发动机悬置设计

发动机悬置设计
发动机悬置设计

整车技术部设计指南,;

73 ·

发动机悬置设计

概述

汽车的乘坐舒适性——NVH(Noise-噪声、Vibration-振动和 Harshness-声振舒适性)越来越受到人们的重视和关注,因为噪声、振动和舒适性,是衡量汽车制造质量的一个

综合问题,它给汽车用户的感觉是最直接和最表面的。作为汽车动力源的发动机是汽车

主要的振动激励源之一,其气缸燃气压力、转速及输出转矩的周期性波动及不平衡惯性

力(矩)既激起发动机动力总成本身的刚体振动和弹性振动,又激起汽车动力传动的扭

转振动和弯曲振动等,从而导致十分严重的振动、噪声及结构问题,最终传递给车身,

引起整车振动与噪声。

汽车动力总成悬置系统是指动力总成(包括发动机、离合器及变速箱等)与车架或

车身之间通过弹性悬置元件连接而成的系统,发动机动力总成的振动与路面激励力是通

过弹性悬置元件传给车身,该项系统性能设计的好坏直接关系到发动机振动向车体的传递,影响整车的 NVH 特性。因此,最大限度的减小发动机动力总成所产生的振动及噪声

向车身传递,是汽车减振和降噪的主要研究内容之一。

、悬置系统功能介绍

悬置总成的功用

a)悬置系统的首要作用即最基本的作用是支承动力总成的动、静载荷,并使发动机

动力总成在所有方向上的位移处于可接受的范围内,不与前舱内其它零部件发生干涉;

b)隔离发动机动力总成的振动,最大限度地降低从发动机动力总成传递到车身/车架

上的振动,能有效的降低振动及噪音;

c)在汽车做紧急制动、加速或受其它外界负荷的作用下时,发动机不应有过大的位移;

d)隔离由于轮胎及车身的抖动而产生的振动和噪音通过悬置系统而传向发动机动力

总成,降低振动及噪音;

e)悬置系统元件需有足够的使用寿命。

动力总成悬置系统设计方法

设计需解决的问题

a)主要起支撑减振的作用,因而,悬置必须要能够支撑起动力总成,并且保证其三

整车技术部设计指南74

个方向的位移和绕三个轴的转角在一定的限度内;

b)发动机自身振动的隔离,即不让发动机不平衡力所造成的振动过分地传向车向车

f? f /2

身,这就要求各悬置的固有频率与各激励源的频率必须满足

的条件,其中,f为各悬置的固有频率, f为怠速时各激励源的频率。车身结构振动

的降低,十分有利于降低结构的噪声辐射。

c)路面的激励下发动机的晃动问题。即在低频段内,发动机固有频率与整车特性不

匹配时,路面激励所造成的发动机晃动可能引起汽车乘坐舒适性问题,也可能影响到汽

车的操纵舒适性。

主要设计参数的决定因素和最优化的目标

a)布置空间,悬置系统的设计很大程度上受到布置空间的制约,由于轿车的前舱一

般空间很有限,加上其它系统如排气系统、进气系统、冷却系统及转向系统及空调系统

等都在前舱内布置,所以悬置系统首先要满足布置上的要求;

b)发动机的工作模态,由于发动机的工作频率很宽,通过改变悬置元件的刚度、安

装位置、安装角度以及改变悬置元件的阻尼系数,合理的匹配发动机动力总成悬置系统

的各向固有频率,最大限度发挥现有悬置元件的潜能,以达到减振的目的。

满足的工作环境

悬置系统的工作条件一是持续承受动力总成的重量,克服传动轴对动力总成的反作

用扭矩,二是承受发动机工作时的前舱高温(约 100oC),三是承受整车启动后一定频率

的来自动力总成和车轮的激励振动。

发动机动力总成设计的基本步骤

a) 动力总成悬置系统方案布置设计,这时,需要了解的是项目背景及与整车项目相

关的一些信息,比如,整车设计的市场定位,对悬置系统的要求(包括成本投入,综合

性能的目标等),前舱的边界条件及悬置系统的布置方案的选择等;因为悬置系统与动力

总成的结构及特性有很大的关系,为了便于组建数据库,需在设计前期就必需了解动力

总成的特性(比如,发动机的型号,变速箱的型号,动力总成(或发动机与变速箱)的

重量,重心点坐标及转动惯量等;

b)动力总成悬置系统零部件的概念设计,依据总布置给的边界条件及动力总成的特性

及转动惯量,利用相应的理论指导(如撞击中心理论、刚度矩阵解耦法、能量解耦法等),来确定悬置系统的布置方式及悬置点的布置位置。

整车技术部设计指南75

c)动力总成悬置系统零部件的详细设计,依据悬置系统概念设计过程中得到的边界

数模,并利用相应的软件(如 ADAMS、NASTRA、NANSYS、CAE 等)分析为指导,以发动机

动力总成悬置系统的固有频率的合理分布为目标,详细设计悬置系统各零部件工艺数模、

细化二维图纸及初步确定悬置系统各方向上的动、静刚度值,这时除了要更新《设计构

想书》及《零部件清单》之外,《技术装配说明书》、DVP、DFME、专利分析等需在此阶段

完成。

d)发动机动力总成悬悬置系统零部件试制,按照数模(或图纸)及相关的标准在规

定的时间内制造合格的工装(或手工)样件,此时需按需要装配几台准备作试验用的样

机;

e)动力总成悬置系统零部件验证(包括台架试验、悬置系统 CAE 分析及整车 NVH 性

能试验等),通过对悬置系统进行台架、相关的性能分析及测试,检测动力总成悬置系统

在各个工况下的工作特性、隔振及对噪音的衰减性能,这一般由供应商和整车厂共同进

行,并对试验结果进行分析,得出进一步优化动力总成悬置系统的方案,由于发动机动

力总成系统的工作频率是一个很宽的范围(一般会在 10~500Hz 之间),并且要求悬置系

统在低频大振幅(如发动机怠速状况)提供大的阴尼特性,而在高频低幅振动激励下提

供低的动刚度特性,以衰减高频噪声。可是实际上悬置系统由于受到材料(特别是橡胶

悬置)的限制,很难满足动力总成各工作模态下的要求,我们的目标就是最大范围的满

足动力总成常见工作模态下响应,

f)动力总成悬置系统改进优化,依据台架试验数据、CAE 分析的反馈信息及整车测

试的结果对动力总成及悬置系统进行分析,优化悬置元件的结构及橡胶的动、静刚度,

以达到满足整车 NVH 及相关的综合性能,此时,相关的文件(比如数模,二维图,动、

静刚度曲线图都需及时更新);

g)对动力总成悬置系统再一轮的样件制作及试验验证,至到达到相关的国家标准及

满意的效果为止;

