Effects of sediment particle morphology on adsorption of phosphorus elements

合集下载

对硝基苯酚在沉积物上的吸附特征---吸附等温线和吸附热力学

对硝基苯酚在沉积物上的吸附特征---吸附等温线和吸附热力学

文章编号:025322468(2001)20620674205 中图分类号:X132 文献标识码:A对硝基苯酚在沉积物上的吸附特征———吸附等温线和吸附热力学朱利中,杨 坤,许高金 (浙江大学环境科学系,杭州310028)摘要:研究了对硝基苯酚在不同沉积物上的吸附等温线,比较分析了Linear 方程、Freundlich 方程和Langmuir 方程描述吸附等温线的准确性和稳定性.结果表明,Linear 方程更适合描述沉积物吸附对硝基苯酚的等温线.对硝基苯酚在沉积物上的吸附主要是溶质在沉积物有机质中的分配,其吸附热为-718k J ・m ol -1,主要的吸附作用力为疏水键力.对硝基苯酚在18个沉积物有机质上吸附自由能改变量为-514—-712k J ・m ol -1.标准自由能的变小是对硝基苯酚在沉积物有机质上吸附的推动力.关键词:对硝基苯酚;沉积物;吸附;热力学Characters of p 2nitrophenol sorption in sediments ———sorption isotherms and sorption thermodynamicsZH U Lizhong ,Y ANG K un ,X U G aojin (Department ofEnvironment Science ,Zhejiang University ,Hangzhou 310028)Abstract :The is otherm data of p 2nitrophenol to 18sediments were studied.An evaluation of Linear ,Freundlich and Langmuir equations on both accuratity and stability indicates that the Linear equation is the best.S orption of p 2nitrophenol to sediment is dom inated by the partition of s olutes to sedimental organic matter.The in fluences of tem perature on s orption of p 2nitrophenol to sediment was als o investigated.The s orption parameters of therm odynam ics ,ΔH =-718k J ・m ol -1,suggest that the s orption behavior is dom inated by dispersive force.The free energy changes of p 2nitrophenol s orption to 18sedimental organic matter is in the range of -513—712k J ・m ol -1.The s orption happened in sediment organic matter because of the decrease of free energy.K eyw ords :p 2nitrophenol ;sediments ;s orption ;therm odynam ics收稿日期:2000212208;修订日期:2001202210基金项目:浙江省自然科学基金青年科技人才培养专项资金资助项目(编号:RC99032)作者简介:朱利中(1959—),男,教授(博导) E 2mail :lzzhu @ 长期以来,人们一直重视研究有机物在水Π沉积物(土壤、悬浮颗粒物)界面的吸附行为[1—9].平衡吸附模型的选择和应用是探讨水中有机物在沉积物上吸附的主要内容,常用的平衡吸附模型有[3—5,8]:Linear 方程、Freundlich 方程、Langmuir 方程.研究表明,许多有机物在沉积物或土壤上吸附过程通常是一个放热的过程,即当温度升高时,沉积物对有机物的吸附能力下降[6—8].在吸附过程中,沉积物和有机物间可能同时存在着各种作用力,如范德华力、氢键力、偶极间力、疏水键力、配位基交换和化学键等;各种作用力所释放的热是不同的,作用力越强,放出的吸附热越大.因此,可以通过测定有机物在沉积物上吸附热来推断吸附的主要作用力.本文比较分析了Linear 方程、Freundlich 方程和Langmuir 方程描述对硝基苯酚在沉积物上吸附等温线的准确性和稳定性,并从热力学角度探讨了对硝基苯酚的吸附作用机理.第21卷第6期2001年11月环 境 科 学 学 报ACT A SCIE NTI AE CIRCUMST ANTI AEV ol.21,N o.6N ov.,20011 实验部分111 实验材料及仪器11111底泥样品的采样及制备 用抓斗采集了杭州东苕溪、西湖、运河(杭州段)和嘉兴南湖水体中的18个表层底泥(0—20cm ),去除碎石、败叶等杂物,经空气自然风干,样品用研钵捣碎研细,过100目孔径筛,备用.沉积物的有机碳含量f oc 在0139%—10190%(见表6).11112 仪器及试剂 THZ 282型恒温调速振荡器,722型分光光度计,LD422离心机,对硝基苯酚等试剂均为分析纯.112 水中对硝基苯酚的测定用紫外分光光度法测定水中的对硝基苯酚,测定条件为:pH315—410,波长为317nm ,1cm 石英比色皿,其检测限为0105mg ΠL.113 吸附的实验方法在一系列150m L 磨口锥形瓶中,加入2g 沉积物和25m L 不同浓度的对硝基苯酚,加塞后在25℃(温度实验除外)下,恒温振荡至吸附平衡,离心,取上清液测定对硝基苯酚的浓度(平衡浓度);根据起始浓度与平衡浓度之差并扣除空白,计算沉积物吸附对硝基苯酚的量.实验表明,吸附处理过程中对硝基苯酚挥发、光解、微生物降解等均可忽略不计.2 结果与讨论211 吸附等温线有机物在沉积物上的吸附等温线主要用以下三种方程拟合:Linear 方程: Q =KC e +b (1)Freundlich 方程:Q =KC ne (2)Langmuir 方程:Q =aC e Π(K +C e )(3)式中,Q 为有机物在沉积物上的吸附量,K 为平衡吸附系数,a 、b 、n 为常数.测定了18个不同来源的沉积物吸附对硝基苯酚的等温吸附曲线,分别用上述3种方程拟合了对硝基苯酚吸附等温线(见表1).结果表明,3种方程都能较好地拟合对硝基苯酚在沉积物上的吸附(r >0185,除渡口旁样品),其中Freundlich 方程和Langmuir 方程拟合程度较高(r >0190),表明它们拟合对硝基苯酚的吸附准确性略高.同时应用3个方程拟合了对硝基苯酚在同一沉积物(三公园)上的5次重复实验的吸附等温线(见表2);分别计算了每个方程拟合的5个吸附系数的相对误差RE (见表3),两两间的相对偏差RD (见表4)及反应总体差异程度的标志变异系数C V (见表3).其数值越大,表示变异程度越大,方程拟合的吸附系数的重复性越差.从表可得,Linear 方程拟合的吸附系数变化最小,其最大相对误差为619%,最大相对偏差为918%,标志吸附系数为317%,重复性较好;Fre 2undlich 方程和Langmuir 方程拟合的吸附系数变化很大,最大相对误差分别为27718%和12917%,最大相对偏差分别达8517%和8314%,标志变异系数分别为4312%和7110%,重复性很差.因此,从模型准确性和稳定性两方面考虑,在所实验范围内,Linear 方程能较好地拟合对硝基苯酚在沉积物上的吸附等温线.Freundlich 方程和Langmuir 方程尽管有较高的准确性,但是模型的稳定性较差,不适合用来拟合对硝基苯酚在沉积物上的吸附.5766期朱利中等:对硝基苯酚在沉积物上的吸附特征———吸附等温线和吸附热力学表1 对硝基苯酚在沉积物上吸附的等温吸附曲线T able1 Is otherms of p2nitrophenol to sediments采样点Linear方程Freundlich方程Langmuir方程Q=KC e+b r Q=KC n e r Q=aC eΠ(K+C e)r湖 心Q=11833C e+17312601970Q=21042C e01991801989Q=14286C eΠ(88192C e)01999花 港Q=11633C e+34164001984Q=21608C e01944401995Q=16667C eΠ(7907+C e)01998少年宫Q=11605C e+34312201984Q=21347C e01964201992Q=12500C eΠ(81402C e)01997三公园Q=11226C e+22610501990Q=21781C e01907001990Q=25000C eΠ(15425+C e)01994里西湖Q=11584C e+22617201994Q=21375C e01956701991Q=10000C eΠ(4407+C e)01954岳 庙Q=01956C e+51716901989Q=91240C e01744201992Q=3333C eΠ(1067+C e)01979奉 口Q=01270C e+25218901960Q=61817C e01641301969Q=2000C eΠ(199912+C e)01975苕溪桥Q=01290C e+22416301975Q=11309C e01848901990Q=14286C eΠ(27507+C e)01999上牵埠Q=01227C e+49317801899Q=51628C e0167901903Q=2500C eΠ(52622C e)01919乌龙涧Q=01243C e+7819901981Q=01184C e11054601979Q=500C eΠ(31942C e)01993奉口下Q=01161C e+24212601887Q=11873C e01753501956Q=1429C eΠ(2762+C e)01987义 桥Q=11009C e+15416501998Q=01334C e11144301969Q=33333C eΠ(27197+C e)01998拱宸桥Q=01692C e+21311501989Q=11711C e01903401994Q=20000C eΠ(20232+C e)01998凤凰桥Q=01507C e+11010201940Q=01279C e11080901942Q=10000C eΠ(14723+C e)01936顾家桥Q=01080C e+19519801945Q=201190C e01393101972Q=476C eΠ(345+C e)01988渡口旁Q=01254C e+49219201797Q=121068C e01588401913Q=1250C eΠ(600+C e)01902烟雨楼Q=01227C e+88911801850Q=31094C e01754201938Q=3333C eΠ(2563+C e)01974迎宾桥Q=01231C e+51014801859Q=161834C e01576001914Q=3333C eΠ(6792+C e)01974表2 对硝基苯酚在沉积物(三公园)上吸附的等温吸附曲线T able2 Is otherms of p2nitrophenol to sedimentsnLinear方程Freundlich方程Langmuir方程Q=KC e+b r Q=KC