文科数学二轮复习:第1部分 专题2 突破点5 数列的通项与求和

文科数学二轮复习:第1部分 专题2 突破点5 数列的通项与求和
文科数学二轮复习:第1部分 专题2 突破点5 数列的通项与求和

突破点5 数列的通项与求和

提炼1 a n 和S n 的关系 若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =???

S 1,n =1,S n -S n -1,n ≥2.在使用这个关系式时,一定要注意区分n =1,n ≥2两种

情况,求出结果后,判断这两种情况能否整合在一起.

提炼2 求数列通项常用的方法 (1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.

(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式.

(3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a n a n -1,求其通项公式.

(4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q

1-p

,再转化为等比数列求解.

(5)构造法:形如a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以q n +1,得

a n +1q n +1=p q ·a n q n +1q

,构造新数列{b n

}? ?

???其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解.

(6)取对数法:形如a n +1=pa m n (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解.

提炼3 数列求和 数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法.

回访1 a n 与S n 的关系

1.(2014·全国卷Ⅱ)数列{a n }满足a n +1=1

1-a n ,a 8=2,则a 1=________.

1

2 [∵a n +1=11-a n , ∴a n +1=11-a n

11-11-a n -1

=1-a n -11-a n -1-1

1-a n -1-a n -1=1-1

a n -1

=1-1

11-a n -2

=1-(1-a n -2)=a n -2, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=1

2.]

回访2 数列求和

2.(2012·全国卷)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( )

A .3 690 B.3 660 C.1 845

D.1 830

D [∵a n +1+(-1)n a n =2n -1, ∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,

a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,

a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,

∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234

=15×(10+234)2

=1 830.]

3.(2013·全国卷Ⅰ改编)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.则

(1){a n }的通项公式为__________;

(2)数列??????

????1a 2n -1a 2n +1的前n 项和为__________.

(1)a n =2-n (2)n

1-2n [(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d .

由已知可得??? 3a 1+3d =0,5a 1+10d =-5,解得???

a 1=1 ,

d =-1.

故{a n }的通项公式为a n =2-n . (2)由(1)知

1a 2n -1a 2n +1=1

(3-2n )(1-2n )

=12? ??

??12n -3-12n -1, 从而数列?

????????

?1a

2n -1a 2n +1的前n 项和为

12? ????1-1-11+11-13+…+12n -3-12n -1=n

1-2n

.] 4.(2014·全国卷Ⅰ改编)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根,则

(1){a n }的通项公式为__________;

(2)数列?

???

??

a n 2n 的前n 项和为__________.

(1)a n =1

2n +1 (2)2-n +42n +1 [(1)方程x 2-5x +6=0的两根为2,3,由题意得

a 2=2,a 4=3.

设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =1

2, 从而a 1=3

2

.

所以{a n }的通项公式为a n =1

2n +1.

(2)设????

??

a n 2n 的前

n 项和为S n ,

由(1)知a n 2n =n +2

2

n +1,则

n 22232n 2n 112S n =323+4

24+…+n +12n +1+n +22n +2. 两式相减得

12S n =34+? ????123+…+12n +1-n +22n +2 =34+14? ?

???1-12n -1-n +22n +2.

所以S n =2-n +4

2

n +1.]

热点题型1 数列中的a n 与S n 的关系

数列中的a n 与S n 的关系

题型分析:以数列中a n 与S n 间的递推关系为载体,考查数列通项公式的求法,以及推理论证的能力.

数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且满足

2a n

a n S n -S 2n

1(n ≥2).求数列{a n }的通项公式.

【导学号:85952024】

[解] 由已知,当n ≥2时,2a n

a n S n -S 2n

=1, 所以2(S n -S n -1)

(S n -S n -1)S n -S 2n

=1,2分

2(S n -S n -1)

-S n -1S n

=1,

所以1S n -1S n -1=12.4分

又S 1=a 1=1,

所以数列????

??

1S n 是首项为

1,公差为1

2的等差数列,6分

S n

22即S n =2

n +1

.8分

所以当n ≥2时,a n =S n -S n -1=2n +1-2n =-2

n (n +1).10分

因此a n =????

?

