星信道建模
Simulink支持多种卫星信道模型,如自由空间传播信道、 大气衰减信道等,可以模拟不同环境下的卫星信号传播特 性。
卫星通信协议
Simulink支持多种卫星通信协议,如DVB-S2协议、 COFDM协议等,可以模拟不同协议下的卫星信号传输性 能。
物联网通信系统仿真
传感器网络建模
Simulink支持多种传感器网络模型,如无线传感器网络、有源传感器网络等,可以模拟不 同传感器网络下的信号传输特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Simulink 正弦波调制
1. 概述
Simulink 是一种基于模型的设计和仿真环境,用于建立、仿真和分析动态系统。
正弦波调制是一种常见的调制技术,用于将低频信号调制到高频载波信号上。
本文将介绍如何使用 Simulink 进行正弦波调制。
2. 正弦波调制原理
正弦波调制是一种将基带信号通过调制器转换为高频信号的技术。
它通过改变载波信号的幅度、频率或相位来传输信息。
常见的正弦波调制方法有幅度调制 (AM)、
频率调制 (FM) 和相位调制 (PM)。
在幅度调制中,基带信号的幅度决定了载波信号的幅度。
在频率调制中,基带信号的频率决定了载波信号的频率。
在相位调制中,基带信号的相位决定了载波信号的相位。
3. 使用 Simulink 进行正弦波调制
3.1 创建 Simulink 模型
首先,打开 MATLAB 并启动 Simulink。
然后,创建一个新模型文件。
3.2 添加输入信号
在 Simulink 模型中,我们需要添加一个基带信号作为输入。
可以使用 Sinewave Generator 模块生成一个基本的正弦波信号。
通过调整该模块的参数,可以设置信号的频率、幅度和相位。
3.3 添加载波信号
接下来,我们需要添加一个载波信号。
可以使用 Sinewave Generator 模块生成一个高频正弦波信号。
通过调整该模块的参数,可以设置载波信号的频率、幅度和相位。
3.4 进行正弦波调制
在 Simulink 模型中,将基带信号与载波信号相乘。
这可以通过使用乘法器模块实现。
将基带信号连接到乘法器的一个输入端口,将载波信号连接到另一个输入端口。
3.5 可视化输出结果
为了可视化输出结果,我们可以添加一个 Scope 模块。
将乘法器的输出连接到Scope 模块的输入端口。
3.6 运行模型
现在,我们已经完成了 Simulink 模型的搭建。
点击 Simulink 模型界面上的运行按钮,即可运行模型并观察输出结果。
4. 示例
下面是一个使用 Simulink 进行幅度调制 (AM) 的示例:
1. 创建新模型文件。
2. 添加 Sinewave Generator 模块,并设置基带信号的频率为 1 kHz,幅度为 1,相位为 0。
3. 添加 Sinewave Generator 模块,并设置载波信号的频率为 100 kHz,幅度为 1,相位为 0。
4. 添加乘法器模块,并将基带信号连接到一个输入端口,将载波信号连接到另一个输入端口。
5. 添加 Scope 模块,并将乘法器的输出连接到 Scope 模块的输入端口。
6. 点击运行按钮,观察 Scope 模块中的输出结果。
5. 总结
通过使用 Simulink 进行正弦波调制,我们可以方便地建立、仿真和分析各种调制技术。
本文介绍了如何使用 Simulink 进行正弦波调制的基本步骤,并给出了一个幅度调制 (AM) 的示例。
Simulink 提供了丰富的模块库和工具箱,使得建立复杂的系统模型变得简单。
它还支持参数化建模、优化和验证等高级功能。
希望本文能够对学习和应用Simulink 进行正弦波调制有所帮助。