n e r Q=aC eΠ(K+C e)r1Q=11338C e+12116701990Q=01535C e11145301945Q=50000C eΠ(35110+C e)01988 2Q=11231C e+20013101990Q=21460C e01921601991Q=25000C eΠ(16070+C e)01995 3Q=11256C e+19813701983Q=31734C e01863501973Q=20000C eΠ(10914+C e)01962 4Q=11226C e+22610501990Q=21781C e01907001990Q=25000C eΠ(15425+C e)01994 5Q=11207C e+17314501983Q=21537C e01912301995Q=100000C eΠ(65860+C e)01999表3 吸附系数的相对误差(RE,%)和标志变异系数(CV,%)T able3 The coefficient of variation(C V,%)and the relative errors(RE,%)of s orption coefficients 拟合方程RE1RE2RE3RE4RE5C V Linear方程619-116315-210-315317 Freundlich方程-7718211551015145134312 Langmuir方程2214-4410-6119-4612129177110表4 吸附系数两两间的相对偏差(RD,%)T able4 The deviations of mutal s orption coefficients(RD,%)拟合方程RD12RD13RD14RD15RD23RD24RD25RD34RD35RD45 Linear方程810611814918210411119214319115 Freundlich方程78138517801878193411111531025153211818 Langmuir方程541268195611461732114107516291283147616212 吸附热力学考察了298K、308K、318K时温度对对硝基苯酚在沉积物上的吸附等温线(见图1).结果676环 境 科 学 学 报21卷表明,在试验温度范围内,吸附量随温度升高而降低,表明该吸附是一个放热过程.应用吉布斯方程可以计算温度对平衡吸附系数的影响:ΔG 0=-RT ln K (4)ΔG 0=ΔH 0-T ΔS 0(5)由式(4)和式(5)可得:ln K =-ΔH 0ΠRT +ΔS 0ΠR(6)式中,ΔG 0为吸附的标准自由能改变量,ΔH 0为标准吸附热,ΔS 0为吸附的标准熵变值,R 为气体摩尔常数,T 为绝对温度,K 为平衡吸附系数.若不考虑温度对ΔH 0和ΔS 0的影响,将式中的ln K 和1ΠT 作图,得一线性回归方程(见图2):ln K =93818ΠT -217586 (r =01999)(7)从回归方程直线的斜率可求得:ΔH 0=-718k J ・m ol -1.图1 不同温度下的等温吸附曲线Fig.1 Is otherms of p 2nitrophenol to sedimentwith different temperature图2 温度对平衡吸附系数的影响Fig.2In fluence of tem perature on coefficientsof p 2nitrophen ol s orption to sedim ent 吸附是吸附质和吸附剂间各种作用力共同作用的结果,不同作用力在吸附中所放出的热不同.V on Open B 等[10]测定了各种作用力引起的吸附热的范围(见表5).表5 各种作用力引起的吸附热(kJ ・mol -1)T able 5 The energy of s orption from different forces (k J ・m ol -1)范德华力疏水键力氢键力配位基交换偶极间力化学键4—10约52—40约402—29>60对硝基苯酚在沉积物上的吸附热为-718k J ・m ol-1,又因吸附等温线呈线性,其在沉积物上的吸附主要表现为对硝基苯酚在沉积物有机质中的分配,推断其主要吸附机理为疏水键力的分配作用,同时存在着较强的偶极间力、氢键力和范德华力的作用[8,10,11].用式(4)可以计算对硝基苯酚在各个沉积物上标准吸附自由能的变化.因为K =K om ・f om =K oc ・f oc =K oc ・f om Π11724(8)代入式(4)可得,ΔG 0=-RT ln (K om ・f om )=-RT ln (K oc ・f om Π11724)(9)由式(9)可知,对于同一有机物在沉积物上标准吸附自由能变化与沉积物有机质含量有关,随着f om 变大,ΔG 0变小,表明吸附后的标准自由能随着有机质含量增加而变小.当f om =1时,即吸附全部发生在有机质上时,可以得到:ΔG 0=-RT ln K om =-RT ln (K oc Π11724)(10)式中,ΔG 0为摩尔有机质从单位水中分配到单位沉积物有机相中标准自由能的变化.由式(10)7766期朱利中等:对硝基苯酚在沉积物上的吸附特征———吸附等温线和吸附热力学876环 境 科 学 学 报21卷可知,对于同一有机物在有机质上的吸附,因为K几乎为常数,因此ΔG0也几乎为常数,利用oc上式计算了298K时对硝基苯酚从水中转移(分配)到18个沉积物有机质过程中的标准自由能改变量为-514—-712k J・m ol-1(见表6).表6 对硝基苯酚在沉积物有机质上吸附的吸附系数和标准自由能改变量T able6 The coefficients and the free energe changed for p2nitrophenol s orption to organic matters of sediments底 泥f oc,%K K ocΔG0,J・m ol-1底 泥f oc,%K K ocΔG0,J・m ol-1湖心101901183316182-5643171乌龙涧01780124331115-7170151花 港101901163314198-5356168奉口下01630116125156-6680148少年宫101701160515100-5359199义桥61091100916157-5606161三公园81081122615117-5387191拱宸桥31730169218155-5886127里西湖71461158421123-6220161凤凰桥11910150726154-6773170岳庙51710195616174-5631190顾家桥01390108020151-6135113奉口11080127025100-6625159渡口旁11680125415112-5379173苕溪桥01960129030121-7094159烟雨楼11430122715187-5499167上牵埠01840122727102-6818111迎宾桥11420123116127-55611353 结论(1)基于模型准确性和稳定性的双重考虑,Linear方程更能拟合对硝基苯酚在沉积物上的吸附等温线.沉积物吸附对硝基苯酚的作用主要是溶质在沉积物有机质中的分配所致.(2)对硝基苯酚在沉积物上吸附为放热过程,其吸附热为-718k J・m ol-1,其主要吸附作用力为疏水键力,同时可能存在较强的偶极键力、氢键力和范德华力.(3)对硝基苯酚在18个沉积物有机质上吸附自由能改变量为-514—-712k J・m ol-1.吸附后标准自由能的变小是对硝基苯酚在沉积物有机质上吸附的推动力.参考文献:[1] V oice T C,W eber W J,S orption of hydrophobic com pounds by sediments,s oils and suspended s olids.I,Theory and background[J].W ater Res,1983,17:1433—1441[2] Frank C S,James W B1Therm odynam ics of organic chem ical partition in s oils.2,N onlinear partition of substituted phenylureas fromaqueous s olution[J].Environ Sci T echnol,1994,28:996—1002[3] Chiou C T,P orter P E,Schmedding D W1Partition equilibria of non2ionic organic2com pounds between s oil organic2matter and water[J].Environ Sci T echnol,1983,17:227—231[4] Chiou C T,Peters L J,Freed V H1Physical concept of s oil2water equilibria for non2ionic organic2com pounds[J]1Science,1979,206:831—832[5] M ichael G S,D onald L S,S teven K D1S orption of Pentachlorophenol to HDT M A2clay as a function of ionic strength and pH[J]1Environ Sci T echnol,1994,28:2330—2335[6] G raber E R,Boris over M D1Hydration2facilitated s orption of specifically interacting organic com pounds by m odel s oil organic matter[J].Enviro Sci T echnol,1998,32:258—263[7] S teinberg S M,Pegnatello J J1Sawhney,Persistence of1,22Dibrom oethane in s oils:Entrapment in intraparticle m icropores[J]1En2viron Sci T echnol,1987,21:1201—1208[8] 全 燮,薛大明,赵雅芝,等,近海沉积物组份对有机物的吸附与吸附机理探讨[J].中国环境科学,1996,16(2):81—86[9] K ile D E,Chiou C T,Zhou H,et al,Partition of nonplar organic pollutants from water to s oil and sediment organic matters[J]1En2viron Sci T echnol,1995,29:1401—1406[10] V on Open B,K ordel W1K lein W,S orption of nonpolar and polar com pounds to s oils:Processes,measurement and experience withthe applicability of the m odified OECD2guideline[J]1Chem osphere,1991,22:285—304[11] Chiou C T,K ile D E.E ffects of polar and nonpolar groups on the stability of organic2com pounds in s oil organic2matter[J].EnvironSci T echnol,1994,28:1139—1144。