1,n =1,

-2

n (n +1)

,n ≥2.12分

给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .

提醒:在利用a n =S n -S n -1(n ≥2)求通项公式时,务必验证n =1时的情形. [变式训练1] (1)(2016·合肥三模)已知数列{a n }前n 项和为S n ,若S n =2a n -2n ,则S n =__________.

(2)已知数列{a n }的各项均为正数,其前n 项和为S n ,且2S n +2=3a n (n ∈N *),则a n =__________.

(1)n ·2n (n ∈N *) (2)2×3n -1(n ∈N *) [(1)由S n =2a n -2n 得当n =1时,S 1=a 1

=2;当n ≥2时,S n =2(S n -S n -1)-2n

,即S n 2n -S n -1

2n -1=1,所以数列????

??S n 2n 是首项为1,

公差为1的等差数列,则S n

2n =n ,S n =n ·2n (n ≥2),当n =1时,也符合上式,所以S n =n ·2n (n ∈N *).

(2)因为2S n +2=3a n ,① 所以2S n +1+2=3a n +1,②

由②-①,得2S n +1-2S n =3a n +1-3a n ,所以2a n +1=3a n +1-3a n ,即a n +1

a n =3.

当n =1时,2+2S 1=3a 1,所以a 1=2,所以数列{a n }是首项为2,公比为3的等比数列,

所以a n =2×3n -1(n ∈N *).]

热点题型2 裂项相消法求和

题型分析:裂项相消法是指把数列与式中的各项分别裂开后,某些项可以相

互抵消从而求和的方法,主要适用于?

?????????1a n a n +1或?????????

?1a n a n +2(其中{a n }为等差数列)等形式的数列求和.

已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且

a 2,a 7,a 22成等比数列,

(1)求数列{a n }的通项公式;

(2)若数列????

??

1S n 的前

n 项和为T n ,求证:16≤T n <3

8.

[解] (1)由已知及等差数列的性质得S 5=5a 3,∴a 3=14,1分 又a 2,a 7,a 22成等比数列,即a 27=a 2·a 22.2分 由(a 1+6d )2=(a 1+d )(a 1+21d )且d ≠0, 解得a 1=3

2d ,∴a 1=6,d =4.4分

故数列{a n }的通项公式为a n =4n +2,n ∈N *.6分

(2)证明:由(1)得S n =n (a 1+a n )2=2n 2

+4n ,1S n =12n 2+4n =14? ????1n -

1n +2,8分 ∴T n =14? ?

???1-13+12-14+…+1n -1n +2 =38-14? ????1

n +1+1n +2.10分

又T n ≥T 1=38-14? ????12+13=1

6,

所以16≤T n <3

8.12分

裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n (k ≥1,k ∈N *)的形式,常见的裂项方式有:

(1)1n (n +k )=1k ? ??

??1

n -1n +k ;

(2)1(2n -1)(2n +1)=12? ??

??1

2n -1-12n +1;

(3)

1n +n +k

=1

k (n +k -n ).

提醒:在裂项变形时,务必注意裂项前的系数.

[变式训练2] (名师押题)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.

(1)求数列{a n }的通项公式;

(2)设S n 为数列{a n }的前n 项和,b n =a n +1

S n S n +1,求数列{b n }的前n 项和T n .

[解] (1)由题设知a 1·a 4=a 2·a 3=8,2分

又a 1+a 4=9,可得??? a 1=1,a 4=8或???

a 1=8,a 4=1.(舍去)4分

由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.6分 (2)S n =a 1(1-q n )1-q

=2n

-1.8分

又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1

S n +1

,10分

所以T n =b 1+b 2+…+b n =? ????1S 1-1S 2+? ????

1S 2-1S 3+…+? ????1S n -1S n +1=1S 1-1S n +1=

1-1

2n +1-1

.12分 热点题型3 错位相减法求和

题型分析:限于数列解答题的位置较为靠前,加上错位相减法的运算量相对较大,故在近5年中仅有1年对该命题点作了考查,但其仍是命题的热点之一,务必加强训练.

已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+1

2b 2

+13b 3+…+1

n b n =b n +1-1(n ∈N *).