设计发动机动力总成悬置系统还应注意的其它几个因素

a)影响装配位置因素,因悬置元件大多为铸造件及冲压件,因其结构的不规则性,

在进行悬置系统详细设计时需要考虑悬置系统的可装配性;

b)修理的方便性,指在进行悬置系统详细设计时不仅要考虑悬置系统的可装配性,

还要考虑悬置软垫的更换及对动力总成进行保养时的方便动力总成的拆卸和安装。

、悬置系统的布置

悬置系统布置的要求及依据

整车技术部设计指南76

要保证悬置本身在保证结构强度的前提下不与其他件干涉,要考虑到运动过程中橡

胶件为弹性体,悬置位置必定会有约 10~20mm 左右的变动。二是要保证由悬置限制位置

的动力总成不与周围车身件和发动机附件干涉,尤其注意与燃油管路,传动轴等安全件

的干涉;

悬置点的数目及其位置选择,汽车发动机的悬置系统多采用三点或四点支承。一般

较老式的发动机多在风扇端设置一个或两个支承点,而在飞轮端设置两个支承点;新式

的则反过来,在风扇端设置两个支承点,而在飞轮端则放一个或两个。这主要是根据发

动机类型(是汽油机还是柴油机),前后承载重量分配以及激振力情况而定的。三点支承

的优点是不管汽车怎样颠簸、跳动,它总能保证各支承点处在一个平面上,这就大大改

善了机体的受力情况,目前有很多汽车发动机即使是采用四点支承的也力求将飞轮端的

那两点尽量靠拢,以达到三点支承的效果。

此外三点悬置系统,通过合理设计可以达到上下方向、扭转振动的独立解耦,从而

大幅减小了耦合振动。其中左右悬置通常接近扭转惯性轴位置布置,特别支持上下方向

的振动解耦。右悬置通常采用效果更佳的液压悬置,与发动机连接布置,支持隔离发动

机燃烧激励、惯性力激励、路面激励。左悬置通常就采用普通的橡胶悬置,与变速箱连

接布置,在隔离激振的同时起到动力总成限位的作用。后悬置通常与变速箱连接布置,

承受扭矩,重点起到动力总成的纵向限位。四点悬置系统,同样可以达到上下方向、扭

转振动的独立解耦,从而大幅减小了耦合振动的要求。其中左右悬置也接近扭转惯性轴

位置布置,特别支持上下方向的振动解耦。前后悬置主要承受由行驶工况引起的扭矩,

重点起到动力总成的纵向限位。相对于三点悬置系统,四点悬置系统的优点是发动机摇

振和怠速工况振动效果良好,但此种布置中前后悬置的刚度变化将引起发动机位置变化,

导致怠速的预载变化,其次通常需要前横梁支撑前悬置,导致减振效果的下降。

通常在选择支承点的布置位置时除了要满足整车布置协调、系统解耦条件外还有两

个问题需要考虑:一是打击中心问题。设计良好的悬置系统发动机本身的运动即使是在

恶劣的道路条件下也不会很大,且隔振器也不会遭受过大的动载荷。但在有些发动机中,

如直列式四缸发动机,当曲柄间隔为 180 度时存在着严重的二次不平衡惯性力,由它将

引起机组剧烈的纵摇振动。在这种情况下如应用打击中心理论将发动机的前支承布置在

激振力的作用平面内(气缸体的横向中心面处),后支承布置在打击中心处,就可以大大

减轻激振力通过后支承向车身的传递,有效地减小汽车振动。二是机身一阶弯曲振动问

题。现代汽车发动机机组作为一个弹性体其一阶弯曲振动的固有频率并不是很高的,而

功率强大的发动机的高频段的激励频率却是很丰富的,因此很有可能导致机身产生一阶

弯曲振动共振。在这种情况下如能将支承点安置在振型曲线的节点处,对于减轻隔振器

的附加载荷是很有利的。

整车技术部设计指南77 发动机动力总成悬置系统布置图举例

图 a 常见的四点悬置布置形式

如图 a 为常见的四点悬置布置形式,前、后、左、右各一点,左、右悬置承受动力

总成的绝大部分重量,并且布置在动力总成的扭矩轴附近,前、后悬置点布置在动力总

成弯曲振形的节点上,可以起到限制动力总成的扭转并使悬置软垫变形量最小。动力总

成悬置系统一般存在着弹性耦合和惯性耦合,各悬置点布置遵循以上原则外,还应从动

力总成的模态解耦上考虑,应尽量使悬置点的弹性中心与发动机动力总成的重心重合。

整车技术部设计指南78

图 b 典型的三点悬置软垫的结构形式

如图 b,LHS 为悬置轴线垂直布置,该结构有利于提高 Y 向刚度;RHS 轴线水平布置,有利于提高 Z 向刚度,ROD 为扭力杆,其只限制 X 方向的刚度,运动的顺从性好,避免造成车身的扭曲。单个零件的结构选择首先考虑的是在允许悬置布置的空间内灵活构思,

完成结构设计,整个悬置系统就必须考虑各个方向的刚度限制,图所示的系统由

于 XYZ 三个方向的刚度都能得到保证,因而该系统是一个成功布置的典型范例。

整车技术部设计指南

79悬置与周边间隙布置举例

由于前舱温度较高,要求前悬置与排气管间隙≥50mm。

整车技术部设计指南

80为了防止发动机侧倾影响,一般要求右悬置与皮带轮间隙≥10mm。

考虑传动轴的跳动与发动机的振动,要求后悬置与传动轴间隙≥35mm。

整车技术部设计指南81

、组成悬置元件的材料及性能要求

发动机动力总成悬置的种类

a)从类型上分,有金属弹簧悬置、橡胶悬置、空气弹簧悬置和液力悬置等多种结构,

在车辆个常见的是橡胶悬置和液力悬置。橡胶悬置利用橡胶材料的拉伸、压缩和剪切变

形来实现能量的吸收和消耗,达到隔振的目的。对橡胶悬置的结构进行优化,可以同时

调节横向、纵向及垂向的刚度值,实现全方位的隔振,但研究表明,橡胶悬置仅在低频

段有较好的隔振性能,高频时容易发生驻波现象,使系统的动刚度增大,隔振效果变差。

所以橡胶悬置一般是用在档次较低的车辆和大型动力机械的隔振处理中,隔振要求较高

的环境中一般很少使用;液力悬置将橡胶材料的弹性吸振和液体阻尼合为一体,能有效

衰减车辆伯振动,降低车内噪声,提高乘坐舒适性,并有助于改善车辆的使用安全性和

操作稳定性。

b)从控制方式上分,悬置元件可分为被动式、半主动控制式及主动控制式三大类。

目前已经在车辆上安装使用的是两室被动液力悬置,其中两室分别为工作腔和辅助腔,

有简单阻尼孔式、惯性通道式、解耦式和液柱共振式等多种结构。半主动式及主动式隔

振的发动机悬置元件还处于研究阶段,还没有大批量运用于生产。

c)悬置元件材料的成分,目前常用的是橡胶,金属骨架,或内部充液(一般是粘值

较低的硅油、酒精或防冻液等)。

发动机动力总成悬置支架的材料

a)发动机悬置支架因为需有高的固有频率,所以大部分为铸造件及复杂的冲压件组

成。铸件材料多采用灰铸铁,铝合金等。少量采用球墨铸铁和成本高的合金材料,如对

强度要求较高的用球墨铸铁,同时对强度,重量(要求轻)要求较高的用镁合金。

b)无论是铸件还是焊接件、冲压件都要进行消除应力处理,此外还需进行表面防护

(耐水性及耐盐雾性)处理等。

c)悬置支架元件的主要设计参数、结构的确定,无论是铸件,还是冲压件的支架,

在设计时需考虑的是支架的固有频率(一般需设计在 450Hz 以上)、结构强度和疲劳寿命。在这一点上,设计人员要注意收集一些好的加强筋的概念,将其很好的利用到结构设计