湖泊沉积物中磷释放的研究进展

湖泊沉积物中磷释放的研究进展

土壤 (Soils), 2004, 36 (1): 12~15湖泊沉积物中磷释放的研究进展 高 丽 杨 浩 周健民 (土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所) 南京 210008)摘 要沉积物是湖泊营养物质的重要蓄积库,也是湖泊内源性P的主要来源。

沉积物中部分固定的P 可通过分解或溶解作用而释放磷酸盐到沉积物间隙水中,然后通过扩散作用或表层沉积物的再悬浮作用而释放到上覆水体中。

本文就目前对沉积物P释放的影响因素及释放机制的研究进展作一简要概述。

关键词湖泊沉积物;释放;间隙水扩散;释放机制中图分类号 X524沉积物是湖泊营养物质的重要蓄积库,也是湖泊内源性P的主要来源。

不少湖泊调查资料表明,当入湖营养盐减少或完全截污后,沉积物营养盐的释放作用仍会使水质继续处于富营养化状态,甚至出现“水华”[1、2]。

P是造成湖泊水质富营养化的关键性的限制性因素之一[3],沉积物中营养盐的释放对水体的营养水平有着不可忽视的影响,研究富营养化湖泊沉积物P的释放行为对于湖泊水质的治理和预测具有非常重要的指导意义。

湖泊沉积物-水界面是水体和沉积物之间物质交换和输送的重要途径,对于浅水湖泊而言,来自各种途径的营养物,经过一系列物理、化学及生物释放作用,其中一部分沉积于湖泊底部,成为湖体营养物的内负荷。

在一定条件下,由于风力和湖流引起湖泊底部沉积物的扰动使沉积物处于再悬浮状态,这种再悬浮状态会强烈的影响P在沉积物-水界面间的再分配,部分营养元素可从沉积物中向上层水体释放,使水体营养负荷增加[4]。

P在沉积物-水界面循环受溶解释放以及间隙水扩散两个过程的控制。

1 P的释放 沉积物P的释放涉及到的过程有解吸附、分解、配位体交换以及酶水解作用。

当沉积物中P以可溶无机P形式存在时,可通过扩散、风引起的沉积物再悬浮、生物扰动以及平流(如气体沸腾)等方式进入上覆水体[5]。

影响沉积物P释放的因子很多,现概括如下:1.1 沉积物中P含量和形态沉积物中P的结合态及形态之间的相互转化是控制沉积物P迁移和释放的一个主要因子,这也是目前国内外研究P释放的一个热点。

黄河上中游表层沉积物磷的赋存形态特征

黄河上中游表层沉积物磷的赋存形态特征

黄河上中游表层沉积物磷的赋存形态特征王晓丽;包华影【摘要】利用淡水沉积物中磷形态的标准测试程序(SMT),研究了黄河上中游10个沉积物样品中磷的赋存形态变化规律和分布特征,并分析了沉积物中磷的来源和释放潜力.研究结果表明,黄河上中游沉积物中总磷(OP)的含量为82.0~113.5 mg·kg-1,无机磷(IP)的含最范围在45.3~76.6 mg·kg-1,有机磷(OP)的含量范围在27.6~56.6 mg·kg-1.其中主要以无机磷的形式存在,而无机磷中以钙结合态磷为主.线性回归分析结果表明,NaOH-P的含量与活性态Fe、Al含量总和有一定的线性关系.黄河沉积物向上覆水体释放磷的潜力不大.【期刊名称】《生态环境学报》【年(卷),期】2010(026)006【总页数】5页(P1358-1362)【关键词】黄河;沉积物;磷形态;磷形态的标准测试程序(SMT)【作者】王晓丽;包华影【作者单位】内蒙古师范大学化学与环境科学学院,呼和浩特,内蒙古,010022;北京师范大学化学学院,北京,100875;北京师范大学化学学院,北京,100875【正文语种】中文【中图分类】X131.2磷是一种重要的生源要素,也是引起水体富营养化的重要因素[1-2]。