(1)求a n 与b n ;

(2)记数列{a n b n }的前n 项和为T n ,求T n .

[解] (1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *).2分 由题意知:

当n =1时,b 1=b 2-1,故b 2=2.3分 当n ≥2时,1

n b n =b n +1-b n .4分

整理得b n+1

n+1

b n

n,所以b n=n(n∈N

*).6分

(2)由(1)知a n b n=n·2n,

因此T n=2+2·22+3·23+…+n·2n,

2T n=22+2·23+3·24+…+n·2n+1,8分

所以T n-2T n=2+22+23+…+2n-n·2n+1.9分

故T n=(n-1)2n+1+2(n∈N*).12分

运用错位相减法求和应注意:一是判断模型,即判断数列{a n},{b n}中一个为等差数列,一个为等比数列;二是错开位置,一般先乘以公比,再把前n项和退后一个位置来书写,这样避免两式相减时看错列;三是相减,相减时一定要注意式中最后一项的符号,考生常在此步出错,一定要细心.

提醒:为保证结果正确,可对得到的和取n=1,2进行验证.

[变式训练3]已知在公比大于1的等比数列{a n}中,a2,a4是函数f(x)=(x -2)(x-8)的两个零点.

(1)求数列{a n }的通项公式;

(2)求数列{2na n}的前n项和S n.

[解](1)因为a2,a4是函数f(x)=(x-2)(x-8)的两个零点,且等比数列{a n}的公比q大于1,所以a2=2,a4=8,2分

所以q=2,所以数列{a n}的通项公式为a n=2n-1(n∈N*).6分

(2)由(1)知2na n=n×2n,所以S n=1×2+2×22+…+n×2n,①7分

2S n=1×22+2×23+…+(n-1)×2n+n×2n+1,②8分

由①-②,得-S n=2+22+23+…+2n-n×2n+1=2-2n×2

1-2

-n×2n+1,11

所以S n=2+(n-1)×2n+1(n∈N*).12分

数列求和的教学反思

数列求和的教学反思 数列求和的教学反思 由于数列的求和在求解的方法中比较多,学生难以一次性熟练掌握全部的方法并灵活运用,所以在《数列求和》的专题课的教学重点放在了数列求和的前三种重要方法: 1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和); 2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和; 3、对于数列的通项是由等差乘以等比数列构成的,用乘公比错位相减求和法。 从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。 1、注重“三基”的训练与落实 数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的

不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。 2、例、习题的选配典型,有层次 一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。 3、对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计 对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

文科数学2010-2018高考真题分类专题六 数列 第十七讲 递推数列与数列求和答案

专题六数列 第十七讲 递推数列与数列求和 答案部分 1.C 【解析】∵113 n n a a +=-,∴{}n a 是等比数列 又243a =-,∴14a =,∴()1010101413313113 S -????-- ? ? ?????==-+ ,故选C . 2.D 【解析】【法1】有题设知 21a a -=1,① 32a a +=3 ② 43a a -=5 ③ 54a a +=7,65a a -=9, 76a a +=11,87a a -=13,98a a +=15,109a a -=17,1110a a +=19,121121a a -=, …… ∴②-①得13a a +=2,③+②得42a a +=8,同理可得57a a +=2,68a a +=24,911a a +=2,1012a a +=40,…, ∴13a a +,57a a +,911a a +,…,是各项均为2的常数列,24a a +,68a a +,1012a a +,… 是首项为8,公差为16的等差数列, ∴{n a }的前60项和为1 1521581615142 ?+?+???=1830. 【法2】可证明: 14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+ 11234151514 1010151618302 b a a a a S ?=+++=?=?+ ?= 【法3】不妨设11a =,得23572,1a a a a ====???=,466,10a a ==,所以当n 为奇数时,1n a =,当n 为偶数时,构成以2a 为首项,以4为公差的等差数列,所以得 601830S = 3.A 【解析】法一:分别求出前10项相加即可得出结论; 法二:12349103a a a a a a +=+=???=+=,故1210a a a ++???+=3515?=.故选A. 4.6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+=