中。<

汽车悬置系统设计指南

悬置系统设计指南 编制: 审核: 批准: 发动机工程研究二院 动力总成开发部

主题与适用范围 1、主题 本指南介绍了动力总成悬置系统开发的基本知识和基本过程,以及所涉及到的基本流程文件核技术文件。 2、适用范围 本指南适用于奇瑞所有装汽油或柴油发动机的M1类车动力总成悬置系统的设计。

目录 一、悬置系统中的基本概念 (4) 1.1 悬置系统设计时的基本概念 (4) 1.2动力总成振动激励简介 (6) 二、悬置系统的作用 (8) 2.1 悬置系统的设计意义及目标简介 (8) 2.2 动力总成悬置系统对整车NVH性能的影响 (8) 三、悬置系统的概念设计 (10) 3.1 悬置系统的布置方式选择 (10) 3.2 悬置点的数目及其位置选择 (11) 3.3 悬置系统设计的频率参数 (13) 四、悬置系统相关设计参数 (14) 4.1动力总成参数 (14) 4.2 制约条件 (15) 五、悬置系统设计过程中的相关技术文件 (16) 5.1 悬置系统VTS (16) 5.2 悬置系统DFMEA (17) 5.3 悬置系统DVP&R (17) 5.4 其它技术及流程文件 (17)

一、悬置系统中的基本概念 1.1 悬置系统设计时的基本概念 1:整车坐标系:原点在车身前方,正X方向从前到后,正Y方向指向右侧(从驾驶员到副驾驶),正Z方向朝上如图(1-1)。 (图1-1)整车坐标系 2:发动机坐标系:原点在曲轴中心线与发动机和变速箱结合面的交点处;正X方向从变速箱到发动机,沿着曲轴中心线,正Y方向指向右侧如果沿着正X方向看,正Z方向朝下如图(1-2)。 (图1-2)发动机坐标系 3:主惯性矩坐标系:原点在动力总成的质心位置,正X方向从变速箱到发动机,沿着最小主惯性矩轴线,正Y方向通常沿着最大主惯性矩轴线,正Z方向朝下并且沿着中等主惯性矩轴线如图(1-3)。

实用文档之汽车发动机的发展历程

实用文档之" 汽车发动机的发展历程" 摘要:汽车在现代社会生产生活中发挥着重要作用,而汽车发动机更是其核心部分;可以说汽车发动机的发展历程在一定程度上就是汽车的完善过程。本文阐述了汽车发动机的构造及原理,并讲述了汽车发动机的发展历程。而且笔者还对汽车发动机未来的发展趋势进行了合理预测。 【关键字】汽车发动机原理发展历程新技术 自从第二次工业革命以来,汽车得到迅猛发展。如今,汽车已经渗透到人类社会的各个方面。每天,数以千万计的汽车行驶在大大小小的公路上,而汽车生产所需的零件更是数以亿计。其广阔的市场使得汽车成为各种高科技应用的载体。汽车发动机为汽车提供动力,更是汽车的核心。汽车发动机的发展能极大地促进汽车的发展。在环境日益恶化的今天,传统发动机面临这巨大挑战。 1.发动机的类别 发动有很多种类,按不同划分方法有不同的类型。 按发动机所使用燃料来划分,发动机主要可分为汽油发动机、柴油发动机、天然气发动机、液化石油气发动机、混合动力发动机;根据发动机可分为四冲程发动机和二冲程发动机;按照气缸数,发动机可分为单缸发动机、两缸发动机、多缸(三缸以上)发动机;按照冷却方式不同,发动机可分为水冷式发动机(见图1)和风冷式发动机(见图2);根据排列方式,发动机可分为直列L型发动机、H型发动机、W型发动机、V型发动机等;按照发动机在车身上的布局不同,发动机可分为前置发动机,中置发动机和后置发动机。

2.发动机构造及原理 发动机是一个热能转换机构,通过在密封汽缸内燃烧汽油(柴油)或天然气,使气体膨胀并推动活塞做往复运动,从而使物质的内能转

化为机械能。发动机是一种有许多机构和系统组成的复杂的机械设备。无论是哪种类型的发动机,要想完成热能转化为机械能的能量转化过程,实现工作循环,保证发动机能持续正常工作,都离不开发动机中各个机构和系统之间的配合。 汽油机是由五大系统和两大连杆组成,即曲柄连杆机构、配气机构、燃料供给系、润滑系、冷却系、点火系和起动系组成。 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 在汽油机中,气缸内的可燃混合气是K电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系。

发动机悬置系统安装调整规范

ISC Q/KLQ 金龙联合汽车工业(苏州)有限公司企业标准 Q/KLQ10-01-2008 发动机悬置系统安装调整规范 编制 审核 标准 批准 2008-12-7发布 2009-01-01实施 金龙联合汽车工业(苏州)有限公司发布

Q/KLQ10-01-2008 前言 本标准主要为金龙联合汽车工业(苏州)有限公司发动机悬置系统装配方面的标准,主要规定了悬置系统装配方法,要求及装配误差,为技术中心标准文件。本标准由金龙联合汽车工业(苏州)有限公司提出。 本标准由金龙联合汽车工业(苏州)有限公司归口。 本标准由金龙联合汽车工业(苏州)有限公司技术中心负责起草。 本标准主要起草人:许建平。 本标准首次发布。

1、范围 本标准适用于金龙联合汽车工业(苏州)有限公司发动机悬置系统装配,主要规定了发动机悬置系统的支架装配,发动机吊装时的装配方法、装配要求、装配误差。主要适用于制五部。 2、规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QC/T518-2007 汽车用螺纹紧固件紧固扭矩 3、悬置软垫的布置形式 (1)平置式 平置式软垫呈水平布置,结构简单、装配方 便、尺寸精度要求低。平置式软垫一般有三 种: 一种是桶形(10A12-01050),中心镶有套 管、由上下两段直径不同的橡胶体组成。这 类软垫使用比较普遍,有较好的定位和隔离 冲击振动的功能,但不承担剪切方向的变形。 一种是方块形(10T01-01015),橡胶体上下 表面分别与上下金属骨架(板)硫化粘接成 一体,依靠金属骨架与发动机上的支架和车 架紧固连接,因此形成上下“绝缘式”支承。 它可承担压缩和剪切两个方向上的变形,隔 离扭转振动的功能较强,但水平方向的自由 度较大、横向稳定性差,故软垫的金属骨架 上应设有限位面。

