固溶处理

固溶处理
固溶处理

固溶处理(solution treatment):指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。

solution treatment

1.

目的

编辑

主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。

使合金中各种相充分溶解,强化固溶体,并提高韧性及抗蚀性能,消除应力与软化,以便继续加工或成型。

适用

多种特殊钢,高温合金,特殊性能合金,有色金属。

尤其适用:1.热处理后须要再加工的零件。

2.消除成形工序间的冷作硬化。

3.焊接后工件。

原理

序言

固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。

固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。

不锈钢固溶热处理

碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。

固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。这种热处理方法为固溶热处理。

固溶热处理中的快速冷却似乎像普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。

淬火

钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下进行马氏体转变的热处理工艺。

通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程

的热处理工艺称为淬火。

淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然

后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能。

淬火能使钢强化的根本原因是相变,即奥氏体组织通过相变而成为马氏体组织。

时效处理

固溶热处理

将合金加热至高温单相区恒温保持,使过剩相充分溶于固溶体中,再快速冷却,以得到过饱和固溶体的热处理工艺。

时效处理

时效处理可分为自然时效和人工时效两种。

自然时效是将铸件置于露天场地半年以上,使其缓缓地发生形变,从而使残余应力消

除或减少;

人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。

根据合金本性和用途确定采用何种时效方法。高温下工作的铝合金适宜用人工时效,

室温下工作的铝合金有些采用自然时效,有些必须人工时效。

从合金强化相上来分析,含有S相和CuAl2等相的合金,一般采用自然时效,而需要在高温下使用或为了提高合金的屈服强度时,就需要采用人工时效来强化。比如LY11和

LY12,40度以下自然时效可以得到高的强度和耐蚀性,对于150度以上工作的LY12和125-250度工作的LY6铆钉用合金则需要人时效。含有主要强化相为MgSi,MgZn2的T

相的合金,只有采用人工时效强化,才能达到它的最高强度。

对于一般铝合金,自然时效时,屈服强度稍低而耐蚀性较好,采用人工时效时,合金

屈服强度较高而伸长率和耐蚀性都降低。对于铝-锌-镁-铜系铝合金LC4则相反,当采

用人工时效时,合金耐蚀性比自然时效好。

选用不同品种钢材作塑料模具,其化学成分和力学性能各不相同,因此制造工艺路线

不同;同样,不同类型塑料模具钢采用的热处理工艺也是不同的。本节主要介绍塑料模具的制造工艺路线和热处理工艺的特点。

特点

编辑

渗碳钢塑料模的热处理特点

1.对于有高硬度、高耐磨性和高韧性要求的塑料模具,要选用渗碳钢来制造,并把渗碳、淬火和低温回火作为最终热处理。

2.对渗碳层的要求,一般渗碳层的厚度为0.8~1.5mm,当压制含硬质填料的塑料时模具渗碳层厚度要求为1.3~1.5mm,压制软性塑料时渗碳层厚度为0.8~1.2mm。渗碳层的含碳量为0.7%~1.0%为佳。若采用碳、氮共渗,则耐磨性、耐腐蚀性、抗氧化、防粘性就更好。

3.渗碳温度一般在900~920℃,复杂型腔的小型模具可取840~860℃中温碳氮共渗。渗碳保温时间为5~10h,具体应根据对渗层厚度的要求来选择。渗碳工艺以采用分级渗碳工艺为宜,即高温阶段(900~920℃)以快速将碳渗入零件表层为主;中温阶段(820~840℃)以增加渗碳层厚度为主,这样在渗碳层内建立均匀合理的碳浓度梯度分布,便于直接淬火。

4.渗碳后的淬火工艺按钢种不同,渗碳后可分别采用:重新加热淬火;分级渗碳后直接淬火(如合金渗碳钢);中温碳氮共渗后直接淬火(如用工业纯铁或低碳钢冷挤压成形的小型精密模具);渗碳后空冷淬火(如高合金渗碳钢制造的大、中型模具)。

淬硬钢塑料模的热处理

1.形状比较复杂的模具,在粗加工以后即进行热处理,然后进行精加工,才能保证热处理时变形最小,对于精密模具,变形应小于0.05%。

2.塑料模型腔表面要求十分严格,因此在淬火加热过程中要确保型腔表面不氧化、不脱碳、不侵蚀、不过热等。应在保护气氛炉中或在严格脱氧后的盐浴炉中加热,若采用普通箱式电阻炉加热,应在模腔面上涂保护剂,同时要控制加热速度,冷却时应选择比较缓和的冷却介质,控制冷却速度,以避免在淬火过程中产生变形、开裂而报废。一般以热浴淬火为佳,也可采用预冷淬火的方式。

3.淬火后应及时回火,回火温度要高于模具的工作温度,回火时间应充分,长短视模具材料和断面尺寸而定,但至少要在40~60min以上。

预硬钢塑料模的热处理

1.预硬钢是以预硬态供货的,一般不需热处理,但有时需进行改锻,改锻后的模坯必须进行热处理。

2.预硬钢的预先热处理通常采用球化退火,目的是消除锻造应力,获得均匀的球状珠光体组织,降低硬度,提高塑性,改善模坯的切削加工性能或冷挤压成形性能。

3.预硬钢的预硬处理工艺简单,多数采用调质处理,调质后获得回火索氏体组织。高温回火的温度范围很宽能够满足模具的各种工作硬度要求。由于这类钢淬透性良好,淬火时可采用油冷、空冷或硝盐分级淬火。表3-27为部分预硬钢的预硬处理工艺,供参考。