2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n

四年级奥数思维训练专题-巧妙求和

四年级奥数思维训练专题-巧妙求和(一) 专题简析:若干个数排成一列称为数列.数列中的每一个数称为一项.其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数. 相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差. 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算. 项数=(52-4)÷6+1=9 答:这个数列共有9项. 试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项? 例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3,公差是4,项数是100.要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算. 第100项=3+4×(100-1)=399

试一试2:求1,4,7,10……这个等差数列的第30项. 例3:有这样一个数列:1,2,3,4,…,99,100.请求出这个数列所有项的和. 分析:等差数列总和=(首项+末项)×项数÷2 1+2+3+…+99+100=(1+100)×100÷2=5050 试一试3:6+7+8+…+74+75 例4:求等差数列2,4,6,…,48,50的和. 分析:项数=(末项-首项)÷公差+1 =(50-2)÷2+1=25 首项=2,末项=50,项数=25 等差数列的和=(2+50)×25÷2=650 试一试4:9+18+27+36+…+261+270 巧妙求和(二) 专题简析:

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

2013高考数学一轮同步训练(文科) 5.4数列求和

2013高考数学一轮强化训练 5.4数列求和 文 新人教A 版 1.在等差数列{n a }中,已知32a =,则其前5项和为 . 答案:10 解析:55()5215352210222 a a a S +???====. 2.若数列{n a }的前n 项和225n S n n =++,则567a a a ++= . 答案:39 解析:5677439a a a S S ++=-=. 3.已知等差数列的通项公式52n a n =-+,则其前n 项和n S = . 答案:25122 n n -- 解析:∵52n a n =-+,∴13a =-. 即2(352)51222 n n n S n n --+==--. 题组一 数列求和 1.设等差数列{n a }的前n 项和为n S ,若81126a a =+,则9S 等于( ) A.54 B.45 C.36 D.27 答案:A 解析:∵81126a a =+, ∴112(7)610a d a d +=++. ∴146a d +=. ∴5959()1969542 a a a S a +=,===. 2.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数 n 为 ( ) A.14 B.16 C.18 D.20 答案:C 解析:1257510()n a a +=+,∴110n a a +=. 又10902 n ?=,∴n=18.

3.在等差数列{n a }中12a ,=- 008,其前n 项的和为n S .若20072005220072005S S -=,则2008S 等于( ) A.-2 007 B.-2 008 C .2 007 D.2 008 答案:B 解析:∵2007()2005()1200712005 200720052222007200520072005a a a a S S d ++-=-==. ∴20082S = 008(2?- 20082007008)2?+? 2= -2 008. 4.设47()222f n =+++…312(n n ++∈N )*,则f(n)等于( ) A.2(81)7n - B.1 2(81)7n +- C.2 2(81)7n +- D.3 2(81)7n +- 答案:B 解析:1 3(1)2[12]2()(81)3712n n f n ++-==--. 5.数列{(1)n n -?}的前2 010项的和2010S 为 ( ) A.-2 010 B.-1 005 C.2 010 D.1 005 答案:D 解析:2010123S =-+-+4-5+…+2 008- 2 009+ 2 010=(2-1)+(4-3)+(6-5)+…+ (2 010- 2 009) = 1 005. 6.数列{n a }的前n 项和为n S ,若 1a =1,13(1)n n a S n +=≥,则6a 等于( ) A.434? B.4341?+ C.54 D.541+ 答案:A 解析:由13n n a S +=,得13(2)n n a S n -=≥,相减得113()3n n n n n a a S S a +--=-=, 则14(2)n n a a n +=≥,即2n ≥时n a ,为等比数列. 又1213a a =,=,则4462434a a =?=?,选A. 7.数列{n a }的前n 项和为n S ,若1(1)n a n n =,+则5S 等于 .