悬置设计指南

1 发动机悬置系统的设计指南

1.1 悬置系统的设计意义及目标简介 现代汽车发动机无一不是采用弹性支承安装的,这在汽车行业称之为“悬置”,在力学及振动工程中则是个隔振问题。如果不用中间弹性元件而直接将发动机刚性地固紧在汽车车架(底盘)上,则当汽车在不平坦的路面上行驶时将导致机身由于车架的变形、冲击而损坏;而当汽车在平坦光滑的路面上行使时来自发动机的振动将导致车架、车身产生令人厌恶的结构噪声。此外弹性悬置还能补偿在发动机安装及运动过程中由车架变形导致的相对位置的不精确。 由此可知,悬置系统的设计目标值: 1) 能在所有工况下承受动、静载荷,并使发动机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其它零部件发生干涉; 2) 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声; 3) 能充分地隔离由于地面不平产生的通过悬置而传向发动机的振动,降低振动噪声; 4) 保证发动机机体与飞轮壳的连接弯矩不超过发动机厂家的允许值。

1.2 悬置系统的布置方式选择 每个隔振器(悬置系统)不论其结构形状如何都可以看作由三个相互垂直的弹簧组成,按照这三个弹簧的刚度轴线和参考坐标轴线间的相对位置关系,悬置系统弹性支承的布置可以有常见的三种不同方式: 1) 平置式。这是常用的、传统的布置方式,其特征是布局简单、安装容易。在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴各自对应地平行于所选取的参考坐标轴。 2) 斜置式。这是一种目前汽车发动机中用得最多的布置方式。在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴相对于参考坐标轴的布置是:除一个轴平行于参考坐标外,其他两个轴分别与参考坐标轴有一夹角。一般斜置式的弹性支承都是成对地对称布置于垂向纵剖面的两侧,但每对之间的夹角可以不同,坐标位置也可任意。这种布置方式的最大优点是:它既有较强的横向刚度,又有足够的横摇柔度,因此特别适用于象汽车发动机这样既要求有较大的横向稳定性,又要求有较低的横摇固有频率以隔离由不均匀扭矩引起的横摇振动。此外,它还可以通过斜置角度、布置位置以及隔振器两个方向上的刚度比等适当配合来达到横向——横摇解耦的目的,这是平置式较难做到的。 3) 会聚式。这种布置方式的特点是弹性支承的所有隔振器的主要刚度轴均会聚相交于同一点。除了有良好的稳定性外它最大的优点是可以通过调节倾斜角度和布置坐标的关系来获得六种完全独立的

发动机悬置设计

发动机悬置设计 5.1 概述 汽车的乘坐舒适性——NVH(Noise-噪声、Vibration-振动和 Harshness-声振舒适性)越来越受到人们的重视和关注,因为噪声、振动和舒适性,是衡量汽车制造质量的一个 综合问题,它给汽车用户的感觉是最直接和最表面的。作为汽车动力源的发动机是汽车 主要的振动激励源之一,其气缸燃气压力、转速及输出转矩的周期性波动及不平衡惯性 力(矩)既激起发动机动力总成本身的刚体振动和弹性振动,又激起汽车动力传动的扭 转振动和弯曲振动等,从而导致十分严重的振动、噪声及结构问题,最终传递给车身, 引起整车振动与噪声。 汽车动力总成悬置系统是指动力总成(包括发动机、离合器及变速箱等)与车架或 车身之间通过弹性悬置元件连接而成的系统,发动机动力总成的振动与路面激励力是通 过弹性悬置元件传给车身,该项系统性能设计的好坏直接关系到发动机振动向车体的传递,影响整车的 NVH 特性。因此,最大限度的减小发动机动力总成所产生的振动及噪声 向车身传递,是汽车减振和降噪的主要研究内容之一。 5.2、悬置系统功能介绍 5.2.1 悬置总成的功用 a)悬置系统的首要作用即最基本的作用是支承动力总成的动、静载荷,并使发动机 动力总成在所有方向上的位移处于可接受的范围内,不与前舱内其它零部件发生干涉; b)隔离发动机动力总成的振动,最大限度地降低从发动机动力总成传递到车身/车架 上的振动,能有效的降低振动及噪音; c)在汽车做紧急制动、加速或受其它外界负荷的作用下时,发动机不应有过大的位移; d)隔离由于轮胎及车身的抖动而产生的振动和噪音通过悬置系统而传向发动机动力 总成,降低振动及噪音; e)悬置系统元件需有足够的使用寿命。 5.3 动力总成悬置系统设计方法 5.3.1 设计需解决的问题 a)主要起支撑减振的作用,因而,悬置必须要能够支撑起动力总成,并且保证其三

汽车发动机的发展史.docx

发动机,汽车中最重要的部分,可以说没有发动机的存在,就不存在汽 车。发动机的发展即是汽车的发展。 发动机作为汽车的心脏,为汽车的行走提供动力和汽车的动力性、经济 性、环保性。简单讲发动机就是一个能量转换机构,即将汽油 ( 柴油 ) 的热能,通过在密封气缸内燃烧气体膨胀时,推动活塞做功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,虽然发 动机伴随着汽车走过了 100 多年的历史,无论是在设计上、制造上、工艺上 还是在性能上、控制上都有很大的提高,其基本原理仍然未变,这是一 个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融 为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近 乎完善的程度,各世界著名汽车厂商也将发动机的性能作为竞争亮点。 所以可以说发动机的发展史即是汽车的发展史。 而发动机的发展也经历了无数人的努力,无数人的智慧与汗水。 发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。 往复活塞式四冲程汽油机是德国人奥托在大气压力式发动机基础上,于 1876 年发明并投入使用的。由于采用了进气、压缩、做功和排气四个冲程,发动机的热效率从大气压力式发动机的11%提高到14%,而发动机的质量却降低了70%。 1892年德国工程师狄塞尔发明了压燃式发动机( 即柴油机) ,实现了内燃机历史上的第二次重大突破。由于采用高压缩比和膨胀比,热效率比当 时其他发动机又提高了 1 倍。1956 年,德国人汪克尔发明了转子式发动机, 使发动机转速有较大幅度的提高。1964 年,德国NSU公司首次将转子式发 动机安装在轿车上。 1926 年,瑞士人布希提出了废气涡轮增压理论,利用发动机排出的废 气能量来驱动压气机,给发动机增压。50 年代后,废气涡轮增压技术开始 在车用内燃机上逐渐得到应用,使发动机性能有很大提高,成为内燃机发 展史上的第三次重大突破。 1967 年德国博世公司首次推出由电子计算机控制的汽油喷射系统,开 创了电控技术在汽车发动机上应用的历史。经过30 年的发展,以电子计算