表3-27 部分预硬钢的预硬处理工艺

钢号加热温度/℃冷却方式回火温度/℃预硬硬度HRC

3Cr2Mo 830~840 油冷或160~180℃硝盐分级580~650 28~36

5NiSCa 880~930 油冷550~680 30~45

8Cr2MnWMoVS 860~900 油或空冷550~620 42~48

P4410 830~860 油冷或硝盐分级550~650 35~41

SM1 830~850 油冷620~660 36~42

时效硬化钢塑料模的热处理

1.时效硬化钢的热处理工艺分两步基本工序。首先进行固溶处理,即把钢加热到高温,使各种合金元素溶入奥氏体中,完成奥氏体后淬火获得马氏体组织。第二步进行时效处理,利用时效强化达到最后要求的力学性能。

2.固溶处理加热一般在盐浴炉、箱式炉中进行,加热时间分别可取:1min/mm、2~2.5min/mm,淬火采用油冷,淬透性好的钢种也可空冷。如果锻造模坯时能准确控制终锻温度,锻造后可直接进行固溶淬火。

3.时效处理最好在真空炉中进行,若在箱式炉中进行,为防模腔表面氧化,炉内须通入保护气氛,或者用氧化铝粉、石墨粉、铸铁屑,在装箱保护条件下进行时效。装箱保护加热要适当延长保温时间,否则难以达到时效效果。部分时效硬化型塑料模具钢的热处理规范可参照表3-28。

表3-28 部分时效硬化钢的热处理规范

钢号固溶处理工艺时效处理工艺时效硬度HRC

06Ni6CrMoVTiAl 800~850℃油冷510~530℃×(6~8)h 43~48

PMS 800~850℃空冷510~530℃×(3~5)h 41~43

25CrNi3MoAl 880℃水淬或空冷520~540℃×(6~8)h 39~42

SM2 900℃×2h油冷+700℃×2h 510℃×10h 39~40

PCR 1050℃固溶空冷460~480℃×4h 42~44

表面处理

编辑

为了提高塑料模表面耐磨性和耐蚀性,常对其进行适当的表面处理。

塑料模镀铬

1.塑料模镀铬是一种应用最多的表面处理方法,镀铬层在大气中具有强烈的钝化能力,能长久保持金属光泽,在多种酸性介质中均不发生化学反应。镀层硬度达1000HV,因而具有优良的耐磨性。镀铬层还具有较高的耐热性,在空气中加热到500℃时其外观和硬度仍无明显变化。

渗氮

2.渗氮具有处理温度低(一般为550~570℃),模具变形甚微和渗层硬度高(可达1000~1200HV)等优点,因而也非常适合塑料模的表面处理。含有铬、钼、铝、钒和钛等合金元素的钢种比碳钢有更好的渗氮性能,用作塑料模时进行渗氮处理可大大提高耐磨性。

适于塑料模的表面处理方法还有:氮碳共渗、化学镀镍、离子镀氮化钛、碳化钛或碳氮化钛,PVD、CVD法沉积硬质膜或超硬膜等

固溶处理

固溶处理(solution treatment):指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。 solution treatment 1. 目的 编辑 主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 使合金中各种相充分溶解,强化固溶体,并提高韧性及抗蚀性能,消除应力与软化,以便继续加工或成型。 适用 多种特殊钢,高温合金,特殊性能合金,有色金属。 尤其适用:1.热处理后须要再加工的零件。 2.消除成形工序间的冷作硬化。 3.焊接后工件。 原理 序言 固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。 固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。 不锈钢固溶热处理 碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。 固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎像普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。

金属热处理知识点

1 热处理的目的、分类、条件; 定义:通过加热、保温和冷却的方法,使金属的内部组织结构发生变化,从而获得所要求的性能的一种工艺方法。 目的:1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。 分类: 特点:热处理区别于其他加工工艺如铸造、压力加工等的特点是只通过改变工件的组织来改变性能,而不改变其形状。 热处理条件: (1)有固态相变发生的金属或合金 (2)加热时溶解度有显著变化的合金 热处理过程中四个重要因素: (1)加热速度V;(2)最高加热温度T; (3)保温时间h; (4)冷却速度Vt. 2 什么是铁素体、奥氏体、渗碳体?其结构与性能; Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义;奥氏体的形成条件;奥氏体界面形核的原因/条件;以共析钢为例,详细分析奥氏体的形成机理;影响奥氏体转变速度的因素;影响奥氏体晶粒长大的因素; 铁素体:碳溶于α-Fe中形成的间隙固溶体,以F或α表示;