磷在海-陆相互作用中的迁移与循环会直接影响到水体的初级生产力,并因此影响到全球碳循环[3]。

沉积物是磷输送、积累和再生的重要场所,对磷的循环过程有着重要的影响[4-5]。

沉积物中能参与界面交换及生物可利用的磷,其含量取决于沉积物中磷的形态[6]。

不同结合态磷在沉积物中的含量水平和分布特征不仅记录这环境污染的程度,而且包含了有关环境地球化学的信息[7]。

因此,研究沉积物中磷的不同化学形态及分布特征,对研究水-沉积物界面的磷迁移转化规律和地球化学行为具有重要的意义。

目前,对沉积物磷形态的研究主要集中于湖泊和海洋[8-10]。

对河流沉积物磷形态的研究,国外有一些报道[11],但国内研究较少。

镧改性膨润土对底泥内源磷控制效果

镧改性膨润土对底泥内源磷控制效果

中国环境科学 2021,41(1):199~206 China Environmental Science 镧改性膨润土对底泥内源磷控制效果任琪琪1,唐婉莹1*,殷鹏2,尹洪斌3*(1.南京理工大学化工学院,江苏南京 210094;2.江苏省水资源服务中心,江苏南京 210029;3.中国科学院南京地理与湖泊研究所,江苏南京 210008)摘要:以商业化的锁磷材料—镧改性膨润土(Phoslock®)为对象,研究了Phoslock®对磷的吸附动力学和等温线,同时研究了材料对上覆水体以及底泥内源磷释放的控制效果.结果表明,Phoslock®对磷的吸附可以用Langmuir模型拟合,相关性达到0.96,模型计算磷的最大吸附量为10.4mgP/g,且磷吸附符合拟一级和拟二级动力学模型.室内模拟培养结果表明,当锁磷剂投加剂量为1553g/m2时,70d(好氧17d和厌氧53d)内,对上覆水中的磷酸盐去除率达到90%以上,沉积物内源磷释放削减83.1%,但会引起上覆水体中总氮、氨氮以及硝氮的增加,磷形态分析结果表明,表层(0~2cm)底泥中有超过50%的Mobile-P和Al-P转化为稳定态的Ca-P和Res-P,且控磷效果随着投加量的增加而增加.研究表明,Phoslock®对底泥内源磷具有较好的控制效果,但长期效果需加强研究.关键词:锁磷剂;富营养化控制;底泥内源磷;活性磷中图分类号:X524 文献识标码:A 文章标号:1000-6923(2021)01-0199-08The effect of lanthanum modified bentonite on the control of sediment internal phosphorus loading. R EN Qi-qi1, TANG Wan-yin1*, YIN Peng2, YIN Hong-bin3* (1.School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;2.Jiangsu Water Resources Service Center, Nanjing 210029, China;3.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, People's Republic of China, Nanjing 210008, China). China Environmental Science, 2021,41(1):199~206Abstract:The commercial phosphorus inactivation material-Phoslock® was used to investigate its efficiency for sorption isotherm and kinetics. In addition, the control effects on P concentration in overlying water and sediment internal P release was also investigated. The results indicated that P sorption on Phoslock can be fitted well by Langumiur model with a coefficient of 0.996 and the maximum P sorption capacity was estimated to be 10.6mgP/g. P sorption on phoslock can be fitted well by second-order kinetic model. The results of laboratory incubation indicated that the soluble reactive phosphate in overlying water and sediment internal P release can be reduced by more 90% and 80% respectively with a dosage of 1553g/m3 during seventy day of incubation (17days of aerobic and 53days of anaerobic incubation).Unfortuately, the addition of phoslock can induce an elevation of total nitrogen, ammonium nitrogen and nitrate in overlying water. P fractionation analysis indicated that the addition of phoslock can transform more than 50% of mobile P and Al-P into stable Ca-P and Res-P. The control effects can be increased with the increase of dosage of Phoslock. Overall, the results indicated that Phoslcok can effectively control sediment internal phosphorus loading, but the long-term effects still should be studied further.Key words:phosphorus inactivation materials;lake eutrophication control;sediment internal phosphorus;mobile phosphorus近年来,随着工业和生活质量的不断提高,我国湖泊的富营养化问题日益严重.据调查,我国的磷控制性湖泊占比较大[1].因此,减少磷含量是控制湖泊富营养化的关键[2].湖泊中的磷来源分为外源磷和内源磷,当外源污染得到控制后,赋存在沉积物中的内源磷在水体温度、溶解氧、水动力及季节等环境因子发生变化时,会释放到上覆水中,再次造成水体富营养化[3].相关研究[4]指出,湖泊内源磷的释放主要来自表层0~20cm的沉积物,因此,控制表层沉积物的释放成为控磷的关键.采用一种有效的方法来控制内源磷显得尤为重要.改性黏土矿物材料因其相对较低的成本和迅速改善水质的能力而经常被用于沉积物磷的控制[5].常用的固磷吸附剂有镧改性的沸石[6-7],铝改性的凹凸棒石[8],工业副产品如饮用水残留物[9]或由铁、钙、锆改性的其他矿物磷吸附剂[10].这些磷吸附剂的添加可将活性磷转变为更惰性的稳定磷,从而抑制磷的释放.铝改性材料已经广泛应用于世界上很多湖收稿日期:2020-06-01基金项目:国家自然科学基金资助项目(41977363);中科院交叉团队项目(JCTD-2018-16)* 责任作者, 唐婉莹, 副教授,****************.cn;尹洪斌, 研究员, ***************.cn200 中国环境科学 41卷泊中,在控制内源磷方面取得了良好的效果.然而,由于藻华爆发期会极大地提高富营养化湖泊中上覆水的pH值,在高pH值(>9.50)条件下会增加沉积物中铝的氢氧化物释放出磷的风险[11].一种镧改性膨润土锁磷剂[12](商业名称为Phoslock®)是一种高效的吸附剂,由95%的膨润土和5%的稀土镧组成,在pH值为5~7时,H2PO4-对吸附剂表面具有最大的亲和力.与Al相比,Phoslock®施用时不会改变湖泊水的碱度和pH值,这可能是碱度较低湖泊的更好选择[12].另外,膨润土具有与沉积物相似的密度和颗粒大小,沉降后可以作为沉积物的组分从而限制物理再悬浮或生物扰动[13-14],是一种较为理想的磷钝化剂.为了研究Phoslock®的除磷效果,本研究进行了吸附实验探究其对磷的固定化性能,同时采用模拟室内培养测试Phoslock®在有氧和厌氧条件下控制沉积物内部磷的长期固定效率,以期为其实际应用提供参考.1 材料与方法1.1 水样、沉积物柱样采集与处理实验所用沉积物采集于安徽巢湖(31.700610°N, 117.368350°E),所用采样管为内径8.4cm、高度45cm的有机玻璃管,采集完沉积物样后两端用橡胶塞密封.在同一点位收集200L的湖水,这些沉积物柱状样和收集的水在低温中保存,并在4h内运回实验室.相关研究[4]指出,湖泊内源磷的释放主要来自表层0~20cm的沉积物,调整沉积物柱状样至20cm,上覆水至15cm[15],在进行培养实验之前样品一直保持黑暗状态.培养试验结束后用切板将底泥根据沉积物-水界面的距离分为5层:0~2cm、2~ 4cm、4~6cm、6~8cm、8~10cm,匀浆后自然风干研磨过100目筛备用.1.2吸附实验1.2.1 吸附等温线使用KH2PO4制备磷酸根溶液.称取若干份0.5g的Phoslock®于50mL离心管中,加入不同浓度(1,5,10,20,50,100,200,500,1000mg/L)的磷溶液25mL,磷溶液预先用0.1mol/LH2SO4或0.1mol/L的NaOH调整为pH=7,在180r/min,25℃的恒温摇床中震荡24h,离心后经0.45 μm水系滤膜过滤得上清液,并用于可溶性反应磷酸盐(SRP)分析.磷吸附结果拟合到Langmuir吸附模型,e L emL e1q K CqK C=+(1)Freundlich吸附模型由下式给出:m F enq K C= (2) 式中:q m代表磷吸附剂的最大吸附量,mg/g;K L和K F值表示吸附能力的强弱;C e为达到吸附平衡时溶液中的磷浓度,mg/L;q e表示达到吸附平衡时单位磷吸附剂的饱和吸附量,mg/g;n表示吸附的难易.1.2.2 吸附动力学称取若干份0.5g的Phoslock®于50mL离心管中,分别加入25mL初始磷浓度为0.5,10,50,200,500mg/L的磷溶液,pH值调至7,在180r/min,25℃的恒温摇床中振荡,设置不同时间取出(初始磷浓度为0.5,10,50mg/L分别在10,20,30,60,120,240,360min取出;初始磷浓度为200, 500mg/L分别在0.5,1,2,4,6,10,16,24,48h取出)后分析其上清液可溶性反应磷酸盐(SRP)浓度.