发动机悬置设计

整车技术部设计指南73 发动机悬置设计 5.1 概述 汽车的乘坐舒适性——NVH(Noise-噪声、Vibration-振动和 Harshness-声振舒适性)越来越受到人们的重视和关注,因为噪声、振动和舒适性,是衡量汽车制造质量的一个 综合问题,它给汽车用户的感觉是最直接和最表面的。作为汽车动力源的发动机是汽车 主要的振动激励源之一,其气缸燃气压力、转速及输出转矩的周期性波动及不平衡惯性 力(矩)既激起发动机动力总成本身的刚体振动和弹性振动,又激起汽车动力传动的扭 转振动和弯曲振动等,从而导致十分严重的振动、噪声及结构问题,最终传递给车身, 引起整车振动与噪声。 汽车动力总成悬置系统是指动力总成(包括发动机、离合器及变速箱等)与车架或 车身之间通过弹性悬置元件连接而成的系统,发动机动力总成的振动与路面激励力是通 过弹性悬置元件传给车身,该项系统性能设计的好坏直接关系到发动机振动向车体的传 递,影响整车的 NVH 特性。因此,最大限度的减小发动机动力总成所产生的振动及噪声 向车身传递,是汽车减振和降噪的主要研究内容之一。 5.2、悬置系统功能介绍 5.2.1 悬置总成的功用 a)悬置系统的首要作用即最基本的作用是支承动力总成的动、静载荷,并使发动机 动力总成在所有方向上的位移处于可接受的范围内,不与前舱内其它零部件发生干涉; b)隔离发动机动力总成的振动,最大限度地降低从发动机动力总成传递到车身/车架 上的振动,能有效的降低振动及噪音; c)在汽车做紧急制动、加速或受其它外界负荷的作用下时,发动机不应有过大的位 移; d)隔离由于轮胎及车身的抖动而产生的振动和噪音通过悬置系统而传向发动机动力 总成,降低振动及噪音; e)悬置系统元件需有足够的使用寿命。 5.3 动力总成悬置系统设计方法 5.3.1 设计需解决的问题 a)主要起支撑减振的作用,因而,悬置必须要能够支撑起动力总成,并且保证其三

汽车发动机的发展史修订版

汽车发动机的发展史修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

汽车发动机的发展史 发动机,汽车中最重要的部分,可以说没有发动机的存在,就不存在汽车。发动机的发展即是汽车的发展。 发动机作为汽车的心脏,为汽车的行走提供动力和汽车的动力性、经济性、环保性。简单讲发动机就是一个能量转换机构,即将汽油(柴油)的热能,通过在密封气缸 内燃烧气体膨胀时,推动活塞做功,转变为机械能,这是发动机最基本原理。发动机 所有结构都是为能量转换服务的,虽然发动机伴随着汽车走过了100多年的历史,无 论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,其基本原理 仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发 动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完 善的程度,各世界着名汽车厂商也将发动机的性能作为竞争亮点。 所以可以说发动机的发展史即是汽车的发展史。 而发动机的发展也经历了无数人的努力,无数人的智慧与汗水。 发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。 往复活塞式四冲程汽油机是德国人奥托在大气压力式发动机基础上,于1876 年发明并投入使用的。由于采用了进气、压缩、做功和排气四个冲程,发动机的热效率从大 气压力式发动机的11%提高到14%,而发动机的质量却降低了70%。 1892 年德国工程师狄塞尔发明了压燃式发动机(即柴油机),实现了内燃机历史上的第二次重大突破。由于采用高压缩比和膨胀比,热效率比当时其他发动机又提高了1

汽车发动机发展史

汽车发动机发展史 汽车整体技术日新月异,而作为汽车的心脏——发动机技术的进步显得更受关注。如今介绍一辆汽车的发动机时:可变气门正时技术,双顶置凸轮轴技术,缸内直喷技术,VCM汽缸管理技术,涡轮增压技术,等等都已经运用的相当广泛;在用料上也是往轻量化的方向发展:全铝发动机目前的应用已经非常广泛;汽车的污染也是不可避免,于是新能源技术,包括柴油机的高压共轨,燃料电池,混合动力,纯电动,生物燃料技术也已经有普及的趋向,但回顾一下发动机的历史或许更能理解这一百多年来汽车技术所发生的巨大变革。 十佳发动机VQ35 汽车技术的迅猛发展从我国的汽车教材也能看出端倪:新技术的发展已经让汽车教材难以跟上步伐!如今大部分汽车教材还是以东风汽车的发动机来作为范例,而东风发动机还是带化油器的老式发动机,与如今全电子化的发动机简直就隔了几个世纪。 回到汽车的起步阶段,那时的汽车被马车嘲笑,污染严重,但起步的意义却非同寻常。 汽油机之前的摸索阶段

18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。法国的居纽(N.J.Cugnot)是第一个将蒸汽机装到车子上的人。1770年,居纽制作了一辆三轮蒸汽机车。这辆车全长7.23米,时速为3.5公里,是世界上第一辆蒸汽机车。1771年古诺改进了蒸汽汽车,时速可达9.5千米,牵引4-5吨的货物。 蒸汽机汽车 1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。 N.J.Cugnot 1867年,德国人奥托(Nicolaus August Otto)受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔·本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。 1892年,德国工程师狄塞尔根据定压热功循环原理,研制出压燃式柴油机,并取得了制造这种发动机的专利权。

发动机-悬置参数设计要求

发动机-悬置参数设计要求 根据人体生理学的研究,人体对振动最敏感的频率范围为4~8Hz,车辆的振动特性要保证人的乘坐舒适性,就要避开4~8Hz时的振动。在车辆设计中,车身-悬挂系统的设计频率一般在1.9~3Hz,簧下质量的振动频率即轴头跳动频率一般在11~15Hz左右,发动机-悬置系统作为一个振动子系统,它其中的悬置是连接发动机和车身的唯一部件,它不但要支承发动机的重量,而且还起到在发动机和车身之间隔振的作用。悬置的刚度太大,就起不到有效的隔振作用,太软又会降低其使用寿命。根据隔振原理,发动机-悬置系统振动的频率要大于车身-悬挂频率的1.4倍,才能起隔振作用。最理想的是2倍以上。(最大不大于2.5倍) ,因此发动机-悬置系统振动的最低频率要保证不小于3×2=6Hz,其次,发动机动力总成作为整车动力减振器,其垂向振动频率应为轴头跳动频率的0.8~0.9倍,换成频率就是12~13.5Hz,另外,发动机怠速时的转速约为750~800转∕分,对应激励频率为28Hz(四缸机),它要大于发动机动力总成绕曲轴轴线转动频率的2倍,即28∕2=14Hz。所以,发动机-悬置系统的设计频率就是6~14Hz。在这个范围内,频率设计区间越小越好。 根据这个设计原理,如果把发动机-悬置系统的频率固定在6~14Hz的话,就要求车架的最低阶频率(一般即为扭转频率)要保证在大于3Hz和小于6Hz之间。或者大于15Hz以上。这要根据车辆设计具体的要求而定。没有统一的模式;但如果发动机悬置的参数达到合理设计(如刚度、布置角度,安装位置等),能够使发动机动力总成-悬置系统的振动频率在6~14Hz内区间更缩小的话,如8~12Hz,那么对车架的频率要求就会宽松一些。因此,这是一个系统参数优化与合理匹配的问题。在汽车研究领域,国内还没有成熟的经验和有用的参考数据,还需作长期、大量的工作来解决。