结构:体心立方结构;组织:多边形晶粒 性能:铁素体的塑性、韧性很好(δ=30~50%、aKU=160~200J/cm2),但强度、硬度较低(ζb=180~280MPa、ζs=100~170MPa、硬度为50~80HBS)。其力学性能几乎与纯铁相同。 奥氏体γ-Fe中的间隙固溶体;用A或γ表示 结构:面心立方晶格 性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(ζb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。钢材热加工都在γ区进行。 组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构渗碳体:铁与碳形成的金属化合物,是钢铁中的强化相,高温下可分解,Fe3C →3Fe+C(石墨) 。 结构:复杂斜方 性能:渗碳体中碳的质量分数为6.69%,熔点为1227℃,硬度很高(800HBW),塑性和韧性极低(δ≈0、aKU≈0),脆性大。渗碳体是钢中的主要强化相,其数量、形状、大小及分布状况对钢的性能影响很大。 由于碳在α-Fe中的溶解度很小,因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在。

热处理名词解释

(1)退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火,去应力退火,球化退火,完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 (2)正火:指将钢材或钢件加热到Ac3 或Acm(钢的上临界点温度)以上30~50℃,保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 (3)淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 (4)回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 (5)调质:指将钢材或钢件进行淬火及回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 (6)化学热处理:指金属或合金工件置于一定温度的活性介质中保温,使一种或几种元素渗入它的表层,以改变其化学成分,组织和性能的热处理工艺。常见的化学热处理工艺有:渗碳,渗氮,碳氮共渗,渗铝,渗硼等。化学热处理的目的:主要是提高钢件表面的硬度,耐磨性,抗蚀性,抗疲劳强度和抗氧化性等。 (7)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。固溶处理的目的:主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 (8)沉淀硬化(析出强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由之脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。如奥氏体沉淀不锈钢在固溶处理后或经冷加工后,在400~500℃或700~800℃进行沉淀硬化处理,可获得很高的强度。 (9)时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温保持,其性能,形状,尺寸随时间而变化的热处理工艺。若采用将工件加热到较高温度,并较长时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。时效处理的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等。 (10)淬透性:指在规定条件下,决定钢材淬硬深度和硬度分布的特性。钢材淬透性好与差,常用淬硬层深度来表示。淬硬层深度越大,则钢的淬透性越好。钢的淬透性主要取决于它的化学成分,特别是含增大淬透性的合金元素及晶粒度,加热温度和保温时间等因素有关。淬透性

铝合金最佳固溶时效强化工艺参数的研究

实验十铝合金最佳固溶时效强化工艺参数的研究 —Al—Si-Cu-Mg-Mn系合金最佳固溶时效强化工艺参数的测定 一、实验目的: 通过Al—Si-Cu-Mg-Mn的成分配制—合金的熔炼—合金的固溶时效—显微组织分析—机械性能测定,最终测得最佳的铝合金固溶与时效温度及热处理时间的工艺参数。 二、原理概述: 从过饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚焦区以及亚稳定过渡相的过程称为脱溶或沉淀,是一种扩散型相变。具有这种转变的最基本条件是,合金在平衡状态图上有固溶度的变化,并且固溶度随温度降低而减少,如图1所示。如果将C0成分的合金自A单相α固溶体状态缓慢冷却到固溶度线(MN)以下温度(如T3)保温时,β相将从α相中脱溶析出,α相的成分将沿固溶度线变化为平衡浓度C1,这种变化可表示为:α(C0)→α(C1)+β。β为平衡相,可以是端际固溶体,也可以是中间相,反应产物为(α+β)双相组织,将这种双相组织加热到固溶度线以上某一温度,(如T1)保温足够时间,将获得均匀的单相固溶体α相,这种处理称为固溶处理。 图1固溶处理与时效处理的工艺过程示意图 若将经过固溶处理的C0成分合金急冷,抑制α相分解,则在室温下获得亚稳的过饱和α相固溶体。这种过饱和固溶体在室温或在较高温度下等温保持时,亦将发生脱溶,但脱溶往往不是状态图中的平衡相,而是亚稳相或溶质原子聚焦区。这种脱溶可显著提高合金的强度和硬度,称为沉淀强化或时效强化,是强化合金材料的重要途径之一。 固溶加时效是提高合金强度的一种重要途径,它不同于钢材的强化,钢在淬火后可立即获得很高的硬度和强度。铝合金淬火后,硬度和强度并不立即升高,但塑性较高,但把这种淬火后的铝合金放置一些时间(4~6天)后,强度和硬度显著提高,而塑性明显降低。人们把淬火后的铝合金性能随时间而发生显著提高的现象称为时效。时效可以在室温发生,也可以在高于室温的某一温度范围(100~200℃)内发生。前者称自然时效,后者称人工时效。 本实验采用Al—Si-Cu-Mg-Mn进行温时效,在不同的温度下等温,然后测定合金的硬度,绘制时效硬化曲线。 Al—Si-Cu-Mg-Mn系合金经熔炼,金属模铸造,固溶时效处理后,合金强度为460~500MPa,同时还具有良好的流动性和优良的铸造性能。本合金基本成分为9.5%Si、4%Cu、0.5%Mg、0.5%Mn,由于这种合金不像Al-Cu及Al—Zn-Cu高强度铸造铝合金那样受到热裂

