中间相与固溶体

中间相与固溶体
中间相与固溶体

1.中间相:

最重要的是名词解释:

金属与金属,或金属与非金属之间形成的化合物总称为金属间化合物,由于它在相图中处于中间位置,故也称中间相。

中间相可分为正常价化合物

电子化合物

与原子尺寸有关的化合物

超结构

2.固溶体类型:

置换固溶体和间隙固溶体

应将固溶体和中间相概念区分开来!!固溶体晶体结构的最大特点是保留着原溶剂的晶体结构,而中间相的晶体结构与所有组元均不同,它的成分处于A在B中溶解限度和B在A中溶解限度之间,落在相图中间部位。

为便于理解,以Co-Ti相图为例,富Co端有fcc、hcp固溶体【保留着原溶剂Co的晶体结构,但有Ti原子融入其晶体点阵当中】,富Ti端有A2(bcc)、hcp固溶体【保留着原溶剂Ti的晶体结构,但有Co原子融入其晶体点阵当中】;

落在中间的有Co3Ti,C36,C15,B2,CoTi2中间相【由Co和Ti组成,但这几个中间相的结构与Co和Ti均不相同】。

因此,在涉及固溶体类型的问题中,根据原子尺寸、间隙大小等考虑即可,不要将中间相中的间隙相和间隙化合物的条件考虑进来!!(中间相分类中存在一些某某某固溶体的名词,不是很好理解,不要管它)

3.关于H、

C、N、B在铁中形成固溶体:

简单来说,比较两者:

(参考书上P40晶体结构中间隙分布图以及P45间隙固溶体的后一段话)

Bcc结构致密度小,孔隙数多且分散,孔隙半径很小,其固溶度小;

Fcc结构致密度大,孔隙数少,空隙半径大,其固溶度大。

形成间隙固溶体的溶质原子半径通常是小于

0.1nm的一些非金属元素,如H,B,C,N,O等。可以这样理解,H,B,C,N 往往以间隙形式进入固溶体,其中原子半径最大的B有时也以置换形式进入固溶体。

Bcc结构致密度小,孔隙数多且分散,孔隙半径很小,其固溶度小,H,B,C,N 在其中形成间隙型固溶体,原子半径相对稍大的B有时形成置换型固溶体;

Fcc结构致密度大,孔隙数少,空隙半径大,其固溶度大,H,B,C,N在其中形成间隙型固溶体。

孔隙的半径小于H,B,C,N的半径,由此认为它们进不去,不能形成间隙固溶体吗?需看清P45间隙固溶体的第三段,溶质原子一般比晶格间隙的尺寸大,所以它们溶入后,会使点阵常数变大,而且间隙固溶体都是有限固溶体,溶解度很小。

与之对应的,置换固溶体,溶质原子与溶剂原子尺寸相当,因此溶质原子溶入后,有的使晶格常数稍变大,有的使晶格常数稍变小,置换固溶体有的有限互溶,有的无限互溶。以Co-Fe体系为例,形成了有限互溶的hcp和bcc固溶体,也形成了无限互溶的fcc固溶体。

实验 名称 完全互溶双液系的平衡相图 实验者姓名刘永刚 合作者 姓名 李金梁刘永刚李涛 实验 日期 2011-09-27 室温25.1 ℃气压101.78 Pa 指导 教师 杨静 评语 成绩

实验目的 1. 绘制常压下环己烷-乙醇双液系的T—X图,并找出恒沸点混合物的组成和最低恒沸点。 2. 掌握阿贝折射仪的使用方法。 实验原理 常温下,任意两种液体混合组成的体系称为双液体系。若两液体能按任意比例相互溶解,则称完全互溶双液体系;若只能部分互溶,则称部分互溶双液体系。双液体系的沸点不仅与外压有关,还与双液体系的组成有关。恒压下将完全互溶双液体系蒸馏,测定馏出物(气相)和蒸馏液(液相)的组成,就能找出平衡时气、液两相的成分并绘出T—X图。 通常,如果液体与拉乌尔定律的偏差不大,在T—X图上溶液的沸点介于A、B二纯液体的沸点之间见图2-4-1 (a)。而实际溶液由于A、B二组分的相互影响,常与拉乌尔定律有较大偏差,在T—X图上就会有最高或最低点出现,这些点称为恒沸点,其相应的溶液称为恒沸点混合物,如图2-4-1(b),(c)所示。恒沸点混合物蒸馏时,所得的气相与液相组成相同,因此通过蒸馏无法改变其组成。 图1 完全互溶双液系的相图 本实验采用回流冷凝的方法绘制环己烷-乙醇体系的T—X图。其方法是用阿贝折射仪测定不同组分的体系在沸点温度时气相、液相的折射率,再从折射率-组成工作曲线上查得相应的组成,然后绘制T—X图。

实 验 试 剂 环己烷(A.R);无水乙醇(A.R)。 实验仪器 沸点仪1套;恒温槽1台;阿贝折射仪1台;移液管(1mL,2支;10mL,1支);具塞小试管9支。 实 验 装 置 a b