发动机悬置的结构、作用、设计要求

发动机悬置的结构、作用、设计要求 1. 概述: 随着当前底盘、发动机技术的日臻完善, 车辆的振动、噪声的控制转而成为各个整车厂 在研发上的重中之重。 据统计分析在一个车辆系统的上万个零部件中, 对振动起关键作用的 大概有二百个。 它们又分别在整车的振动系统中起不同的作用。 这里仅对发动机产生的振动经由发动机 悬置到车身的振动系统的结构、作用、设计要求给出一定程度的阐述和说明。 内部噪声 Innenraum 车什 ?* Karosserie Fall rb^hn —Abgasaufhangung Aggregatl^ger Antrebswellen —V/H-Achse 二百个零部件 行腔功力学 女全世 H 丸轩适件 足性 何部塩再 NVH 舒适性 '、:川 衣城振瞬上的丽振会 F 驴Hu 训了EinlcgBF v~| 3丸3合冷门I 合§0

基于汽车振动学的相应设计优化,应最大可能的避免整车主要部件在各种工况下的振动耦合。悬置的作用概括来说就是对发动机振动和路面激励的隔离和吸收,减少乘客舱中人所受 的影响,降低其他零部件因为过多振动产生的疲劳破坏。 2. 悬置系统的结构 布置概念: 前轮驱动一一较低排量, 后轮驱动一一较大排量。 Fahrtrichtung 存驶方向

动力总成纵置,如海狮、阁瑞斯。 3 Punkt Lagerung bei Stanclardantrieb 一点式戻动机悬笛 动力总成横置,如尊驰、骏捷等。 3-Punkt 4-Punkt 四点式 4G63 4G64 4G93 I 〉4G18等动力总成 P ED d^lstutze 摆动式 中华1.8T 宝来等车的动力 总成。 Aggregatlagerungen bei Querantrieb IT旨发动UL悬旨 结构概念: 橡胶悬置 悬置结构为橡胶+金属支架,在低频、大振幅的动刚度和滞后角变化小。在高频、小振幅激励下的动刚度和滞后角变化不大,容易产生动态硬化现象,常用于发动机前后悬置,阻止发动机过渡扭转。 液力悬置

汽车发动机发展史

汽车发动机发展史 1110100C20涂小政发动机,汽车中最重要的部分,可以说没有发动机的存在,就不存在汽车。发动机的发展即是汽车的发展。 发动机作为汽车的心脏,为汽车的行走提供动力和汽车的动力性、经济性、环保性。简单讲发动机就是一个能量转换机构,即将汽油(柴油)的热能,通过在密封气缸内燃烧气体膨胀时,推动活塞做功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,虽然发动机伴随着汽车走过了100多年的历史,无论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,其基本原理仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完善的程度,各世界著名汽车厂商也将发动机的性能作为竞争亮点。 所以可以说发动机的发展史即是汽车的发展史。 而发动机的发展也经历了无数人的努力,无数人的智慧与汗水。发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。 惠更斯于1673年设计绘制了方案图,如下图所示。

第一台蒸汽机的的设计于1712年设计完成,如下图所示。

1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。 1867年,德国人奥托(Nicolaus August Otto)受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔—本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。 1886年被视为汽车的诞生日,那辆奔驰一直为人所津津乐道。但是其动力单元却实在“寒酸”:第一辆“三轮奔驰”搭载的卧式单缸二冲程汽油发动机,最高时速16KM每小时。这就是第一辆汽车的发动机,那时勇敢卡尔奔驰的夫人驾驶这辆奔驰1号上坡还需要儿子推车,当然沿途不停的熄火,转向也不灵,回娘家100公里的路程硬是走了一整天。 四冲程发动机其实早就由德国人奥托研制出来了。但应用的汽车上不得不提戴姆勒,他由于协助奥托研制四冲程发动机的原因而成为了第一个将四冲程发动机装上汽车的人。显然,从四冲程到二冲程是

汽车发动机橡胶悬置产品结构

汽车发动机橡胶悬置产品结构 (中鼎密封件有限公司赵季勇242300) 摘要:本文介绍了常规结构发动机悬置的特点和应用,液压结构发动机悬置的发展历程和应用. 关键词: 减震橡胶发动机悬置静刚度动刚度 Abstract This text gives a description of the characteristic and application on generally configurated engine mount, of hydraulic engine mount development and application Key words: damping rubber engine mount static stiffness dynamic stiffness 1.前言 现实生活中振动无处不在,振动的现象是不容忽视也是不可缺少的,但是振动也会对人们的生活产生许多不利的影响,如:共振会导致装置的损坏,噪音会影响人类的生活环境等.怎样将振动对人们产生的不利影响减到最小,是当前减震技术发展和追求的方向. 减震技术的核心是消除干扰性振动或找出解决的方法,现在比较适用和成熟的减震方法是橡胶减震系统,于1932年出现了最早的橡胶减震制品,使得减少底盘和引擎系统产生的振动成为可能, 20世纪50年代起越来越多的发动机悬置得以应用, 1979年德国大众成功地将液压悬置应用到发动机悬置系统,使得减震技术得到很大的发展. 2.普通标准结构 发动机悬置的工作状况如下:发动机是通过发动机悬置与车身相连接,发动机与车身之间发动机是振动源车身是防振对象,这就要求发动机悬置的性能为:能够有效地吸收振动,降低振动的传导率,避免将发动机的振动传递到车身,发动机工作时振动频率与振幅有如下关系,在低频振动时振幅较大,高频振动时振幅较小,因此对发动机悬置则要求在发动机低频振动区域有较大的损耗系数,以便能够迅速将大的振幅消减下来,而在发动机高频振动区域有较小的动刚度, 以便能够更好地吸收发动机的振动降低振动的传导率. 通过近几十年的研究开发,一些形状结构被确定为基础设计,实际使用的发动机悬置大部分是在这些结构基础上的改型和调整.如图1-1所示,发动机的前悬置大多采用这种压缩/剪切结构,一般情况三点支撑的发动机都是采用前端两点后端一点的支撑形式,且两发动机前悬置采用倾斜一定的角度对装,在工作中同时受到压缩和剪切载荷的作用.而发动机的后悬置大多采用如图1-2所示这种楔形座结构,这种楔形对称结构的悬置在工作中易受到压缩和剪切变形,同时当弹性体部分设计成平行四边形结构还可以消除悬置所受的弯曲应力,这种楔形悬置的三个方向的刚度可以由空间尺寸和角度来决定,为各方向的刚度调整提供了方便. 图1-3所示的是一种衬套式的发动机悬置,这种结构都是由内外金属套管和橡胶硫化成型在一起的,它能实现较大的径向与轴向刚度比.