sus304不锈钢固溶处理的具体工艺过程

sus304不锈钢固溶处理的具体工艺过程 标签:不锈钢处理具体工艺过程时间:2010-03-16 09:18:00 点击:回帖:0 上一篇:库存首次下滑钢材毛利见底回升下一篇:福科斯住宅小区防盗报警系统方案 18-8奥氏体不锈钢热处理工艺--- 由于含有较高的镍且在室温下呈奥氏体单相组织,所以它与Cr13不锈钢相北具有高的耐蚀性,在低温、室温及高温下均有较高的塑归和韧性,以及较好的冷作成型和焊接性。但室温下的强度较低,晶间腐蚀及应力腐蚀倾向较大,切削加工性较差。 奥氏体在加热时无相变,因此不能通过热处理强化。只能以提高钢的耐腐蚀性能进行热处理:1)固溶处理;其目的是使碳化物充分溶解并在常温下保留在奥氏体中,从而在常温下获单相奥氏体组织,使钢具有最高的耐腐蚀性能。 固溶处理的加热温度一般均较高,在1050-1100C之间,并按含碳量的高低作适当调整。由于18-8不锈钢导热性很差,不仅要通过预热后再进行淬火加热,而且在固溶处理(淬火加热)时的保温时间要长。固溶处理时,要特别注意防止增碳。因为增碳将会增加18-8钢的晶间腐蚀倾向。冷却介质,一般采用清水。固溶处理后的组织一般是单相奥氏体,但对含有钛、铌、钼的不锈钢,尤其当是铸件时,还含有少量的铁素体。固溶处理后的硬度一般在135HBS左右。 2)除应力退火;为了消除冷加工后的残余应力,处理在较低的温度下进行。一般加热至250-425C,经常采用的是300-350C。对于不含钛或铌的钢不应超过450C,以免析出碳化铬而引起晶间腐蚀。 为了消除焊接后的残余应力,消除钢对应力腐蚀的敏感性,处理一般在较高的温度下进行。加热温度一般不低于850C。冷却方式,对于含有钛或铌的钢可直接在空气中冷却;对于不含有钛或铌的钢应水冷至500C以后再在空气中冷却。 3)稳定化处理;为了防止钛和铌的奥氏体不锈钢在焊接或固溶处理时,由于TiC和NbC减少而引起耐晶间腐蚀性能降低,需将这种不锈钢加热到一定温度后(该温度使铬的碳化物完圣溶于奥氏体,而TiC和NbC只部分溶解)再缓冷。在冷却过程中,使钢中的碳充分地与钛和铌化合,析出稳定的TiC和NbC,而不析出铬的碳化物,从而消除18-8奥氏体不锈钢的晶间腐蚀倾向,这种处理过程称之为稳定化处理。 18-8不锈钢稳定化退火,一般是加热到850-880C,保温2-6h,随后进行空冷或炉冷。

铝及铝合金热处理工艺

铝及铝合金热处理工艺

1. 铝及铝合金热处理工艺 1.1 铝及铝合金热处理的作用 将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。 1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1) 图1 铝及铝合金热处理分类 1.2.2 铝及铝合金热处理基本作用原理 (1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。 ①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。 铝及铝合金热处理 回归 均匀化退火 退火 成品退火 中间退火 过时效 欠时效 自然时效 人工时效 多级时效 时效 固溶淬火 离线淬火 在线淬火 一次淬火 阶段淬火 立式淬火 卧式淬火

②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料 内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。 ③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再 结晶状态下的软化组织,具有最好的塑性和较低的强度。 (2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定 的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。但此时材料塑性较高,可进行冷加工或矫直工序。 ①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固 溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。 ②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新 加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。 (3)时效:经固溶淬火后的材料,在室温或较高温度下保持一段时间,不稳定的 过饱和固溶体会进行分解,第二相粒子会从过饱和固溶体中析出(或沉淀),分布在α(AL)铝晶粒周边,从而产生强化作用称之为析出(沉淀)强化。自然时效:有的合金(如2024等)可在室温下产生析出强化作用,叫做自然时效。人工时效:有些合金(如7075等)在室温下析出了强化不明显,而在较高温度下的析出强化效果明显,称为人工时效。 人工时效可分为欠时效和过时效。 ①欠时效:为了获得某种性能,控制较低的时效温度和保持较短的时效时间。 ②过时效:为了获得某些特殊性能和较好的综合性能,在较高的温度下或保温 较长的时间状态下进行的时效。 ③多级时效:为了获得某些特殊性能和良好的综合性能,将时效过程分为几个 阶段进行。

5铜合金固溶时效处理工艺规范-悉云飞

铜合金固溶时效处理工艺规范 总体说明: 本技术规范规定了铝青铜合金、硅青铜合金及铜镍硅合金固溶时效强化处理的方式、工艺、设备及验收检验规则。 一、适用范围 本技术规范适用于电气化铁路接触网零件用铝青铜合金、硅青铜合金、铜镍硅合金零件的热处理强化。 二、设备及要求 2.1 淬火加热炉可选用带风扇搅动炉气的箱式电阻炉、井式电阻炉或网带式炉或流态炉。炉温控温精度为±3℃,炉温均匀度应在±5℃范围内。 2.2 回火加热炉可选用带风扇搅动炉气的箱式电阻炉、井式电阻炉。电温控温精度为±2℃,炉温均匀度应在±5℃范围内。 2.3 淬火槽应满足零件淬火冷却时的需要,淬火液的温度不应超过5~40℃范围。淬火槽应具有淬火液强制循环功能或具有搅动功能,保证淬火液温度均匀。 三、工艺参数 3.1固溶淬火:

铜合金加热温度、保温时间、冷却方式按下表1选择: 表1 固溶淬火工艺参数 合金种类 加热温度℃ 保温时间 冷却方式 QAl9-2 790~810 水冷至室温QAl9-4 840~860 水冷至室温QSi1-3 790~810 水冷至室温CuNi2Si 850~870 按每25mm厚度1h计算 水冷至室温 注:选择加热温度时应考虑所采用的加热设备和装炉方式、装炉量。 3.2 时效: 铜合金加热温度、保温时间、冷却方式按下表2选择: 表2 时效处理工艺参数 合金种类 加热温度℃ 保温时间h 冷却方式 QAl9-2 390~410 2~3 空冷至室温 QAl9-4 340~360 2~3 空冷至室温 QSi1-3 410~475 1~3 空冷至室温 CuNi2Si 420~470 1~3 空冷至室温 四、 工艺要求 4.1 铜合金零件固溶处理加热要求热炉装料,随炉升温。

(完整版)金属热处理知识点概括

(一)淬火--将钢加热到Ac 3或Ac 1 以上,保温一段时间,使之奥氏体化后,以 大于临界冷速的速度冷却的一种热处理工艺。 淬火目的:提高强度、硬度和耐磨性。结构钢通过淬火和高温回火后,可以获得较好的强度和塑韧性的配合;弹簧钢通过淬火和中温回火后,可以获得很高的弹性极限;工具钢、轴承钢通过淬火和低温回火后,可以获得高硬度和高耐磨性;对某些特殊合金淬火还会显著提高某些物理性能(如高的铁磁性、热弹性即形状记忆特性等)。 表面淬火--表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。分类——感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、离子束加热表面淬火、盐浴加热表面淬火、红外线聚焦加热表面淬火、高频脉冲电流感应加热表面淬火和太阳能加热表面淬火。 单液淬火——将奥氏体化后的钢件投入一种淬火介质中,使之连续冷却至室温(图9-1a线)。淬火介质可以是水、油、空气(静止空气或风)或喷雾等。 双液淬火——双液淬火方法是将奥氏体化后的钢件先投人水中快冷至接近M S 点,然后立即转移至油中较慢冷却(图9-1b线)。 分级淬火——将奥氏体化后的钢件先投入温度约为M S 点的熔盐或熔碱中等温保持一定时间,待钢件内外温度一致后再移置于空气或油中冷却,这就是分级淬火等温淬火--奥氏体化后淬入温度稍高于Ms点的冷却介质中等温保持使钢发生下贝氏体相变的淬火硬化热处理工艺。 等温淬火与分级淬火的区别是:分级淬火的最后组织中没有贝氏体而等温淬火组织中有贝氏体。。。根据等温温度不同,等温淬火得到的组织是下贝氏体、下贝氏体+马氏体以及残余奥氏体等混合组织。 (二)回火--将淬火后的钢/铁,在AC1以下加热、保温后冷却下来的金属热处理 工艺。回火的目的:为了稳定组织,减小或消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适当配合,以满足不同工件的性能要求。 第一类回火脆性:①淬火钢在250~400℃回火后出现韧性降低的现象称为第一类回火脆性,又称为低温回火脆性。几乎所有工业用钢都在一定程度上具有这类回火脆件,而且脆性的出现与回火时冷却速度的快慢无关。 第二类回火脆性:①指合金钢(含有Cr、Ni、Mn、Si等元素的合金钢)淬火并在450~650℃回火后产生低韧性的现象,也称为高温回火脆性。。。。。回火后缓冷促进回火脆性,而快冷抑制回火脆性。 (三)正火--是将工件加热至Ac3或Acm以上40~60℃,保温一段时间后,从 炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。 目的:——如果终锻温度比较高和锻造后冷却速度比较慢,会出现网状碳化物的缺陷。这种网状碳化物在球化退火时不易被消除,需要在球化退火前用正火工艺进行消除。 (四)退火——将钢加热到临界温度Ac1以上或以下温度,保温一定时间,然后缓慢冷却(如 炉冷、坑冷、灰冷等)获得接近平衡组织的热处理工艺称为退火 退火作用——退火过程使组织由非平衡向平衡过度,它可以均匀钢的化学成分及组织,消除铸造偏析,细化晶粒;消除内应力,稳定工件尺寸,减小变形,防止开裂;降低硬度,提高切削加工性能,一般硬度的最佳切削范围为170~230HB;提高塑性,便于冷变形加工;消除淬火后的过热组织以便再进行重新淬火;脱氢,防止白点等。6.5.3 退火工艺的分类