1、下列方法一般不可作为最终热处理的是(退火) 2、不论含碳量高低,马氏体都是硬而脆的错误 3、上贝氏体和下贝氏体的力学性能相比较( 下贝氏体的强度和韧性高) 4、回火马氏体与马氏体相比,其综合机械性能(好些) 5、马氏体是碳在α-Fe中的过饱和固溶体,当奥氏体向马氏体转变时,体积要收缩错 6、原始组织为片状珠光体的钢加热奥氏体化时,细片状珠光体的奥氏体化速度比粗片状珠光体的快。对 7、T12钢与18CrNiW钢相比( 淬透性低而淬硬性高些) 8、亚共析钢加热至Ac1和Ac3之间将获得奥氏体+铁素体二相组织,在此区间,奥氏体的含碳量总是大于钢的含碳量对 9、为消除碳素工具钢中的网状渗碳体而进行正火,其加热温度是(Accm+(30~50)℃ ) 10、直径为10mm的40钢其整体淬火温度大约为( 850℃) 11、精密零件为了提高尺寸稳定性,在冷加工后应进行( 去应力退火) 12、本质粗晶粒的钢比本质细晶粒的钢在加热时容易粗化。错 13、实际加热时的临界点总是高于相图中的临界点对 14、淬火钢在(300~400)℃回火时,可达到最高值的机械性能是( 弹性极限) 15、为消除金属在冷变形后的加工硬化现象,需进行的热处理为(再结晶退火) 16、钢中碳的质量分数越高,其淬火加热温度越高错 17、过共析钢正常的淬火加热温度是(Ac1+(30~50)℃ ) 18、用低碳钢制造在工作中受较大冲击载荷和表面磨损较大的零件,应该( 采用渗碳处理) 19、20钢60钢同时加热至860℃,并保温相同的时间,20钢的奥氏体晶粒粗大一些错 20、在碳钢中,以(共析钢)C曲线的鼻尖离纵坐标最远,其过冷奥氏体也最稳定 21、钢的组织中,比容最大的是(马氏体)单位质量的物质所占有的容积称为比容 22、片层间距最小的是(屈氏体) 23、低碳马氏体的亚结构与高碳马氏体的不同对 24、影响钢的淬透性的决定性因素是(钢的临界冷却速度) 25、马氏体与回火马氏体( 形态相同,组织结构不同) 26、影响淬火后残余奥氏体量的主要因素是( 奥氏体含碳量) 27、45钢的正常淬火组织为( 隐针马氏体) 28、将碳钢缓慢加热到500℃~600℃,保温一段时间,然后缓冷的工艺叫( 去应力退火) 29、钢在淬火后获得的马氏体组织粗细主要取决于( 奥氏体的实际晶粒度) 30、在下列铸造合金中,适宜制造大型曲轴的是( 蠕墨铸铁) 31、石墨化是指铸铁中的碳原子析出形成石墨的过程。对 32、铸铁如果第一、第二阶段石墨化都完全进行,其组织为(F+G) 33、除白口铸铁外,其余所有铸铁中的碳均主要以石墨形式存在。对 34、铸铁可以通过再结晶退火来细化晶粒,以提高其力学性能错 35、热处理可以改变灰铸铁的基体组织,但不能改变石墨的形态、大小和分布情况。错 36、关于球墨铸铁,下列叙述中错误的是( 塑性较灰口铸铁差) 37、热处理可以改变铸铁中的石墨形态。错 38、可锻铸铁适宜制造薄壁小件,这是由于浇注时其(易得到白口组织) 39、H80属双相黄铜。错 40、轴承合金中在软基体上分布着的硬质点一般为( 化合物),其体积占15%~30% 41、ZChSnSb11-6合金是( 滑动轴承合金) 42、超硬铝合金只有经过(淬火+时效)处理才能获得高的强度及硬度

第4章,固溶体 (Solid Solution)
掺杂通常不改变(被掺杂)材料的结构类型。因 此掺杂即 “ 固溶 ” (固溶体 —— 原子水平均匀分散的 固态溶液。 掺杂有间隙掺杂(间隙固溶体)和取代掺杂(代 位固溶体),有原子掺杂(原子固溶体)和离子掺 杂(离子固溶体)。本章重点讨论形成固溶体的条 件及规律。 “固溶体”科学,尚处于“经验总结”的发展阶段。 因此,对于相关“结论”/“总结”,不能绝对化。

置换固溶体和间隙固溶体:
主体结构原子,
代位杂质原子,
填隙杂质原子。

固溶体形成热力学:
ΔGT , P = ΔH ? T ΔS
ΔH ,固溶体形成焓 (ΔH>0 或 ΔH <0 ) ΔS,固溶体形成熵 (ΔS > 0)。 恒温、恒压条件下: ΔGT , P ≤ 0
I) ΔH < 0 (exothermic process) ? ΔG < 0 II) ΔH > 0 (endothermic process)
ΔH > T Δ S ? ΔG > 0 ( N) ΔH < T ΔS ? ΔG < 0 ( Y)

第一节:原子置换固溶体(合金)
影响原子置换固溶体形成的主要因素: 尺寸、电负性、电子浓度、结构。

a) 尺寸因素——15%规律:
休谟–罗斯里 (Hume-Rothery) 总结合金形成规律 发现:当杂质原子尺寸与主体结构原子尺寸的差别小 于±15%时,有利于形成连续固溶体或具有相当高的 固溶度。
ΔD ( ΔR ) = Dhost - Dimpurity Dhost < 15%
“15%规律” 最早由总结一价金属间形成固溶体得出。 但后来发现,对于二价、三价以及过渡金属间形成固 溶体,甚至二次固溶体也基本适用(15%规律可靠性 > 90%)。