汽车发动机的发展历程

汽车发动机的发展历程集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

汽车发动机的发展历程 摘要:汽车在现代社会生产生活中发挥着重要作用,而汽车发动机更是其核心部分;可以说汽车发动机的发展历程在一定程度上就是汽车的完善过程。本文阐述了汽车发动机的构造及原理,并讲述了汽车发动机的发展历程。而且笔者还对汽车发动机未来的发展趋势进行了合理预测。 【关键字】汽车发动机原理发展历程新技术 自从第二次工业革命以来,汽车得到迅猛发展。如今,汽车已经渗透到人类社会的各个方面。每天,数以千万计的汽车行驶在大大小小的公路上,而汽车生产所需的零件更是数以亿计。其广阔的市场使得汽车成为各种高科技应用的载体。汽车发动机为汽车提供动力,更是汽车的核心。汽车发动机的发展能极大地促进汽车的发展。在环境日益恶化的今天,传统发动机面临这巨大挑战。 1.发动机的类别 发动有很多种类,按不同划分方法有不同的类型。 按发动机所使用燃料来划分,发动机主要可分为汽油发动机、柴油发动机、天然气发动机、液化石油气发动机、混合动力发动机;根据发动机可分为四冲程发动机和二冲程发动机;按照气缸数,发动机可分为单缸发动机、两缸发动机、多缸(三缸以上)发动机;按照冷却方式不同,发动机可分为水冷式发动机(见图1)和风冷式发动机(见图2);根据排列方式,发动机可分为直列L 型发动机、H型发动机、W型发动机、V型发动机等;按照发动机在车身上的布局不同,发动机可分为前置发动机,中置发动机和后置发动机。 2.发动机构造及原理 发动机是一个热能转换机构,通过在密封汽缸内燃烧汽油(柴油)或天然气,使气体膨胀并推动活塞做往复运动,从而使物质的内能转化为机械能。发动机是一种有许多机构和系统组成的复杂的机械设备。无论是哪种类型的发动机,要想完成热能转化为机械能的能量转化过程,实现工作循环,保证发动机能持续正常工作,都离不开发动机中各个机构和系统之间的配合。 汽油机是由五大系统和两大连杆组成,即曲柄连杆机构、、燃料供给系、润滑系、冷却系、点火系和起动系组成。 是发动机实现工作循环,完成的主要运动零件。它由机体组、活塞连杆组和飞轮组等组成。在作功行程中,活塞承受燃气压力在内作直线运动,通过连杆转换成的旋转运动,并从对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。 的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入,并使废气从内排出,实现换气过程。大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。

汽车发动机制造工艺介绍(精)

发动机制造工艺介绍 1.发动机主要零件的加工工艺 2.发动机的结构与装配过程 3.发动机的现状与发展 一、发动机主要零件的加工工艺 1、凸轮轴加工 传统材料:优质碳素钢、合金结构钢、冷激铸铁、可锻铸铁、珠光体球墨铸铁及合金铸铁等。 1)凸轮轴的粗加工的传统工艺方法是采用靠模车床及液压仿形凸轮铣床,铣削的凸 轮尺寸精度和形状都优于车削,事直接进行精磨。对于加工余量大,较为先进的加工 方法为采用CNC凸轮铣床(无靠模),铣削方法有外铣和轮廓回转铣削两种。提供外 铣技术的公司主要有:HELLER公司,日本小松、日本片冈等。 长期以来,凸轮轴磨床采用靠模,滚轮摆动仿形机构。现凸轮磨床完全靠CNC 控制获 得精密的凸轮轮廓,同时工件无级变速旋转,广泛采用CBN(立方氮化硼)砂轮加工凸轮轴,这不仅摆脱了靠模精度对凸轮精度的影响,而且砂轮的磨损不影响加工精度 2、连杆加工 传统材料:中碳钢、中碳合金钢、非调质钢、粉末冶金等。 1)毛坯 连杆毛坯的各项在求中,最大的问题是重量和厚度方向的精度。为保证这两项要求,除 了锻造设备处,模具的质量是至关重要的,只有采用CAD/CAM模具制造技术,才能保证模具的重复制造精度,从而保证连杆毛坯的厚度和重量公差。 连杆传统的热处理方法是调质,现较为先进的连杆热处理方法是锻造余热淬火。连杆最常用的、最有效的强化方法是喷丸处理。 2)机械加工 对配合精度要求待别高的部位,如连杆小头衬套孔,需进行尺寸分组;应遵循基准统一原 则,尽量避免基准的更换,以减少定位误差; a) 大小头两端面加工:

连杆大小头两端面是整个机加工过程中的定位基准面,关且对大、小头孔都有着位置 精度要求。所以第一道工序都是加工大小头两端面。 磨削加工:要求毛坯精度较高,磨削的生产率高、精度高。磨削方式有:立式圆台磨床 (双轴或多轴)、立式双端面磨床、卧式双端面磨床。 b) 结合面的加工:连杆大头孔有直剖口,也有斜剖口;定位方式有螺栓定位、齿形定位、 定位销定位等。 c) 大、小头孔的加工 国内传统工艺:钻、镗(或钻、拉;钻、扩、铰)切开连杆及盖扩半精镗精镗珩磨 国外工艺:钻、精镗小头孔粗镗大头孔半圆并双面倒角切开连杆及盖 半精镗精镗 为了确保大、小头孔的中心距和两孔的平行度,精加工大、小孔都采用同时加工的工艺。采用拉镗工艺便于消除镗孔时的退刀痕(精镗),半精镗采用推镗,用一种机械、液压装置使拉镗时精镗刀片伸出。 3、缸体加工 1)缸体材料:灰口铸铁、合金铸铁、蠕墨铸铁、铝合金、镁合金等。 2)为了提高机床精度保持性,广泛采用镶钢导轨(HRC59-62)、滑鞍贴塑技术,对强力切削及高精度设备则采用滚珠导轨、滚柱导轨或静压导轨。 3)机加工刀具:大平面铝件加工普遍采用金钢石铣,铸铁件则普遍用用硬质合金可转位 密齿铣刀,镗缸孔采用陶瓷及CBN材料等高效刀具。在孔的加工中大量运用了结构复杂的复合刀具。 4)机加工 a)、大平面加工 加工方法:a、粗铣精铣工艺(柔性好) b、粗拉精铣工艺 b)、主轴承孔的加工 曲轴孔是多档的间断长孔,其尺寸精度、圆度、同轴度、表面粗糙度均有严格要求,为保证同轴度要求,精镗一般选用单面镗床,为克服主轴过长、刚性差的缺点,在镗杆上加硬质合金键条,并在夹具上设有相应的导套。采用多刀头、拉式镗杆(刚性好),有利于提高加工质量。为了保证止推面与主轴承孔的垂直度,镗杆一般装有径向走刀装置,一次走刀中完成主轴承孔和止推面的加工。 c)、缸孔的加工