用拟一级动力学和拟二级动力学模型来表示吸附过程中吸附量随时间的变化,拟合方程如下:拟一级动力学方程:()1e elog log2.303tkq q q t−=− (3) 拟二级动力学方程:22e e1tt tq k q q=+ (4) 式中:q e和q t分别为吸附平衡和t时刻磷吸附剂的吸附量,mg/g;k1、k2分别为一级、二级吸附速率常数,h-1.1.3 室内长期柱样培养实验1.3.1 样品处理与投加量为了研究好氧和厌氧条件Phoslock®对沉积物内部磷的长期控制效率,进行实验室模拟实验.根据表层沉积物中活性磷(0~5cm)含量和锁磷剂的最大磷吸附量来计算理论投加量,理论投加量的计算式如下:ma bVXSq+= (5)式中:X为理论投加量,g/m2;a是待处理的底泥中活性磷(mobile-P)总含量,g;b是待溶解的湖水中SRP的质量浓度,mg/L;V是待溶解的湖水体积,mL;S是柱状样采样管的底面积,m2;q m是由Langmuir等温吸附方程得到的Phoslock®对磷的理论最大吸附量,mg/g.柱状样表层5cm湿泥中的Mobile-P含量为86mg,已过滤的湖水中TP含量为0.19mg/L,Phoslock®的最大吸附量为10.4mg/g,因此,所需1期任琪琪等:镧改性膨润土对底泥内源磷控制效果 201Phoslock®的1、2倍理论投加量为1553g/m2和3105g/m2.1.3.2 实验搭建及过程室内柱状培养实验分别设置(1)空白对照组:不添加Phoslock®的柱状沉积物;(2) Phoslock®:Mobile-P=100:1(1X,1553g/m2);(3) Phoslock®:Mobile-P=200:1(2X,3106g/m2).每组实验均设置3组平行实验.先用虹吸法将所有柱状样中原先的上覆水缓慢抽出,空白对照组再缓慢注入1L 湖水,而第2,3材料处理组注入1L溶解有磷吸附剂的湖水,保持空白组和处理组的上覆水样一致.实验过程柱状样均放置在恒温培养箱(ILB-008-02型)中,保持温度为20°C,pH=7.实验分为好氧期和厌氧期2个阶段,其中第1~17d为好氧期阶段,第17~70d为厌氧期阶段.在好氧期阶段,所有柱子不加顶塞,以空气作为其氧气来源,并在2~3d内曝气,曝气强度以不扰动界面为宜;好氧实验结束后即刻向柱状样中通入氮气,盖紧顶塞,并且每24h向柱状样内通氮气以保持厌氧状态.每隔72h抽取50mL上覆水用于实验指标的测定,然后沿管壁再缓慢注入50mL的对应点位已过滤湖水;厌氧期阶段结束后,向柱内垂直插入Peeper装置[16-17],48h后取出测定.1.4 样品分析方法1.4.1 水体中氮、磷的测定将抽取的上覆水采用0.45µm的滤膜过滤,滤液中的SRP含量用钼蓝比色法进行测定,氨氮用纳氏试剂光度法[16]测定.用pH 计(雷磁,PHS-3C型)测定未过滤上覆水的pH值,将未过滤的上覆水消解后用钼蓝比色法测其TP含量.1.4.2 间隙水中氨氮、磷酸盐含量及其释放通量的测定本实验通过平衡式间隙水采样技术(Peeper)[17-18]获取沉积物间隙水,其技术属于原位被动采样范畴,基于内外膜的渗透压平衡原理,根据滤膜的特性使沉积物间隙水中一些可溶离子和分子通过滤膜与采样介质进行物质交换达到平衡[19].使用之前用N2曝气24h,然后垂直插入柱状沉积物中,48h后垂直取出装置并记录泥水界面的位置,用清水洗去表面的底泥,然后用移液枪刺穿一层渗透膜取出小室内的溶液置于酶标板中,加入显色剂之后于微孔板振荡器内(QB-9001型)震荡,间隙水中的磷酸盐和氨氮浓度采用分光光度计(Epoch BioTek 型)用微量比色法进行测定.对Peeper各小室中测出的数值即为相应位置沉积物间隙水中磷酸盐和氨氮的浓度,利用Fick第一扩散定律计算磷酸盐和氨氮的通量[19],通量由下式计算得到.()sJ cx xDδϕδ=⎛⎞=⎜⎟⎝⎠(6) 式中:φ指表层沉积物孔隙度;D S是沉积物扩散系数;cxδδ是整个沉积物界面上的孔隙水浓度梯度;J为沉积物-水界面的扩散通量.1.4.3 沉积物的磷形态的测定厌氧期实验结束后,用切板对沉积物进行分层,各层沉积物混合均匀后烘干、研磨过100目筛备用,通过分级提取法[20]测定其磷形态含量,简言之,在每一步提取步骤完成后测其过滤后的PO43-P浓度,即为每步提取液中不同磷形态的浓度,沉积物中的磷含量可以依次提取为(a)NH4Cl-P(Labile-P),(b)BD-P(Fe-P),(c)NaOH-rP(Al-P),(d)NaOH-nrP(Org-P)和(e)HCl-P(Ca-P).最后,残留物沉积物在马弗炉中于550℃灰化2h,然后用1mol/L HCl萃取,作为(f)残留P(Res-P).活性磷(mobile-P)为Labile-P,Fe-P和Org-P之和.2 结果与讨论2.1 吸附研究0200400 600 800246810Qe(mg/g)C e(mg/L)图1 Phosl ock®的等温吸附曲线Fig.1 Adsorption isotherms of P on Phoslock®2.1.1 等温吸附进行磷酸盐吸附等温线实验来研究Phoslock®的最大磷酸盐吸附能力,如表1所示,拟合结果如图1所示,计算出的模型参数列于表2.结果表明,用Langmuir等温线方程,Freundlich方程回归磷酸盐吸附等温线具有相对较高的相关参数. Langmuir方程计算得出的Phoslock®的最大吸附容202 中 国 环 境 科 学 41卷量为10.4mgP/g.镧和铝的组合对水和沉积物中的磷进行双重控制要优于单一金属负载吸附剂.这是因为单一的镧和单一的铝基磷吸附剂无法克服富营养化水中的高浓度有机碳和高pH 值的干扰[21],但是,磷吸附剂中两种元素的组合在高pH 值和高有机碳水中均表现良好.表1 Phosl ock ®等温吸附拟合参数Tabl e 1 Phosl ock ®isothermal adsorption fitting parametersLangmuir 吸附模型 Freundlich 吸附模型 磷吸附剂类型q m (mg/g)k L (L/mg)R 2k F (L/mg) 1/nR 2Phoslock® 10.4111 0.0098 0.9555 0.9972 0.34120.98642.1.2 吸附动力学 结果如图2和表2所示,Phoslock ®在初始磷浓度为0.5,10,200mgP/L 时,对磷的吸附均能很好地符合拟一级动力学和拟二级动力学模型,说明Phoslock ®对磷的吸附是物理吸附和化学吸附同时存在的.0 10 20 30 40 50时间(h)Q e(m g /g )图2 Phosl ock ®对磷的动力学吸附曲线Fig.2 Phosl ock ®kinetic adsorption curve of phosphorus表2 Phosl ock ®的动力学拟合参数 Tabl e 2 Phosl ock ® dynamics fitting parameters拟一级动力学 拟二级动力学初始磷浓度 (mg/L)q e(mg/g) k 1(1/min)R 2q e(mg/g) k 2(g/mg·minR 20.5 0.0242 7.497 0.98820.0248 16.7867 0.929610 0.4957 0.0924 0.98650.5267 2.0755 0.9681200 3.8955 0.13840.99684.6674 0.1505 0.99442.2 锁磷剂长期控磷效果2.2.1 上覆水pH 值变化特征 pH 值是影响沉积物磷循环和湖泊富营养化的重要因素之一,是评价湖泊水体质量的重要指标[22].上覆水pH 值随时间的变化如图3所示.投加锁磷剂后,总体上材料处理组pH 值和空白组相差不大.具体表现为好氧阶段的第1~10d 的pH 值基本无变化,第10~17d 时对照组和处理组pH 值均有所降低,随即进入厌氧阶段后,pH 值在第26d 时达到峰值后渐渐趋于平缓,pH 值均维持在7.2~7.7左右.说明锁磷剂的加入不会对上覆水pH 值造成影响.102030 40 50 6070678910p H 值时间(d)图3 上覆水pH 值随时间的变化Fig.3 Variation of pH value in overlying water with time2.2.2 上覆水水质变化特征 对于好氧期和厌氧期,锁磷剂处理柱状样后上覆水中TP 和SRP 的含量如图4所示,处理组的上覆水TP 和SRP 含量相对于未投加吸附剂的对照组明显降低,说明锁磷剂对水体有显著的控磷效果.在好氧条件下,对照组沉积物上覆水中的TP 和SRP 浓度保持相对恒定,而在无氧条件下,TP 和SRP 的浓度增加很多.相对而言,好氧条件下水柱中TP 浓度是对照沉积物中厌氧条件下水柱中TP 浓度的1.68倍.类似地,对照处理中厌氧条件下上覆水中的平均SRP 浓度是好氧条件下的5.0倍.在厌氧条件下,三价铁被还原为亚铁.因此,铁结合的磷被释放到水柱中.这与前期的研究结果一致[23-25].相反,与有氧和无氧条件相比,投加锁磷剂后的上覆水中SRP 和TP 浓度在有氧和无氧条件下都保持相对较低的水平(<0.3mg/L).这是因为沉积物中的La 结合磷对氧化还原电位变化不敏感,并且在缺氧条件下可以保持稳定.相对而言,与对照沉积物柱状样相比,1X 的Phoslock ®处理可以降低上覆水中82.6%的TP 和96.8%的SRP.并且与对照相比,高剂量的Phoslock ®1期 任琪琪等:镧改性膨润土对底泥内源磷控制效果 203对水柱中TP 和SRP 的控制效果更好.总体来看,锁磷剂对于柱状样水体中的磷有良好的去除效果,且能维持较长一段时间,因此具有较好的应用前景.0 10 20 3040 50 60 70T P 浓度(m g /L )时间(d)0 10 20 3040 50 60 70S R P 浓度(m g /L )时间(d)图4 上覆水TP 和SRP 随时间的变化Fig.4 Variation of TP and SRP in overlying water with time氮作为湖泊中一种重要的营养组分,当环境条件变化时也会改变底泥中氮的释放.上覆水中总氮、氨氮和硝态氮含量在好氧期和厌氧期随时间的变化如图5所示,在好氧期阶段,以总氮浓度为例,对比对照组发现,添加锁磷剂后,上覆水中总氮含量明显升高;随着培养时间越长,处理组上覆水总氮含量呈现出先增大后减小的趋势,在第14d 后和对照组中的总氮含量基本一致,且随着投加量的增大上覆水中总氮含量升高的越多.在厌氧期阶段,处理组中的总氮含量比对照组高,两个不同的处理组中上覆水的总氮含量随着时间均缓慢的增高,然后逐渐趋于稳定,在37d 后处理组始终比空白组中的总氮含量高.