固溶处理和时效处理

固溶处理和时效处理 1、固溶处理 所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。 固溶处理的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等。适用 多种特殊钢,高温合金,特殊性能合金,有色金属。 尤其适用:1.热处理后须要再加工的零件。 2.消除成形工序间的冷作硬化。 3.焊接后工件。 原理 序言 固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处

理时,不仅有主要强化相的溶解,而且可能有某些相的析出。对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。 不锈钢固溶热处理 碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。 固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。 淬火 钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms 以下进行马氏体转变的热处理工艺。 通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。 淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨

金属热处理基础知识大全

金属热处理基础知识大全 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。 1.金属组织 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。 奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。 渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%) 莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%)

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。

17-4 热处理工艺

注:(1)------摘自GB1220 (2)------实际检验值 工艺性能: 0Cr17Ni4Cu4Nb钢一样不进行冷加工。热加工温度为1000~1170°C。对大于76mm或形状复杂的部件,热加工后应及时回炉加热到原热加工的温度,随后缓慢冷却。 0Cr17Ni4Cu4Nb钢可用任何焊接不锈钢的方法焊接。在固溶,时效或过时效状态都可焊接。焊前不需要预热,当要求焊缝强度为时效后强度的9 0%时,则焊后需要重新固溶和时效处理。此钢也可进行钎焊,适宜的钎焊温度为此钢的固溶处理温度。

物理性能: 密度:7780 kg/m2 线膨胀系数:(H900热处理态) 20~100°C时,0.0000108 /K; 20~200°C时,0.00001016 /K; 20~300°C 时,0.00001136 /K 热导率: 100°C 时,17W/(m*K); 300°C时,20W/(m*K); 500°C时,23W/(m*K) 弹性模量: 20°C 时,191000 MPa; 100°C时,191000 MPa; 320°C时,181000 MPa 0Cr17Ni7Al钢常见的热处理工艺有哪些? 沉淀硬化马氏体不锈钢的焊接特点

表1是沉淀硬化马体不锈钢的化学成分。这类钢在高温下是奥氏体组织,因其Ms点高,Mf点亦在室温以上。以17-4PH钢为侧。通过1020~1 060℃固溶处理后,形成马氏体组织,再经时效处理(470-630℃),在马氏体组织中固溶度小的Cu、Nb、Mo、Al、Ti等发生碳化物析出和强化作用,其屈服强度可达到1171MPa。 表1典型沉淀硬化马氏体不错钢的化举成分 表2典型沉淀硬化马氏体不锈钢的力学性能 马氏体沉淀硬化不锈铜碳含量低(≤0.07%C),淬硬倾向不大,具有良好的焊接性。采纳焊条手工焊、惰性气体爱护焊,一样均不需要预热和后热。在进行厚板和拘谨度太的结构焊接时可采取100~150℃的预热。 17-4PH钢焊接时,在加热时期热阻碍区马氏体转变为奥氏体,冷却时在150℃以下,又转变为舍有少量铁素体的马氏体组织(硬度Rc32)再经时效处理,析出含Cu的析出相,使热阻碍区明显强化(Rc44)。 沉淀硬化马氏体不锈钢的焊接材料,在设计要求焊缝性能要与母材相当时,应选用与母材同质的焊材,如表3中17-4PH的配套焊材。如果并不需要焊缝性能与母材相当,可采纳奥氏体不锈钢焊材(308L、347L),或者采纳镍合金焊材(lncone182填充焊丝)。 表3沉淀硬化不错钢的焊接材料

304不锈钢的固溶热处理工艺之令狐文艳创作

304不锈钢的固溶处理热处理工艺 令狐文艳 摘要 研究了不同热处理工艺对304奥氏体不锈钢组织和性能的影响。304奥氏体不锈钢试块进行1050℃保温30min固溶处理,分别在水中和在空气中冷却。结果发现得出组织均为单相奥氏体,水中冷却不锈钢硬度更高,说明水冷后获得更大的内应力。原材料进行650℃保温60min敏化处理和800℃保温60min敏化处理,对比得出在800℃保温60min时更容易发生晶间腐蚀。因此,304不锈钢热处理时应避免在敏化温度区间内较高温度停留较长的时间。 奥氏体不锈钢是指在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、含Ni8%—10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化。如加入S,Ca,Se,等元素,则具有良好的易切削性。此类钢除耐氧化性、酸介质腐蚀外,如果含有Mo、Cu等元素还能耐硫酸、磷酸以及甲酸、醋酸等的腐蚀。此类钢中的含碳量若低于0.03%或含Ti、N,就可显著提高其耐晶间腐蚀性能。由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用[1—5]。 304奥氏体不锈钢作为一种用途广泛的钢,具有良好的腐蚀