汽车发动机橡胶悬置产品的结构介绍

第27 卷 第2期2006年4月特种橡胶制品 Special Purpose Rubber Products Vol.27 No.2 April 2006 汽车发动机橡胶悬置产品的结构介绍 赵季勇,李晓武,刘彩萍 (中鼎密封件有限公司,安徽宁国 242300) 摘 要:介绍了发动机常规结构橡胶悬置的特点和应用,以及液压悬置结构的发展历程和应用。关键词:减振橡胶;发动机悬置;静刚度;动刚度 中图分类号:336.4+2 文献标识码:B 文章编号:1005-4030(2006)02-0047-03 收稿日期:2005-07-06 作者简介:赵季勇(1973-),男,安徽宣城人,工程师,从事汽车减 振橡胶制品的开发研究。 现实生活中振动无处不在,振动现象不容忽 视。怎样将振动产生的不利影响减到最小程度,是当前减振技术发展的方向。1 普通标准结构 发动机是通过悬置系统与车身相连接,发动机是振动源,车身是防振对象,这就要求发动机悬置能够有效地吸收振动或降低振动;发动机工作时振动频率与振幅有如下关系,低频振动时振幅较大,高频振动时振幅较小,因此对发动机悬置要求是在低频振动时有较大的损耗系数,以便能够迅速将大的振幅消减下来,而在高频振动时有较小的动刚度,以便能够更好地吸收振动。 通过近几十年来的研究开发,一些悬置的结构 被确定为基础结构,实际使用的发动机悬置大部分 是这些结构的改型。如图1-1,发动机前悬置大多采用这种压缩/剪切结构,一般情况3点支撑的发动机都是采用前端2点后端1点的支撑形式,且2个前悬置采用一定的倾斜角度对装,在工作中同 时受到压缩和剪切载荷的作用。发动机后悬置大多采用图1-2所示的楔形座结构,这种楔形对称结构在工作中易受到压缩和剪切变形,同时把弹性体部分设计成平行四边形结构还可以消除悬置所受的弯曲应力,这种楔形悬置在3个方向上的刚度可以由空间尺寸和角度来决定,为各个方向上的刚度调整提供了方便。图1-3是一种衬套式发动机悬置,这种结构是由内外金属套管和橡胶硫化在一起, 它能实现较大的径向与轴向刚度比。 图1 发动机悬置常用的标准结构型式 以上这些悬置都是属于常规的普通结构形 式,在减振性能上都存在一定的局限性。对发动机悬置在高频振动时具有低的动刚度,低频振动

汽车发动机液压悬置

湖北汽车工业学院 Hubei Automotive Industries Institute 《汽车新技术》 课程结业论文 论文题目:汽车发动机液压悬置 指导教师:姚胜华张庆永 学校名称:湖北汽车工业学院

发动机液压悬置 摘要:发动机液压悬置是非线性很强的隔振元件,其动特性因激振频率和激振振幅的改变而改变。试验分析和理论研究是研究液压悬置的两种基本方法。文中通过分析典型液压悬置的结构特征,全面总结液压悬置的试验方法、理论模型和优化设计方法等方面的研究现状,分析了将试验研究和理论分析相结合、采用系统参数识别方法对液压悬置进行研究的可行性,并探讨了最优试验设计准则。 关键词:发动机液压悬置振动噪声发展 发动机液压悬置是连接发动机与车体之间的支承隔振元件,它能隔离发动机的振动和噪音向车厢内的传递,明显提高整车车内的舒适性。液压悬置主要应用于中高档轿车的发动机支承。 发动机通过悬置弹性连接在车架上。悬置元件既要隔离发动机在正常工作范围内产生的振动和高频噪声向车体的传递,又要保证汽车在振动、突然加减速、转弯等工况下,发动机始终保持在设计位置,使整个动力总成不因发动机与车架之间的相对运动过大而受损。为此,发动机悬置应在高频振动激励(大于25Hz)下,具有低刚度和小阻尼的特性,以减小振动的传递和高频噪声,一般认为这时的激振振幅很小,为0.1mm级;同时在低频振动激励(1~25Hz)下,具有高刚度大阻尼的特征,以有效衰减车架的低频振动对发动机的影响,这时的激振振幅较大,为1mm级。因此理想的发动机悬置是一个动特性随激振振幅和振动频率变化而变化的元件。液压悬置因其具有良好的隔振性能而广泛应用于现在的汽车上。 本文从介绍液压悬置的基本结够,从试验研究和理论分析两方面对液压悬置的研究现状进行介绍,并对液压悬置的未来研究方向进行了探讨 液压悬置的基本结构和性能评价指标。按控制方式分,液压悬置可分为被动式、半主动控制式和主动控制式。后两种控制方式的液压悬置虽然在隔振、减振、降噪性能方面均优于被动式液压悬置,但由于结构复杂、成本高、系统稳定性差等问题,还没有被广泛使用。目前中低档轿车普遍使用的。 早期的被动式液压悬置在上、下液室之间只有小孔连接,靠液体流过小孔的节流阻尼来衰减发动机振动,其大阻尼特性在低频振动时可以控制发动机的位移,但高频时会恶化隔振效果。

发动机悬置

悬置系统 发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。引起零部件的损坏和乘坐的不舒适等。所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。一般来讲对发动机悬置系统有如下要求。 ①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。同时在发动机大修前,不出现零部件损坏。 ②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。 ③能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。 ④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。 悬置系统的激振源 作用于发动机悬置系统的激振源主要如下: ①发动机起动及熄火停转时的摇动; ②怠速运转时的抖动; ③发动机高速运转时的振动; ④路面冲击所引起的车体振动; ⑤大转矩时的摇动; ⑥汽车起步或变速时转矩变化所引起的冲击; ⑦过大错位所引起的干涉和破损。 作用在发动机悬置上的振动频率十分广泛。按着振动频率可以把振动分为高频振动和低频振动。频率低于30Hz的低频振动源如下: ①发动机低速运转时的转矩波动; ②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振功; ③轮胎旋转时由于轮胎动平衡不好使车身产生的振动; ④路面不平使车身产生的振动; ⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。 频率高于30Hz的高频振动源如下: ①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动; ②变速时产生的振动; ③燃烧压力脉动使机体产生的振动; ④发动机配气机构产生的振动; ⑤曲轴的弯曲振动和扭振; ⑥动力总成的弯曲振动和扭振; ⑦传动轴不平衡产生的振动。 总之,使发动机总成产生振动的主要振源概括起来有两类:一为内振源,主要是由于燃烧脉动、活塞和连杆的运动产生的不平衡力和力矩。二为外振源,主要来源于不平的道路或传动系。这两种振源几乎总是同时作用,使发动机处于复杂的振动状态。 (1) 燃烧激振频率 这是由发动机气缸内混合气燃烧,曲轴输出脉冲转矩,由于转矩周期性地发生变化,导致发动机上反作用

相关文档
最新文档