高考数学第2讲数列求和及综合问题

第2讲数列求和及综合问题 高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透. 真题感悟 1.(2020·全国Ⅰ卷)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=________. 解析法一因为a n+2+(-1)n a n=3n-1, 所以当n为偶数时,a n+2+a n=3n-1, 所以a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41, 所以a2+a4+a6+a8+a10+a12+a14+a16=92. 因为数列{a n}的前16项和为540, 所以a1+a3+a5+a7+a9+a11+a13+a15=540-92=448.① 因为当n为奇数时,a n+2-a n=3n-1, 所以a3-a1=2,a7-a5=14,a11-a9=26,a15-a13=38, 所以(a3+a7+a11+a15)-(a1+a5+a9+a13)=80.② 由①②得a1+a5+a9+a13=184. 又a3=a1+2,a5=a3+8=a1+10,a7=a5+14=a1+24,a9=a7+20=a1+44,a11=a9+26=a1+70,a13=a11+32=a1+102,

所以a 1+a 1+10+a 1+44+a 1+102=184,所以a 1=7. 法二 同法一得a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448. 当n 为奇数时,有a n +2-a n =3n -1, 由累加法得a n +2-a 1=3(1+3+5+…+n )-n +1 2 =32(1+n )·n +12-n +12=34n 2+n +1 4, 所以a n +2=34n 2+n +1 4+a 1. 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15 =a 1+? ????34×12+1+14+a 1+? ????34×32+3+14+a 1+? ?? ?? 34×52+5+14+a 1+ ? ????34×72+7+14+a 1+? ????34×92+9+14+a 1+? ?? ??34×112 +11+14+a 1+ ? ???? 34×132+13+14+a 1=8a 1+392=448,解得a 1=7. 答案 7 2.(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 法一 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列, 所以a n =-2n -1. 所以S 6=-1×(1-26)1-2 =-63. 法二 由S n =2a n +1,得S 1=2S 1+1,所以S 1=-1,当n ≥2时,由S n =2a n +1得S n =2(S n -S n -1)+1,即S n =2S n -1-1,∴S n -1=2(S n -1-1),又S 1-1=-2,∴{S n -1}是首项为-2,公比为2的等比数列,所以S n -1=-2×2n -1=-2n ,所以S n =1-2n ,∴S 6=1-26=-63.

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

高考文科数学练习题数列求和与综合应用

专题限时集训(四) 数列求和与综合应用 [专题通关练] (建议用时:30分钟) 1.已知数列{a n }满足a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =( ) A .9 B .8 C .7 D .6 D [因为a 1=2,a n +1=2a n ,所以{a n }是首项和公比均为2的等比数列,所以S n =2 1-2 n 1-2 =126,解得n = 6.] 2.设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足S n S n +1<0的正整数n 的值为( ) A .10 B .11 C .12 D .13 C [由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0,所以 S 13= 13a 1+a 13 2 =13a 7<0,S 12= 12 a 1+a 12 2 =6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n + 1 <0的正整数n 的值为12,故选C.] 3.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列???? ?? 1a n 的前5 项和为( ) A.15 8或5 B.31 16或5 C. 3116 D.158 C [依题意知{a n }的公比q ≠1,否则9S 3=27a 1≠S 6=6a 1,9S 3=S 6?9×1· 1-q 3 1-q = 1·1-q 6 1-q ?q 3 =8?q =2,∴数列??????1a n 是首项为1a 1=1,公比为12的等比数列,∴数列???? ??1a n 的 前5项和为S 5=1×????? ?1-? ????1251-12 =31 16.] 4.已知函数f (n )=? ???? n 2 当n 为奇数时, -n 2 当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+… +a 100=( ) A .0 B .100 C .-100 D .10 200 B [由题意,a 1+a 2+a 3+…+a 100=12 -22 -22 +32 +32 -42 -42 +52 +…+992 -1002 -100 2 +1012 =-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

(完整word版)数列求和方法(带例题和练习题)

数列的求和 数列求和主要思路: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 11123(1) 2 n n k S k n n n == =+++++=+∑L … 4、 222221 1 123(1)(21)6n n k S k n n n n ===++++=++∑L 5、 2 3 3 3 3 3 1 (1)1232n n k n n S k n =+?? ===++++=????∑L 公式法求和注意事项 (1)弄准求和项数n 的值; (2)等比数列公比q 未知时,运用前n 项和公式要分类。 例1.求和2 2 1-++++n x x x Λ(0,2≠≥x n ) 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:1 32)12(7531--+???++++=n n x n x x x S 例3.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 三、倒序相加法 如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的 例4.求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值 例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002. 例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