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

4.3 完全互溶的双夜系相图 4.3.1 二组分系统的相律的应用 最多可有四相平衡共存,是无变量系统。 最多可有三个自由度-T ,p ,x 均可变,属三变量系统。因此,要完整的描述二组分系统相平衡状态,需要三维坐标的立体图。但为了方便,往往指定一个变量固定不变,观察另外两个变量之间的关系,这样就得到一个平面图。如: 保持温度不变,得 p-x 图 较常用 保持压力不变,得 T-x 图 常用 保持组成不变,得 T-p 图 不常用。 若保持一个变量为常量,从立体图上得到平面图。相律 单相,两个自由度。 最多三相共存。 二组分系统相图种类很多,以物态来区分,大致分为: 完全互溶双液系 气-液平衡相图 部分互溶双液系 完全不互溶双液系 具有简单低共熔混合物 稳定化合物 有化合物生成 不稳定化合物 固-液平衡相图 固相完全互溶 固相部分互溶 固相部分互溶 等 C 2C 24= f Φ+=Φ =--min max 1 3Φf ==min max 0 4 f Φ==213f ΦΦ *=-+=-*min max 1 2Φf ==*max min 3 0 Φf ==

4.3.2 理想的完全互溶双液系相图 若A 、B 两种液体均能以任意比例相互混容形成均匀单一的液相,则该系统称为完全互溶双液系。根据相似相容原理,它可以分为:理想的完全互溶双液系 和非理想的完全互溶双液系。首先学习理想液态混合物的相图。 4.3.2.1. 理想溶液p-x 图 设A 、B 形成理想溶液,其饱和蒸气压分别为P A * 和P B *,P 为体系的总蒸气压。 以x A 为横坐标,以P 蒸气压为纵坐标,在p-x 图上分别表示出P A 、P B 、P 与x A l 的关系。 p-x-y 图 同压下 , 之间的关系 若知道一定温度下的P A *、P B *,就可据液相组成(x A /x B )求其气相组成(y A /y B ) p x p p p y A A A A *== B A B A B A x x p p y y * *= 若 则 此时 即蒸气压大的组分在气相中浓度更大。 若 ,此时 , * A A A p p x =* B B B p p x =()A B l l A A B B **l B A B A (1) l l A A B A p p p p x p x p x p x p p p x *****=+=+=+-=+-~A p y 线: A y A x ()A A B A A A B A p x p p y x p p p * * ** +-==**A B p p >A A y x >, B B y x <,**A B p p

哈尔滨工业大学2003年硕士研究生入学考试试题考试科目:金属学及热处理 一、(20分)已知面心立方晶格的晶格常数为a,分别计算(100)、(110)和(111)晶面的晶面间距;并求出[100]、[110]和[111]晶向上的原子排列密度(某晶向上的原子排列密度是指该晶向上单位长度排列原子的个数);写出面心立方结构的滑移面和滑移方向,并说明原因。(计算结果保留两位有效数字) 二、(20分)右图为组元在固态下完全不溶的三元共晶合金相图的投影图: 1.作m n变温截面图,分析O1点成分合金的平衡结晶过程。 2.写出O1点成分合金室温下的相组成物,给出各相的相对含量的表达式。 3.写出O1点成分合金室温下的组织组成物,给出各组织组成物的相对含量的表达式 三、(25分)试述冷变形金属在加热时,其组织和性能发生的变化。 四、(20分)什么是离异共晶?举例说明离异共晶产生的原因及对合金性能的影响。 五、(20分)求莱氏体中共晶渗碳体的相对含量是多少?若某铁碳合金平衡组织中含有10%的一次渗碳体,试求该合金的含碳量是多少?(计算结果保留两位有效数字) 六、(20分)叙述板条马氏体和下贝氏体的组织形态,并说明板条马氏体和下贝氏体具有良好强韧性的原因。 七、(25分)T10A钢含碳量约为1.0%,Ac1=730℃,Accm=800℃,Ms=175℃,该合金的原始组织为片状珠光体加网状渗碳体,若用此钢制作冷冲模的冲头,说明需要经过那些热处理工序才能满足零件的性能要求,写出具体热处理工艺名称、加热温度参数、冷却方式以及各工序加热转变完成后和冷却至室温时得到的组织。 哈尔滨工业大学2002年硕士研究生入学考试试题考试科目:金属学及热处理 一、(10分)已知铜单晶的{111}<110>滑移系得临界分切应力为1Mpa。直径为1mm的铜 单晶丝受轴向拉伸,加载方向平行于单晶的[001]方向,若使铜单晶丝不产生明显的塑性变形,求此单晶丝能承受的最大轴向载荷是多少?(计算结果保留3位有效数字)二、(15分)根据组元间固态下互不溶解的三元共晶相图的投影图(如右图所示),说明O 点成分合金平衡结晶过程,画出冷却曲线示意图,并写出室温下该合金的组织组成物相对含量的表达式。 三、(15分)求珠光体组织中铁素体相的相对含量是多少?若某铁碳合金组织中除有珠光 体外,还有15%的二次渗碳体,试求该合金的含碳量是多少? 四、(15分)试叙述贝氏体的转变特点,并比较与珠光体和马氏体转变的异同点。 五、(15分)什么是异分结晶?说明如何利用区域熔炼方法提纯金属。提纯效果与什么因 素有关? 六、(15分)某厂对高锰钢制造的碎矿机颚板经1100℃加热后,用崭新的优质冷拔态钢丝 绳吊挂,由起重吊车运往淬火水槽,行至途中钢丝绳突然发生断裂,试分析钢丝绳发生断裂的主要原因。 七、(15分)用T10A钢(Wc=1.0%,Ac1=730℃,Accm=800℃)制造冷冲模的冲头,试 制订预备热处理工艺(包括工艺名称和具体参数),并说明预备热处理的目的以及加热转变完成和冷至室温后获得何种组织。