性、耐热性、低温强度和机械性能;冲压、弯曲等热加工性好,无热处理硬化现象,无磁性。用于家庭用品(餐具、橱柜、锅炉、热水器),汽车配件,医疗器具,建材,化学,食品工业,船舶部件。根据不同的要求,其常用的热处理工艺主要有:固溶处理、稳定化处理和去应力处理等[6,7],由其应用的广泛性,其热处理工艺的研究对生产有很好的指导意义。1实验方法实验原材料为304奥氏体不锈钢(国内牌号为0Cr18Ni9)化学成分为碳≤0.08%,硅≤1.00%,锰≤2.00%,磷≤0.045%,硫0.03%,镍8.0%—10.5%,铬18%—20%。原材料通过热轧而成,切割成直径20mm,高20mm 的圆柱体试样。对试样分别在1050℃,保温30min空冷和水冷进行固溶处理,在650℃并保温1h段后空冷和800℃并保温1h空冷至室温,进行敏化处理。对原材料和热处理试样采用洛氏硬度计和金相显微镜进行硬度和金相组织分析。 2实验结果与讨论 2.1原材料夹杂物的测定结果 按照国标《GB/T10561—2005钢中非金属夹杂物含量的测定》实验方法,对原材料非金属夹杂物如图1所示,在100倍下与标准图对比,可以得出原材料含有两类夹杂物。沿轧制方向排成一列为氧化铝类(B类),从粒度粗细和长度可以判断是细系,1.5级。形态比小,成黑色无规则分布的颗粒为球状氧化物类(D类),从粒度和数量可以判断是细系,1.5

【有色金属行业标准】金属热处理工国家职业标准

金属热处理工国家职业标准 1、概述 1.1职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.2适用对象: 从事或准备从事本职业的人员。 1.3申报条件(初级和高级技师从略) 中级(具备以下条件之一者) (1)取得初级职业资格证书后连续从事本职业工作3年以上,经本职业中 级正规培训达到规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业5年以上。 (3)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等 以上职业学校本职业毕业证书。 高级(具备以下条件之一者) (1)取得中级职业资格证书后并连续从事本职业工作4年以上,经本职业 中级正规培训达到规定标准学时数,并取得毕(结)业证书。 (2)取得本职业中级职业资格证书后,连续从事本职业工作8年

以上。 (3)取得经劳动保障行政部门审核认定的、以高级技能为培养目标的高等职业学校本职业毕业证书。 (4)大专以上本专业或相关专业毕业生,取得本职业中级职业资格证书后连续从事本职业工作2年以上。 技师(具备以下条件之一者) (1)取得高级职业资格证书后连续从事本职业工作5年以上,并经本职业技师正规培训达到规定标准学时数,取得毕(结)业证书。 (2)取得本职业高级职业资格证书后,连续从事本职业8年以上。 (3)取得本职业高级职业资格证书的高级技工学校毕业生,连续从事本职业4年以上。 1.4.0基础知识 1.4.1基础理论知识 (1)识图知识。 (2)金属材料基础知识。 (3)常用非金属材料知识。 (4)热传递基础知识。 1.4.2金属热处理工基础知识 (1)常用热处理设备知识(用途及基本结构)。 (2)金属的一般热处理工艺、表面改性热处理工艺。 (3)典型零件(主轴、齿轮等)的热处理工艺。 (4)热处理工艺管理知识。

固溶热处理工艺

固溶热处理工艺:(1)加热及冷却制度: 钢号壁厚mm 在制品成品 式冷却方温度℃转速r/min 温度℃转速r/min 0Cr18Ni9 1Cr18Ni9 0Cr18Ni9Ti 1Cr18Ni9Ti 1Cr19Ni9 0Cr18Ni10Ti TP304 TP321 1~2 1050~1100 800~900 1020~1050 700~800 喷淋 薄壁管可 以风冷或 空冷 2~3 1050~1100 700~800 1020~1050 600~700 3~4 1050~1100 700~800 1020~1050 600~700 4~5 1080~1120 700~800 1020~1050 550~650 5~6 1080~1120 600~700 1020~1050 500~600 6~7 1080~1120 550~650 1020~1050 500~600 7~8 1080~1120 450~550 1020~1050 400~500 8~9 1080~1120 400~500 1020~1050 400~500 9~10 1080~1120 400~500 1020~1050 300~400 10~11 1080~1120 400~500 1020~1050 300~400 11~12 1080~1120 350~450 1020~1050 200~300 12~13 1080~1120 300~400 1020~1050 200~300 13~14 1080~1120 250~400 1020~1050 150~300 14~15 1080~1120 200~350 1020~1050 100~250 16~17 1080~1120 150~300 1020~1050 50~150 >17 1080~1120 100~250 1020~1050 50~150 00Cr19Ni10 1Cr18Ni12Mo2Ti 0Cr18Ni12Mo2Ti 0Cr17Ni12Mo2 00Cr17Ni14Mo2 TP304L TP316 TP316L TP316Ti 1~2 1050~1100 800~900 1040~1080 700~800 2~3 1050~1100 700~800 1040~1080 600~700 3~4 1050~1100 700~800 1040~1080 600~700 4~5 1080~1120 700~800 1040~1080 550~650 5~6 1080~1120 600~700 1040~1080 500~600 6~7 1080~1120 550~650 1040~1080 500~600 7~8 1080~1120 450~550 1040~1080 400~500 8~9 1080~1120 400~500 1040~1080 400~500 9~10 1100~1130 400~500 1040~1080 300~400 10~11 1100~1130 400~500 1040~1080 300~400 11~12 1100~1130 350~450 1040~1100 200~300 12~13 1100~1130 300~400 1040~1100 200~300 13~14 1100~1130 250~400 1040~1100 150~300 14~15 1100~1130 200~350 1040~1100 100~250 16~17 1100~1130 150~300 1040~1100 50~150 >17 1100~1130 100~250 1040~1100 50~150 注:¢∠133 时;时间为15~35 分钟¢≥133 时;时间为20~40 分钟 注:炉辊线速度约为0.15m / 100转/分 (1)必须经常用红外测温仪和自动记录仪表显示的温度进行校对,发现异常必须及时向有关人员汇报,并得到有关人员书面指示后方可继续生产操作。 (2)喷淋装置的上下喷淋冷却水量要足够大,而且要有适当的配比以保证快速冷却和最小的弯曲度。(3)成品热处理后,各项性能指标应符合的技术标准(常见钢种的强度指标和延伸指标见上表)。