2019届人教B版(文科数学) 数列求和 单元测试

31 数列求和 1.(2017·北京卷)已知等差数列{a n } 和等比数列{b n }满足a 1=b 1 =1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 解析:(1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,所以2a 1+4d =10, 解得d =2,所以a n =2n -1. (2)设等比数列{b n }的公比为q , 因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3, 所以b 2n -1=b 1q 2n -2=3n -1. 从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1 =3n -12. 2.(2018·四川成都市高中毕业第一次诊断)已知数列{a n }满足a 1 =-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n . 解析:(1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4 =2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1),可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0. ∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+… +2n -4(n -1)=2(1-2n )1-2 -4(n -1)=2n +1-4n +2. 又当n =1时,上式也满足.

高中数列求和方法大全

1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式: 111)1(1+-=+n n n n ; 1111()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? 5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 6.合并求和法:如求22222212979899100-++-+-Λ的和。 7.倒序相加法: 8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 110101011112 -= ++++==k k k k a Λ321Λ个 ] )101010[(9 1 )]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ81 10910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

三种常用的数列求和方法-高考文科数学分类专题突破训练

考查角度2三种常用的数列求和方法 分组转化法求和 已知等差数列{a n}满足a2=2,a1+a4=5. {a n}的通项公式; (2)若数列{b n}满足b1=3,b2=6,{b n-a n}为等比数列,求数列{b n}的前n T n. 利用已知条件求出等差数列{a n}的通项公式;(2)因为{b n n,所以数列{b n}的前n项和T n可以看成数列{b n-a n} {a n}的前n项和的总和. 设等差数列{a n}的公差为d, {a n}满足a2=2,a1+a4=5, ∴解得a1=d=1, ∴a n=1+(n-1)×1=n. (2)设等比数列{b n-a n}的公比为q,∵b1=3,b2=6, ∴b1-a1=3-1=2,b2-a2=6-2=4, ∴q=2. ∴b n-a n=2×2n-1=2n, ∴b n=n+2n, ∴数列{b n}的前n项和 T n=(1+2+3+…+n)+(2+22+…+2n)=+- -=+2n+1-2. 从求和数列的通项入手,将其转化为等差数列与等比 ,再利用等差数列与等比数列的求和公式进行分组求和. 错位相减法求和 已知{a n}的前n项和S n=4n-n2+4. {a n}的通项公式; (2)求数列-的前n项和T n. 由{a n}的前n项和求出数列{a n}的通项公式;(2)利用错 (当n=1时要单独考虑). 当n≥2时,a n=S n-S n-1=4n-n2-[4(n-1)-(n-1)2]=5-2n; 1时,a1=S1=7. ∴a n= - (2)令b n=-,

当n=1时,T1=b1=-=0; 当n≥2时,b n=-= - , ∴T n=0++++…+ -+ - , T n=+++…+ - +, 两式相减得T n=1+++…+ --= - - -=2-, ∴T n=4- - (n≥2 . 当n=1时,满足上式. 综上所述,T n=4- - . 用错位相减法求和时,应注意: ,特别是等比数列的公比为负数的情形; (2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式; (3)在应用错位相减法求和时,若等比数列的公比未知,应分公比等于1和不等于1两种情况求解. 分类透析三a n=型的裂项相消法求和 已知数列{a n}为单调递增数列,S n为其前n项和,2S n=+n. (1)求{a n}的通项公式. (2)若b n=,T n为数列{b n}的前n项和,证明:T n<. 由递推公式2S n=+n求出{a n}的通项公式;(2)先用裂项相消法求和,再进行适当放缩证明. 当n=1时,2S1=2a1=+1,即(a1-1)2=0,解得a1=1. 又{a n}为单调递增数列,所以a n≥1. 由2S n=+n得2S n+1=+n+1, 所以2S n+1-2S n=-+1, 整理得2a n+1=-+1,所以=(a n+1-1)2. 所以a n=a n+1-1,即a n+1-a n=1, 所以{a n}是以1为首项,1为公差的等差数列,所以a n=n.

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

相关文档
最新文档