()五固溶体的结构 固溶体的结构发生了变化: 虽然固溶体仍保持着溶剂的晶格类型,但若与纯组元相比,结构还是发生了变化,有的变化还相当大,主要表现在以下凡个方面:晶格畸变;偏聚与有序;有序固溶体 ()A晶格畸变 造成晶格畸变形成弹性应力场 由于溶质与溶剂的原子大小不同,因而在形成固溶体时,必然在溶质原子附近的局部范围内造成晶格畸变,并因此而形成一个弹性应力场。 晶格畸变的大小可由晶格常数的变化所反映 对置换固溶体来说,当溶质原子较溶剂原子大时,晶格常数增加;反之,当溶质原子较溶剂原子小时,则晶格常数减小。形成间隙固溶体时,晶格常数总是随着溶质原子的溶入而增大。 ()B偏聚与有序 1.长期以来,人们认为溶质原于在固溶体中的分布是统计的、均匀的和无序的, 如图3-8a所示。 2.但经X射线精细研究表明,溶质原子在固溶体中的分布,总是在一定程度上 偏离完全无序状态,存在着分布的不均匀性 3.当同种原子间的结合力大于异种原子间的结合力时,溶质原子倾向于成群地 聚集在一起,形成许多偏聚区图3.8

4. 反之,当异种原子(即溶质原子和溶剂原子)间的结合力较大时,则溶质原 子的近邻皆为溶剂原子,溶质原子倾向于按一定的规则呈有序分布,这种有序分布通常只在短距离小范围内存在,称之为短程有序(图3-8c) ()C 有序固溶体 有序固溶体的概念 ● 具有短程有序的固溶体,当低于某一温度时,可能使溶质和溶剂原子在整个 晶体中都按―定的顺序排列起束,即由短程有序转变为长程有序,这样的固溶体称为有序固溶体。 ● 当溶质原子按适当比例并按一定顺序和一定方向,围绕着溶剂原子分布时, 这种固溶体就叫有序固溶体 有序固溶体有确定的化学成分可以用化学式来表示 ● 例如在Au Cu -合金中,当两组元的原子数之比()Au Cu :即等于1:1()CuAu 和 3:1()Au Cu 3时,在缓慢冷却条件下,两种元素的原子在固溶体中将由无序排列转变为有序排列,铜、金原子在晶格中均占有确定的位置,如图3.9所示 ● 对CuAu 来说,铜原子和金原于按层排列于()001晶面上,一层晶面上全部是 铜原子,相邻的一层全部是金原子 ● 由于铜原子较小,故使原来的面心立方晶格略变形为93.0=a c 的四方晶格 ● 对Au Cu 3来说,金原子位于晶胞的顶角上,铜原子则占据面心位置 固溶体的有序化温度: 当有序固溶体加热至某一临界温度时,将转变为无序固溶体,而在缓慢冷却至这一温度时,又可转变为有序固溶体。这一转变过程称为有序化.发生有序化的临界温度称为固溶体的有序化温度。

材料成型工艺考试题 一、填空题(每空0.5分,合计15分) 1.与非晶体相比,晶体的主要特点是空间周期性排列、有固定熔点和各向异性。 2. 钢的普通热处理主要包括淬火、退火、正火和回火四种。 3. 铁素体的强度、硬度不高,但具有良好的塑性和韧性。 4. 在热处理生产中,常用的有等温冷却与连续冷却两种冷却方式。 5. 热影响区分为熔合区、过热区、正火区、部分相变区。 6. 钢淬火后若采用低温回火所得的组织是回火马氏体;若中温回火,所得的组织是回火屈氏体;若高温回火,所得的组织是回火索氏体。 7. 铸件冷却后,往往在其厚壁处形成的应力为拉应力;而薄壁处形成的应力压应力。 8. 工具钢的预先热处理通常采用球化,以改善其切削加工性能。 9. 电渣焊适合焊接中厚钢板,对40~60mm的工件可一次焊成。 10. 部分铝合金可以热处理强化,该热处理是指固熔处理和时效处理。 11.铁碳合金中F(铁素体)的晶体结构是体心立方结构,A(奥氏体)的晶体结构是面心立方结构。 12.砂型铸造所设冒口的作用是补缩、集渣和排气。 13.铸造方法可分为砂铸和特种两大类。 14.除钴以外,所有的合金元素都使等温转变曲线向右移动,即增加过冷奥氏体的稳定性并提高钢的淬透性。 15.表面热处理只改变金属表层的组织;而化学热处理却改变了金属表层的组织和化学成分。 16.焊接方法分类为熔焊、电阻焊和钎焊三大类。 17.钎焊分为硬钎焊和软钎焊两大类。 18.电阻焊分为点焊、缝焊和对焊三类。 19.缝焊焊接方法主要应用于有密封要求的薄板结构的焊接。 20.氩弧焊焊接方法用于焊接易氧化的有色金属、合金钢和不锈钢。 二、判断题(每题3.5分,合计35分) 1.钢的锻造加热目的是将钢加热到一定温度,使其组织铁素体化后塑性达到较好状态(X)2.二元共晶相图形成的条件是组成合金的两组元在液态下无限互溶而在固态下有限互溶。(√) 3.我国铜及铜合金一般分为四大类::紫铜(纯铜)、黄铜(铜锌合金)、白铜(铜镍合金)和青铜(正确) 4.铸造时按照“零件图→工艺图→铸型→模样→铸件→零件”排序生产是正确的。(错误)(改;零件图→工艺图→模样→铸型→铸件→零件) 5.金属的结晶除纯金属和共晶成分的是在一个恒温状态下结晶外,都是在一定温度范围内完成结晶的。(√) 6.铸铁的含碳量的范围是0.00218%~4.3%。(X ) 7.W18Cr4V是一种高速钢,是红硬性、耐磨性较高的高合金工具钢。(√) 8.普通灰铸铁中碳的石墨存在形式是树枝状的。(X )(改:片状) 9.机械制造中常用的特殊性能用钢分为不锈耐酸钢、耐热钢和耐磨钢三类。(√)