热处理工艺规范

ZX/JS-007 江苏新中信电器设备有限公司 热处理工艺规范 编制:审批: 二零一三年三月 江苏新中信电器设备有限公司 热处理工艺规范ZX/JS-007 1 目的 对零部件消除应力,改善材料或零件机械性能的热处理质量实施控制,以保证热处理符合技术条件的要求。 2适用范围 本规范适用于本厂钢制零件在周期作业加热炉中的调质、固熔工序。 3准备工作 3.1检查设备及仪表是否正常。 3.2检查零件上的材料是否符合图样要求。 3.3检查零件的尺寸是否符合图样及工艺文件的规定。 3.3.1调质件最好先经粗加工,断面大于100mm的零件,当有内孔时,应钻孔后

再调质,并且防止出现尖角。 3.3.2调质件的加工余量应大于允许的变形量。 3.3.3不同淬火温度的调质件,不得同炉处理,同炉处理件的有效厚度应相近。 4 工艺规范 4.1 技术部根据标准、工艺规程、材料和设计技术条件,负责编制热处理工艺规程。 4.2 热处理工艺规程至少应包括以下内容: a)热处理工件的材料牌号 b)热处理设备及热处理种类(调质、固溶等) c)热处理工艺参数(升温、保温、出炉温度、回火温度及各温度段的加热时间等)和工艺曲线图。 d)冷却方法及冷却介质。 4.3 消除应力热处理后一般不得再进行焊接补焊。否则应重新进行热处理。 4.4 ASTM A276 410或420调质处理(详见附录1)规范见表1。 表1

4.4.1机械性能参数: ≥550MPa 。 Rm ≥690MPa ; Rp 0.2 4.5 ASTM A276 410或420淬火处理(详见附录2)规范见表2。 表2 4.6 ASTM A182 F304、F316、F321钢固溶处理(详见附录3)规范见表3。

热处理对金属材料的影响

热处理对金属材料的影响 热处理是借助于一定的热作用(有时兼之机械作用、化学作用或其他 作用)来人为的改变金属或合金内部组织和结构的过程,从而获得所 需要性能的工艺操作。金属材料及制品生产过程中之所以需要热处理,其主要作用和目的: 1、改善工艺性能,保证工艺顺利进行; 2、提高使用性能,充分发挥材料潜力。 一、金属热处理的本质 在各种金属材料和制品的生产过程中,为使金属工件具有所需要 的力学性能、物理性能和化学性能,除合理选用材料和各种成型工艺外,热处理是不可缺少的重要环节之一。为了使金属材料获得所需要 的性能,热处理技术发挥着重要作用,广泛应用于现代工艺中。与其 他加工工艺相比,热处理一般不改变工件形状和整体的化学成分,而 是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予 或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不 是肉眼所能看到的。 金属整个生产过程中均可进行相应的热处理以改善金属材料性能。金属铸件通常需要进行消除内应力的低温退火,或完全退火,或正火,有的还需要淬火后回火(时效)。对金属锭的热处理、压力加工过程中的和成品的热处理,在冶金企业和机械工厂内,它是半成品和机器零件制造的主要工序之一。热处理作为中间工序,能改进共建的某些加工性能(如锻造性、切削性等);若作为最后操作,它能赋予金属和合金以

所需力学、物理和化学等综合性能,保证产品符合规定的质量要求。在影响金属材料结构变化的深度和多样性方面,热处理较机械加工或其他处理也更为有效。例如,各种钢材常须进行正火处理,以获得细而均匀的组织和较好的力学性能。调质钢需进行淬火及高温回火以保证良好的整体力学性能。此外,有色金属及其合金的半成品和制品的加工流程中,热处理更是重要的组成部分之一。铝合金一般需经过时效强化来提高强度,以达到所需的力学性能要求。 二金属热处理的工艺 热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷 却两个过程。这些过程互相衔接,不可间断。加热是热处理的重要步 骤之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源, 进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。 利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动 粒子进行间接加热。 金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件 表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。 因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热, 也可用涂料或包装方法进行保护加热。 加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度, 是保证热处理质量的主要问题。加热温度随被处理的金属材料和热处 理的目的不同而异,但一般都是加热到相变温度以上,以获得需要的 组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加

相关文档
最新文档