与对照沉积物柱状样相比,1X 的Phoslock ®处理在好氧期上覆水中总氮和氨氮相当于空白组增加了2倍和2.3倍,在厌氧期可以增加上覆水中49.0%的总氮和29.2%的氨氮.而在好氧期和厌氧期阶段材料处理组上覆水中的氨氮含量始终高于空白组,硝态氮的变化趋势和总氮的变化趋势有类似的规律.总的来说,添加锁磷剂后会造成柱状样上覆水中的总氮,氨氮和硝态氮含量的增加.有研究[26]指出连续萃取锁磷剂,膨润土基质的Phoslock ®含有氧化还原敏感的铁,当分散在水中时,Phoslock 可能会释放出铵.0102030 40 50 607012345678T N 质量浓度(m g /L )时间(d)102030 40 50 60700.51.01.52.02.53.03.54.04.5时间(d)N O 3-质量浓度(m g /L )0102030 40 50 60700.51.01.52.02.53.03.54.0时间(d)N H 4+质量浓度(m g /L )图5 上覆水TN 、NH 4+和NO 3-随时间的变化 Fig.5 Variation of TN, NH 4+ and NO 3- in overlying waterwith time2.2.3 底泥释放特征 沉积物中的大量可溶解性204 中国环境科学 41卷物质主要以间隙水作为介质通过表面扩散层向上覆水扩散迁移,因此沉积物间隙水中磷酸盐的多寡可以直接地反映出底质环境的优劣.间隙水中的SRP浓度随深度的变化如图6(a)所示,其中深度以“0”作为沉积物-水界面,沉积物-水界面以上用负值表示,沉积物-水界面以下用正值表示.对照组上覆水中的SRP浓度为0.33~0.55mg/L,间隙水中SRP浓度要远大于上覆水中的浓度,且随着深度的增加呈现出先增大后减小的趋势,在深度为2.8cm处达到最大值2.68mg/L,在5cm以后逐渐减小,这也验证了表层沉积物对内源磷的释放贡献较大,是控制内源磷的关键.在材料组中,不管是上覆水还是间隙水中的SRP浓度都要远远低于对照组,且材料的投加量不同SRP浓度的变化也不同,具体表现为随着投加量增大,SRP浓度降低.其中在沉积物-水界面以上,处理组的投加量不会引起上覆水SRP浓度的变化,处理后的SRP质量浓度为0.10~ 0.20mg/L,此处材料处理组中SRP的去除率为63.2%~82.8%;在沉积物-水界面以下,不同的材料组中的SRP浓度都表现出先增大后趋于稳定的趋势,且2X处理组中SRP的质量浓度低于1X处理组,1X 处理组在界面下1.2~2.8cm处的SRP去除率为71.9%~82.3%,2X处理组在界面下1.2~2.8cm处的SRP去除率为81.4%~90.1%.随着深度的增加去除效果略有降低,到5cm去除率仍有38%左右.综上所述,添加材料后可以大大降低上覆水和表层5cm左右间隙水中SRP的含量,且对沉积物-水界面下5~ 8cm仍有去除效果.SRP (mg/L)对照1X 2X1234P通量[mg/(m2⋅d)]深度(cm)图6 间隙水中SRP浓度的垂向变化和磷扩散通量变化Fig.6 Vertical change of SRP concentration and phosphorus diffusion flux in interstitial water 沉积物-水界面之间的磷交换量可以用扩散通量表示,扩散通量越大,则物质交换量越多.选取间隙水中的垂向浓度由菲克第一定律计算出的磷扩散通量如图6(b)所示,结果表明,锁磷剂的加入可以改变磷酸盐在沉积物间隙水中的分布趋势,使其浓度大大降低,穿过沉积物-水界面的磷通量也得到有效降低,同时随着锁磷剂的投加量增大,扩散通量减小.对照组,1X和2X沉积物中的磷释放通量分别为3.7;0.63和0.19mg/(m2⋅d),与对照组相比,分别从1X和2X处理组中减少了83.1%,94.9%的磷通量.综上所述,锁磷剂的添加会明显降低磷的扩散通量.2.2.4 底泥磷形态变化特征经过70d的室内培养,对照组和处理组沉积物的磷组分如图7所示,结果表明,在对照沉积物中的所有沉积物层中,NaOH-rP(Al-P)是TP的主要部分(51.4~58.9%),活性磷的含量(Labile-P,Fe-P和Org-P的总和)占总磷的20.0~28.9%.沉积物中的这3种磷被认为是磷的活泼形式,当环境条件发生改变时最容易从沉积物中释放出来[25-27].例如,Fe-P和Org-P的一部分最有可能在缺氧条件下和微生物活动期间从沉积物中释放出来,1期 任琪琪等:镧改性膨润土对底泥内源磷控制效果 205因此,Fe -P 和Org -P 可以增加上覆水中的TP 浓度[28-29].原位失活的目的是将磷的活泼形式(Labile -P,Fe -P 和Org -P)转移为惰性形式,与Fe -P 和Org -P 不同,Ca -P 和Res -P 等2个惰性磷形态通常稳定且生物利用度很低[30].投加锁磷剂可以对表层沉积物中的活性磷含量起到大大得削减作用,达到有效的控磷效果.对于表层0~2cm 的沉积物,1X 、2X 处理组沉积物中活性磷的含量分别降低了59.4%,62.7%.对于表层2~4cm 的沉积物,1X 、2X 处理组沉积物中活性磷的含量分别降低了29.6%,29.4%.随着深度的增加,Al -P 在部分条件下有可能会释放出来,有被生物利用的可能性.对比发现,添加材料的处理组沉积物中的Al -P 都有部分程度的削减,比对照组降低了超过30%的Al -P 含量.另外,由于La 3+和Al 3+与沉积物中可移动性P 的反应,观察发现添加Phoslock ®磷吸附剂可以增加Ca -P 和Res -P.这两种惰性P(Ca -P 和Res -P)的双重增加有利于富营养化湖泊的沉积物磷的长期控制[31].具体表现为:表层0~2cm 的沉积物,1X 处理组沉积物中Ca -P 的含量是对照组的4.02倍,Res -P 含量增加了36.5%.对于4~10cm 的沉积物,处理组对各种磷形态对比对照组并没有很明显的变化,可能是由于柱状样中底栖动物较少,不能通过生物的蠕动作用将磷吸附剂向深层沉积物渗透.综上所述,投加理论剂量的Phoslock ®对表层沉积物中的活性磷起到大大削减作用,能提高稳定结合态磷,对固定沉积物中活性磷起到积极作用.Res-PCa-PAl-PMobile-PX2磷含量(mg/kg) 深度(c m )深度(c m )深度(c m )图7 Phosl ock ®对沉积物中磷形态的影响Fig.7 Phosl ock ®'s effect on phosphorus forms in sediments3 结论3.1 根据Langmuir 模型计算得出,Phoslock ®的最大磷吸附量为10.4mgP/g,且其对磷的吸附均能较好符合拟一级动力学和拟二级动力学模型,说明其对磷的吸附是物理吸附和化学吸附同时存在的. 3.2 室内长周期模拟实验表明(17d 好氧,53d 厌氧),Phoslock ®显著降低上覆水总磷以及磷酸根的浓度,与对照沉积物柱状样相比,单倍理论投加量可以降低上覆水中82.6%的TP 和96.8%的SRP,但锁磷剂的添加会造成上覆水中的总氮、氨氮和硝态氮含量的增加.3.3 Phoslock ®的添加可以显著降低间隙水中磷酸根的浓度,与对照相比,单倍和双倍的理论投加量对沉积物-水界面磷的释放削减率分别为83.1%和94.9%.3.4 锁磷剂的添加可将底泥中活性磷和铝磷转化为稳定的钙磷和残渣态磷.单倍和双倍的投加量可对表层底泥中(0~2cm)活性磷削减比例分别达59.4%和62.7%,与对照相比,底泥中的钙磷可增加2倍和3倍.参考文献:[1] 金相灿,屠清瑛.湖泊富营养化调查规范(第二版) [M]. 北京:中国环境科学出版社, 1990,30-35.Jin X C, Tu Q Y. Specification for lake eutrophication investigation (Second edition) [M]. Beijing: China Environmental Science Press, 1990:30-35.[2] 陈镜伊.金属盐改性热处理凹土对水体及底泥磷钝化效果的影响[D]. 南京:南京理工大学, 2018.Chen J Y. Inactivation effects of phosphorus in water and sediment bymetal salt modified and thermal treated attapulgite [D]. NanJing: Nanjing University of Science and Technology, 2018.[3] Wang L Q, Liang T. Distribution patterns and dynamics of phosphorusforms in the overlying water and sediment of Dongting Lake [J]. Journal of Great Lakes Research, 2016,42(3):565-570.[4] Kong M, Yin H B, Wu Y, et al. Influence of thermal treatment on thephosphorus sorption capacity of natural calcium -rich clay minerals [J]. Journal of Environmental Sciences, 2013,33(12):3211-3218.[5] Spears B M, Maberly S C, Pan G, et al. Geo -engineering in lakes: Acrisis of confidence? [J]. Environmental Science & Technology, 2014, 48(17):9977-9979.[6] Lin J, He S, Zhang H, et al. Effect of zirconium -modified zeoliteaddition on phosphorus mobilization in sediments [J]. Science of the Total Environment, 2019,646(PT.1-1660):144-157.[7] Wang Z, Lu S, Wu D, et al. Control of internal phosphorus loading in206 中国环境科学 41卷eutrophic lakes using lanthanum-modified zeolite [J]. Chemical Engineering Journal, 2017,327:505-513.[8] Yin H B, Ren C, Li W. Introducing hydrate aluminum into porousthermally-treated calcium-rich attapulgite to enhance its phosphorus sorption capacity for sediment internal loading management [J].Chemical Engineering Journal, 2018,348:704-712.