完全互溶双液系气液平衡相图的绘制 一.实验目的 1.?测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。 2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。 3.掌握阿贝折射仪的使用方法及原理。 4.了解和掌握沸点仪的测定原理及方法。 5.加深对完全互溶双液系气液平衡相图的理解和增强个人动手能力。二.实验原理 两种液体物质混合而成的两组分体系称为双液系。根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。当压力保持一定,混合物沸点与两组分的相对含量有关。 恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-x图),根据体系对拉乌尔定律的偏差情况,可分为三类: (1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图1(a)所示。 (2)最大负偏差:存在一个最小蒸气压值,比两个纯液体的蒸气压都小,混合物存在着最高沸点,如盐酸-水体系,如图1 (b)所示。 (3)最大正偏差:存在一个最大蒸气压值,比两个纯液体的蒸气压都 图1 二组分真实液态混合物气-液平衡相图(T

大,混合物存在着最低沸点,如正丙醇—水体系,如图1(c))所示。 对于后两种情况,为具有恒沸点的双液系相图。它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。 为了绘制双液系的T-x相图,需测定几组原始组成不同的双液系在气-液两相平衡后的沸点和液相、气相的平衡组成。 本实验以环己烷-乙醇为体系,该体系属于上述第三种类型。在沸点仪(如图2所示)中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T-x相图。 本实验中气液两相的组成均采用折光率法测定。 折光率是物质的一个特征数值,它与物质的浓度及温度有关,因此在测量物质的折光率时要求温度恒定。溶液的浓度不同、组成不同,折光率也不同。因此可先配制一系列已知组成的溶液,在恒定温度下测其折光率,作出折光率-组成工作曲线,便可通过测折 图2 沸点仪的结构 光率的大小在工作曲线上找出未知溶液的组成。 三.仪器与试剂 沸点仪,阿贝折射仪,调压变压器,超级恒温水浴,温度测定仪,长

工程材料习题集 一.名词解释题 间隙固溶体:溶质原子分布于溶剂的晶格间隙中所形成的固溶体。 再结晶:金属发生重新形核和长大而不改变其晶格类型的结晶过程。 淬透性:钢淬火时获得马氏体的能力。 枝晶偏析:金属结晶后晶粒内部的成分不均匀现象。 时效强化:固溶处理后铝合金的强度和硬度随时间变化而发生显著提高的现象。 同素异构性:同一金属在不同温度下具有不同晶格类型的现象。 临界冷却速度:钢淬火时获得完全马氏体的最低冷却速度。 热硬性:指金属材料在高温下保持高硬度的能力。 二次硬化:淬火钢在回火时硬度提高的现象。 共晶转变:指具有一定成分的液态合金,在一定温度下,同时结晶出两种不同的固相的转变。比重偏析:因初晶相与剩余液相比重不同而造成的成分偏析。 置换固溶体:溶质原子溶入溶质晶格并占据溶质晶格位置所形成的固溶体。 变质处理:在金属浇注前添加变质剂来改变晶粒的形状或大小的处理方法。 晶体的各向异性:晶体在不同方向具有不同性能的现象。 固溶强化:因溶质原子溶入而使固溶体的强度和硬度升高的现象。 形变强化:随着塑性变形程度的增加,金属的强度、硬度提高,而塑性、韧性下降的现象。残余奥氏体:指淬火后尚未转变,被迫保留下来的奥氏体。 调质处理:指淬火及高温回火的热处理工艺。 淬硬性:钢淬火时的硬化能力。 过冷奥氏体:将钢奥氏体化后冷却至A1温度之下尚未分解的奥氏体。 本质晶粒度:指奥氏体晶粒的长大倾向。 C曲线:过冷奥氏体的等温冷却转变曲线。 CCT曲线:过冷奥氏体的连续冷却转变曲线。 马氏体:含碳过饱和的α固溶体。 热塑性塑料:加热时软化融融,冷却又变硬,并可反复进行的塑料。 热固性塑料:首次加热时软化并发生交连反应形成网状结构,再加热时不软化的塑料。 回火稳定性:钢在回火时抵抗硬度下降的能力。 可逆回火脆性:又称第二类回火脆性,发生的温度在400~650℃,当重新加热脆性消失后,应迅速冷却,不能在400~650℃区间长时间停留或缓冷,否则会再次发生催化现象。 过冷度:金属的理论结晶温度与实际结晶温度之差。 二.判断正误并加以改正 1、细化晶粒虽能提高金属的强度,但增大了金属的脆性。(╳) 改正:细化晶粒不但能提高金属的强度,也降低了金属的脆性。 2、结构钢的淬透性,随钢中碳含量的增大而增大。(╳) 改正:结构钢的淬硬性,随钢中碳含量的增大而增大。 3、普通低合金结构钢不能通过热化处理进行强化。(√) 4、置换固溶体必是无限固溶体。(╳) 改正:置换固溶体有可能是无限固溶体。 5、单晶体必有各向异性。(√)

材料科学基础大作业——第3章凝固 2015年 月 日 班级: 姓名: 学号: 分数: 一、解释下列概念及术语: 1、结晶 2、过冷度 3、相起伏 4、均匀形核 5、晶粒度 6、形核率 7、形核功 8、枝晶偏析 9、成分过冷 10、临界形核半径 二、填空题 1. 过冷度的大小与金属的本性、纯度和冷却速度有关。金属不同,过冷度大小 同;金属的纯度越高,过冷度越 ;金属及其纯度确定后,过冷度大小主要取决于冷却速度,冷却速度越大,过冷度越 。 2. 金属和非金属,在结晶时均遵循相同的规律,即结晶过程是 和 的过程。 3. 根据热力学条件,金属发生结晶的驱动力为液态金属和固相金属的 之差。此差值与过冷度呈 比。 4.液态金属的晶胚能否形成晶核,主要取决于晶胚半径是否达到了临界形核半径的要求。此半径与过冷度呈 比。 5. 均匀形核时,过冷度△T 和理论结晶温度T m 之间的关系为 。形核功△G k 与过冷度△T 的平方呈 比,即过冷度越大,形核功越 。 6. 形核率可用12N N N ? =表示,其中N 1为受 影响的形核率因子,N 2为受 影响的形核率因子。 7. 工业生产中,液态金属的结晶总是以 形核方式进行,其所需过冷度一般不超过 ℃。 8. 决定晶体长大方式和长大速度的主要因素是晶核的 和其前沿液体中的 。 9. 光滑界面又称为 界面,粗糙界面又称为 界面,其杰克逊因子α值范围分别为 和 。 10.晶体长大方式主要为 长大机制、 长大机制和 长大机制。其中,大部分金属均以 长大机制进行。 11.在正的温度梯度下,光滑界面的界面形态呈 状;粗糙界面的界面形态为 界面。在负的温度梯度下,一般金属和半金属的界面都呈 状。杰克逊因子α值较高的物质保持 界面形态。 12、金属结晶后晶粒内部的成分不均匀现象叫 ;因初晶相与剩余液相比重不同而造成的偏析叫 。 三、判断题

实验原理 常温下,任意两种液体混合组成的体系称为双液体系。若两液体能按任意比例相互溶解,则称完全互溶双液体系;若只能部分互溶,则称部分互溶双液体系。双液体系的沸点不仅与外压有关,还与双液体系的组成有关。恒压下将完全互溶双液体系蒸馏,测定馏出物(气相)和蒸馏液(液相)的组成,就能找出平衡时气、液两相的成分并绘出T—X图。 通常,如果液体与拉乌尔定律的偏差不大,在T—X图上溶液的沸点介于A、B二纯液体的沸点之间见图2-4-1 (a)。而实际溶液由于A、B二组分的相互影响,常与拉乌尔定律有较大偏差,在T—X图上就会有最高或最低点出现,这些点称为恒沸点,其相应的溶液称为恒沸点混合物,如图2-4-1(b),(c)所示。恒沸点混合物蒸馏时,所得的气相与液相组成相同,因此通过蒸馏无法改变其组成。 图1 完全互溶双液系的相图 本实验采用回流冷凝的方法绘制环己烷-乙醇体系的T—X图。其方法是用阿贝折射仪测定不同组分的体系在沸点温度时气相、液相的折射率,再从折射率-组成工作曲线上查得相应的组成,然后绘制T—X图。 实 验 试 剂 环己烷(A.R);无水乙醇(A.R)。

实验仪器 沸点仪1套;恒温槽1台;阿贝折射仪1台;移液管(1mL,2支;10mL,1支);具塞小试管9支。 实 验 装 置 a

原始数据测定折射率与混合液浓度的关系 环 己 烷 0 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 无 水 乙 醇 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0 W % 0 10 20 30 40 50 60 70 80 90 100 折 光 率 1.34 72 1.36 171 1.36 86 1.37 45 1.38 19 1.38 79 1.39 57 1.40 54 1.40 92 1.41 91 1.50 10 体积单位为毫升 右半部沸点-组成关系的测定 20毫升无 水乙醇液 中加入环 己烷的体 积 0.5 1.0 1.5 2.0 4.0 14.0 温度℃79.5 77.8 74.9 71.5 69.0 67.8 液相折射 率Nl 1.3598 1.3605 1.3600 1.3656 1.3742 1.3909 液相W% 8.03 11.04 10.29 11.04 14.50 41.86 气相折射 率Ng 1.3628 1.3731 1.3775 1.3811 1.3930 1.3981 气相W% 12.39 19.01 10.29 28.33 40.35 62.15 左半部沸点-组成关系的测定 25毫升环 己烷加入 无水乙醇 的体积 0.1 0.2 0.3 0.4 1.0 5.0 温度℃75.0 76.1 74.9 73.9 69.8 66.8 液相折射 率Nl 1.4192 1.4150 1.4126 1.4075 1.4040 1.3971 液相W% 100 100 100 100 100 80.20 气相折射 率Ng 1.4115 1.4224 1.4220 1.4216 1.4196 1.4010