[9] Wang C, Wu Y, Wang Y, et al. Lanthanum-modified drinking watertreatment residue for initial rapid and long-term equilibrium phosphorus immobilization to control eutrophication [J]. Water Research, 2018:173-183.[10] Douglas G B, Hamilton D P, Robb M S, et al. Guiding principles forthe development and application of solid-phase phosphorus adsorbents for freshwater ecosystems [J]. Aquatic Ecology, 2016,50(3):385-405. [11] Rydin E, Huser B, Welch E B. Amount of phosphorus inactivated byalum treatments in Washington lakes [J]. Limnology & Oceanography, 2000,45(1):226-230.[12] Haghseresht F, Wang S, Do D D. A novel lanthanum-modifiedbentonite, Phoslock®, for phosphate removal from wastewaters [J].Applied Clay Science, 2009,46(4):0-375.[13] Diego C, K arin F, Marziali, et al. Eutrophication management insurface waters using lanthanum modified bentonite: A review [J].Water research, 2016:197-203.[14] 刘新,王秀,赵珍,等.风浪扰动对底泥内源磷钝化效果的影响[J]. 中国环境科学, 2017,37(8):3064-3071.Liu X, Wang X, Zhao Z, et al. Effect of wind and wave disturbance on passivation of internal phosphorus in sediment [J]. 2017,37(8):3064- 3071.[15] Reitzel K, Lotter S, Dubke M, et al. Effects of Phoslock treatment andchironomids on the exchange of nutrients between sediment and water [J]. Hydrobiologia, 2013,703(1):189-202.[16] 国家环保局本书编委会.水和废水监测分析方法 [M]. 中国环境科学出版社, 1989:35-40.National Environmental Protection Agency Book Editing Committee.Water and wastewater monitoring and analysis methods [M]. China Environmental Science Press, 1989:35-40.[17] Xu D, Wu W, Ding S, et al. A high-resolution dialysis technique forrapid determination of dissolved reactive phosphate and ferrous iron in pore water of sediments [J]. Science of the Total Environment, 2012,421-422:245-252.[18] Raymond, Hesslein H. An in situ sampler for close interval pore waterstudies1 [J]. Limnology and Oceanography, 1976,21(6).[19] Ding S , Sun Q, Xu D. Development of the DET technique forhigh-resolution determination of soluble reactive phosphate profiles in sediment pore waters [J]. International journal of Environmental Analytical Chemistry, 2010,90(14/15):1130-1138. [20] William J U, Robert C A. Diffusion coefficients in nearshore marinesediments1 [J]. Limnology and Oceanography, 1982,35(7).[21] Rydin E. Potentially mobile phosphorus in Lake Erken sediment [J].Water Research, 2000,34(7):2037-2042.[22] Yin H B, Du Y, K ong M, et al. Interactions of riverine suspendedparticulate matter with phosphorus inactivation agents across sediment-water interface and the implications for eutrophic lake restoration [J]. Chemical Engineering Journal, 2017,327:150-161. [23] 杨秀敏,任广萌,李立新,等.土壤pH值对重金属形态的影响及其相关性研究 [J]. 中国矿业, 2017,26(6):79-83.Yang X M, Ren G M, Li L X, et al. Effect of pH value on heavy metals form of soil and their relationship [J]. China Mining Magazine, 2017,26(6):79-83.[24] Fuchs E, Funes A, Saar K, et al. Evaluation of dried amorphous ferrichydroxide CFH-12® as agent for binding bioavailable phosphorus in lake sediments [J]. Science of the Total Environment, 2018,628-629: 990-996.[25] Nürnberg G K, Fischer R, Paterson A M. Reduced phosphorusretention by anoxic bottom sediments after the remediation of an industrial acidified lake area: Indications from P, Al, and Fe sediment fractions [J]. Science of the Total Environment, 2018,626:412-422. [26] Hupfer M, Jordan S, Herzog C, et al. Chironomid larvae enhancephosphorus burial in lake sediments: Insights from long-term and short-term experiments [J]. Science of the Total Environment, 2019, 663:254-264.[27] Reitzel K, Lotter S, Dubke M, et al. Effects of Phoslock treatment andchironomids on the exchange of nutrients between sediment and water [J]. Hydrobiologia, 2013,703(1):189-202.[28] Funes, A, Martinez, et al. Determining major factors controllingphosphorus removal by promising adsorbents used for lake restoration:A linear mixed model approach [J]. Water Research, 2018,141:377-386.[29] Upreti K, Maiti K, Victor H, et al. Microbial mediated sedimentaryphosphorus mobilization in emerging and eroding wetlands of coastal Louisiana [J]. Science of the Total Environment, 2019,651:122-133. [30] Huser, Brian J, Egemose, et al. Longevity and effectiveness ofaluminum addition to reduce sediment phosphorus release and restore lake water quality [J]. Water Research, 2016,97:122-132.[31] Xu R, Zhang M, Robert J G, et al. Enhanced phosphorus locking bynovel lanthanum/aluminum–hydroxide composite: Implications for eutrophication control [J]. Environmental Science and Technology, 2017,51(6):3418-3425.作者简介:任琪琪(1995-),女,安徽六安人,南京理工大学硕士研究生,主要从事水环境修复材料的研究.。