固溶处理(solution treatment):指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。 solution treatment 1. 目的 编辑 主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 使合金中各种相充分溶解,强化固溶体,并提高韧性及抗蚀性能,消除应力与软化,以便继续加工或成型。 适用 多种特殊钢,高温合金,特殊性能合金,有色金属。 尤其适用:1.热处理后须要再加工的零件。 2.消除成形工序间的冷作硬化。 3.焊接后工件。 原理 序言 固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。 固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。 不锈钢固溶热处理 碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。 固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎像普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。

1.置换固溶体中,被置换的溶剂原子哪里去了 答:溶质把溶剂原子置换后,溶剂原子重新加入晶体排列中,处于晶格的格点位置。 2.间隙固溶体和间隙化合物在晶体结构与性能上的区别何在举例说明之。 答:间隙固溶体是溶质原子进入溶剂晶格的间隙中而形成的固溶体,间隙固溶体的晶体结构与溶剂组元的结构相同,形成间隙固溶体可以提高金属的强度和硬度,起到固溶强化的作用。如:铁素体F是碳在α-Fe中的间隙固溶体,晶体结构与α-Fe相同,为体心立方,碳的溶入使铁素体F强度高于纯铁。 间隙化合物的晶体结构与组元的结构不同,间隙化合物是由H、B、C、N等原子半径较小的非金属元素(以X表示)与过渡族金属元素(以M表示)结合,且半径比r X/r M>时形成的晶体结构很复杂的化合物,如Fe3C间隙化合物硬而脆,塑性差。 3.现有A、B两元素组成如图所示的二元匀晶相图,试分析以下几种说法是否正确为什么 (1)形成二元匀晶相图的A与B两个相元的晶格类型可以不同,但是原子大小一定相等。 (2)K合金结晶过程中,由于固相成分随固相线变化,故已结晶出来的固溶体中含B 量总是高于原液相中含B量. (3)固溶体合金按匀晶相图进行结晶时,由于不同温度下结晶出来的固溶体成分和剩余液相成分不相同,故在平衡态下固溶体的成分是不均匀的。 答:(1)错:Cu-Ni合金形成匀晶相图,但两者的原子大小相差不大。 (2)对:在同一温度下做温度线,分别与固相和液相线相交,过交点,做垂直线与成分线AB相交,可以看出与固相线交点处B含量高于另一点。 (3)错:虽然结晶出来成分不同,由于原子的扩散,平衡状态下固溶体的成分是均匀的。 4.共析部分的Mg-Cu相图如图所示:

大学化学基础实验Ⅱ 学院:酿酒与食品工程学院 专业:食品科学与工程 年级:食科141 学号: 1400940106 1400940107 1400940108 学生姓名:丁金浩郭雨宁魏国庆 指导教师: 2015年11月17日

完全互溶双液系气液平衡相图的绘制 一.实验目的 1.掌握阿贝折射仪的使用方法,通过测定混合物的折射率确定其组成。 2.学习常压下完全互溶双液系统气-液平衡相图的测绘方法,加深对相律、恒沸点的理解。 二.实验原理 由两种液体物质混合而成的两组分体系称为双液系统。根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。当压力保持一定,混合物沸点与两组分的相对含量有关。 恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-x),根据体系对拉乌尔定律的偏差情况,可分为3类: (1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图2.7(a)所示。 (2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图2.7(b)所示。

(3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压 2.7 都大,混合物存在着最低沸点如图2.7(c))所示。 图2.7 二组分真实液态混合物气—液平衡相图(T-x 图) 后两种情况为具有恒沸点的双液系相图。它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。 为了测定双液系的T -x 相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。 本实验以环己烷-乙醇为体系,该体系属于上述第三种类型,在沸点仪(如图2.8)中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T -x 相图。 本实验中两相的成分分析均采用折光率法测定。 折光率是物质的一个特征数值,它与物质的浓度及温度有关,因此在测量物质的折光率时要求温度恒定。溶液的浓度不同、组成不同,t A t A t A t B t B t B t / o C t / o t / o x B x B x B A B A A B B (a)(b)(c)x 'x '

1.置换固溶体中,被置换的溶剂原子哪里去了? 答:溶质把溶剂原子置换后,溶剂原子重新加入晶体排列中,处于晶格的格点位置。 2.间隙固溶体和间隙化合物在晶体结构与性能上的区别何在?举例说明之。 答:间隙固溶体是溶质原子进入溶剂晶格的间隙中而形成的固溶体,间隙固溶体的晶体结构与溶剂组元的结构相同,形成间隙固溶体可以提高金属的强度和硬度,起到固溶强化的作用。如:铁素体F是碳在α-Fe中的间隙固溶体,晶体结构与α-Fe相同,为体心立方,碳的溶入使铁素体F强度高于纯铁。 间隙化合物的晶体结构与组元的结构不同,间隙化合物是由H、B、C、N等原子半径较小的非金属元素(以X表示)与过渡族金属元素(以M表示)结合,且半径比r X/r M> 0.59时形成的晶体结构很复杂的化合物,如Fe3C间隙化合物硬而脆,塑性差。 3.现有A、B两元素组成如图所示的二元匀晶相图,试分析以下几种说法是否正确?为什 么? (1)形成二元匀晶相图的A与B两个相元的晶格类型可以不同,但是原子大小一定相等。 (2)K合金结晶过程中,由于固相成分随固相线变化,故已结晶出来的固溶体中含B 量总是高于原液相中含B量. (3)固溶体合金按匀晶相图进行结晶时,由于不同温度下结晶出来的固溶体成分和剩余液相成分不相同,故在平衡态下固溶体的成分是不均匀的。 答:(1)错:Cu-Ni合金形成匀晶相图,但两者的原子大小相差不大。 (2)对:在同一温度下做温度线,分别与固相和液相线相交,过交点,做垂直线与成分线AB相交,可以看出与固相线交点处B含量高于另一点。 (3)错:虽然结晶出来成分不同,由于原子的扩散,平衡状态下固溶体的成分是均匀的。 4.共析部分的Mg-Cu相图如图所示:

实验三完全互溶双液系的平衡相图 一、实验目的 1.绘制常压下环己烷-异丙醇双液系的T—X图,并找出恒沸点混合物的组成和最低恒沸点。 2.学会阿贝折射仪的使用。 二、预习要求 1.了解绘制双液系相图的基本原理和方法。 2.了解本实验中有哪些注意事项。 3.熟悉阿贝折射仪的使用。 三、实验原理 在常温下,任意两种液体混合组成的体系称为双液体系。若两液体能按任意比例相互溶解,则称完全互溶双液体系;若只能部分互溶,则称部分互溶双液体系。 液体的沸点是指液体的蒸气压与外界大气压相等时的温度。在一定的外压下,纯液体有确定的沸点。而双液体系的沸点不仅与外压有关,还与双液体系的组成有关。图Ⅲ-4-1是一种最简单的完全互溶双液系的T—X图。图中纵轴是温度(沸点)T,横轴是液体B的摩尔分数X B(或质量百分组成),上面一条是气相线,下面一条是液相线,对应于同一沸点温度的二曲线上的两个点,就是互相成平衡的气相点和液相点,其相应的组成可从横轴上获得。因此如果在恒压下将溶液蒸馏,测定气相馏出液和液相蒸馏液的组成就能绘出T—X图。 如果液体与拉乌尔定律的偏差不大,在T—X图上溶液的沸点介于A、B二纯液体的沸点之间(见图Ⅲ-4-1),实际溶液由于A、B二组分的相互影响,常与拉乌尔定律有较大偏差,在T—X图上会有最高或最低点出现,如图Ⅲ-4-2所示,这些点称为恒沸点,其相应的溶液称为恒沸点混合物。恒沸点混合物蒸馏时,所得的气相与液相组成相同,靠蒸馏无法改变其组成。如HCl与水的体系具有最高恒沸点,苯与乙醇的体系则具有最低恒沸点。

图Ⅲ-4-1 完全互溶双液系的图III-4-2 完全互溶双液系的另一种类型相图 一种蒸馏相图 本实验是用回流冷凝法测定环已烷—异丙醇体系的沸点—组成图。其方法是用阿贝折射仪测定不同组成的体系,在沸点温度时气、液相的折射率,再从折射率—组成工作曲线上查得相应的组成,然后绘制沸点—组成图。 四、仪器药品 1.仪器 沸点仪1套; 恒温槽1台; 阿贝折射仪1台; 移液管(1mL)2支; 量筒3只; 小试管9支。 2.药品 环己烷; 异丙醇。 五、实验步骤 1.调节恒温槽温度比室温高5℃左右,通恒温水于阿贝折射仪中。 2.测定折射率与组成的关系 作工作曲线: 将9支小试管编号,依次移入0.100mL、0.200mL、…、0.900mL的环己烷,再依次移入0.900mL、0.800mL、…、0.100mL的异丙醇,轻轻摇动,混合均匀,配成9份已知浓度的溶液(按纯样品的密度,换算成质量百分浓度)。用阿贝折射仪测定每份溶液的折射率及纯环己烷和异丙醇的折射率。以折射率对浓度作图,即可绘制工作曲线。 3.测定沸点与组成的关系 方法一:连续测定法

材料成型加工思考题 1.给出HAZ的概念 HAZ定义:焊缝周围未熔化的母材在加热和冷却过程中,发生了金相组织和力学性能变化的区域称为热影响区(heat-affected zone, HAZ )。 2.焊接热循环有哪几个参数? 焊接热循环曲线可以分为加热与冷却两个阶段,采用四个参数描述其特征。 最高温度Tm:最高温度又称为峰值温度,它与HAZ中的点有对应关系,距离焊缝近的点峰值温度高。 相变温度以上的停留时间tH:可以分为加热停留时间t′及冷却停留时间t″。tH越长,奥氏体均质化越充分,但是,奥氏体晶粒长大也越严重。 冷却速度ωc或冷却时间tc:冷却速度ωc是指冷却至某一温度Tc时的瞬时冷却速度,可以在温度-时间曲线上在Tc点作切线求得。也可以采用一定温度范围内的平均冷却速度或者采用一定温度范围内的冷却时间tc (如t8/5,t8/3,t100)来反映冷却速度。 3.说明Tm、t8/5的含义。 最高温度Tm:最高温度又称为峰值温度,它与HAZ中的点有对应关系,距离焊缝近的点峰值温度高。焊接钢时,HAZ过热区的Tm可达1300 ℃~1350 ℃,奥氏体因严重过热而长大,冷却后组织粗大,韧性下降。 t8/5:焊接熔池的温度从800度降到500的时间,这个很重要,因为通过控制t8/5可以改变熔池的冷却速度,从而达到防止冷裂纹、控制组织以达到满意的性能。 4.说明易淬火钢与不易淬火钢HAZ组织分布。 (1)不易淬火钢HAZ组织分布 这类钢主要有低碳钢、普通低合金钢(16Mn、15MnV)等。按不同部位最高温度范围及组织变化可以将HAZ 分为四个区:熔合区、过热区、相变重结晶区、不完全重结晶区。

相关文档
最新文档