水环境变化下泥沙颗粒的界面作用特征研究

水环境变化下泥沙颗粒的界面作用特征研究

水环境变化下泥沙颗粒的界面作用特征研究李秀英;陈志和;孔萌;吕超寅【摘要】Interfacial interaction properties are related to the surface properties of sediment particles. Surface properties and interfacial interactions are modified with the change in water environments. Experiments of surface pore characteristics and copper adsorption were performed to analyze the interfacial interaction of cleaned sediments and the original state sediments with the change of water environments. Physical and chemical adsorption apparatus was adapted to measure surface morphology characteristics of sediment particles. The experimental results reveal that cleaned sediments have richer surface pore structures and more complex surface topography. In copper ions adsorption experiments, saturated adsorption capacities of cleaned and original sediments are 0. 854g/kg, 4. 525g/kg, and adsorption/desorption ratios are 1. 511 and S. 652, respectively. Original sediments have stronger ability of interfacial interaction than cleaned sediments. Contaminations are adsorbed to particle surfaces, which results in the change of the surface morphology of particles. Biomenbrane and humus adhered to the particles'surface enhance the interaction ability. With the change in water environments, interfacial interaction of sediment transformed from physical adsorption to chemical adsorption.%通过泥沙颗粒表面孔隙特征分析实验与硝酸铜吸附实验,分析比较干净态泥沙与原状沙的界面作用规律,说明水环境变化下泥沙颗粒的界面作用特征.采用物理化学吸附仪分析泥沙颗粒的表面形貌特征,实验结果揭示干净态泥沙表面孔隙结构丰富,表面形貌较原状沙复杂.铜离子吸附实验结果给出干净态泥沙与原状沙的最大饱和吸附量分别为0.854与4.525 g/kg,吸附/解吸速率分别为1.511与5.652,表明了原状沙界面作用能力高于干净沙.水环境变化造成污染物在泥沙颗粒表面的吸附与聚集,改变了泥沙颗粒的表面形貌特征,而生物膜与腐殖质的存在增强了泥沙颗粒的界面作用能力,界面作用特征由物理吸附作用转变为化学吸附作用.【期刊名称】《中山大学学报(自然科学版)》【年(卷),期】2011(050)004【总页数】5页(P139-143)【关键词】泥沙颗粒;界面作用;表面孔隙;铜离子【作者】李秀英;陈志和;孔萌;吕超寅【作者单位】中山大学水资源与环境研究中心,广东广州,510275;中山大学水资源与环境研究中心,广东广州,510275;中山大学水资源与环境研究中心,广东广州,510275;浙江省水文局,浙江杭州310009;珠海市斗门区堤围管理中心,广东珠海519100【正文语种】中文【中图分类】TV141随着工业、农业和社会生活的发展,大量的废污水直接进入河道中,使水体环境发生了很大的改变。

土壤中水溶性有机质及其对重金属化学与生物行为的影响

土壤中水溶性有机质及其对重金属化学与生物行为的影响

, ) 来衡量& 一般土壤来源不同, B > C D @ E> F : 7 6 G G : F K > 7 ’ ( R ’ ( R 8 含量也不同& 但是地 ’ () 仅占土壤有机碳总量的很小部分, 表水和地下水中溶解性有机质的重要来源, 在土壤中充当难
( ) !国家重点基础研究发展规划资助项目 $ # # $ R V + " # # + & !!通讯联系人& $ # # ! * " " * # +接受& $ # # ! * # + * " #收稿,
万方数据 近年来已成为国际上研究热点, 但其机理尚不清楚; 国内目
2 3 H #






2 4卷
溶性污染物的配位体或结合载体, 使污染物的水溶性和迁移
[ , , ] ! " " # # " 性提高 $
溶解能力受电荷密度的影响, 而电荷密度主要受 * / 的影
[5 ] 响$ 的研究结果表明, ( ) ) + D D E# / 值每增加3 F 4个 * * ,和 ; *
[ ] " 提的有机质 其操作定义为: 用水提取, 可以通过 # & Y + ." H [ ] " 滤膜的有机质组成 一般认为, 秸秆和腐殖质是土壤 & ’ ()
5 引

有机质对重金属影响的研究由来已久, 以往更侧重于研 究酸或碱可溶的 U 对水溶解态 2、 W 2 与重金属的相互作用,
[ ] , 有机物质与重金属化学行为关系的研究十分有限 近年 &
0 & . / !、 # 等$ 对天然水体和土壤中有机物的研究, 过去主要集中在腐

鄱阳湖沉积物中磷吸附释放特性及影响因素研究

鄱阳湖沉积物中磷吸附释放特性及影响因素研究徐进;徐力刚;龚然;丁克强【摘要】沉积物是氮磷营养盐的主要蓄积库,它不仅是外来污染物的归宿地,同时其自身营养盐的释放也可对水环境产生重大影响。

针对鄱阳湖存在的沉积物磷释放问题,关键环境因子对基质磷吸附的影响规律进行了探讨。

通过控制在不同环境因素条件下,上覆水中磷的变化规律探讨,阐明磷在上覆水-底泥界面迁移转化的规律和环境因素对迁移转化过程的影响。

研究结果表明,吸附初始阶段,两者含量相差较大,起始吸附速率很高;随着反应时间的推进,两者含量差随之减小;当吸附时间达到30 min时,此时上覆水的平衡质量浓度为8.648 mg·L-1,两者含量达成平衡。

由磷的吸附等温试验同样可看出,随着平衡质量浓度逐渐增加,土壤吸磷量刚开始增加较快,随后增加趋势逐渐减缓直至磷饱和。

pH越小,上覆水质量浓度越低,沉积物对磷的吸附作用越强;pH越大,上覆水中TP质量浓度越大,强碱条件下,TP吸收量剧减。

在好氧条件下,沉积物对磷的吸附远远高于厌氧条件下沉积物的吸附。

好氧条件下,反应在4 h内,沉积物对磷的吸附速率最高,随后吸附量很小直至逐渐饱和。

厌氧条件下,吸附作用不明显;当反应时间达到24 h后,上覆水磷质量浓度保持不变,此时沉积物磷吸附达到饱和。

高溶解氧水平对于控制底泥向上覆水体释放磷,维持水体较低总磷是必要的。

温度为30℃,20℃和5℃3种条件下,当反应24 h后,三者均达到吸附平衡。

因此,当上覆水的磷质量浓度较低时,高温条件下基质的磷释放速度会高于低温条件下的磷释放速度。

研究结果旨在为正确认识、合理评估环境因素对湖泊水体磷的影响提供更为充分恰当的试验依据和理论解释。

%Sediment is the main accumulation library, which is the gathering place for external contaminants. Nutrients release also exists in lake sediment, which has a significant impact on the lakewater environment. In this paper, the influence factors on phosphorus absorption and release in Poyang lake sediment is investigated. Under different environmental conditions, the variation of phosphorus concentrations of the overlying water is analyzed; the phosphorus transformation processes and its influence factors in the interface of overlying water and sediment are discussed. The results showed that phosphorus concentrations have a large difference between soil and water overlying and the initial adsorption rate was high during the initial stages of experiment. As the adsorption continues, the concentration difference between soil and overlying water decreased. When the adsorption time reached 30min, adsorption-desorption equilibrium completed and the equilibrium concentration of phosphorus of the overlying water was 8.648 mg·L-1. As it also can be seen from phosphorus adsorption isotherm, while the equilibrium concentration gradual increase, phosphorus uptake of soil increased rapidly firs and then slow until reaching phosphorus saturation. And the lower pH and the concentration of the overlying water, the stronger phosphorus adsorption in sediments. The conclusion has been come to on the contrary when pH was relatively large. Phosphorus adsorption in sediment under aerobic condition was much higher than under anaerobic condition. Adsorption rate was highest within 4hours under aerobic condition. Then adsorption capacity is very small until gradually saturated. Phosphorus adsorption was not prominent under anaerobic condition. When the experiment has carried on for 24 h, phosphorus concentration of overlying water remained constant andPhosphorus adsorption in sediment was saturated. It was necessary for high concentrations of dissolved oxygen in controlling the phosphorus release from sediment to overlying water and maintaining low concentrations of phosphorus in water. When the temperature was 5, 20 and 30℃, respecti vely, adsorption equilibrium has finished when the experiment has carried on for 24 h. Sediment phosphorus release rate under high temperature condition was higher than that under low temperature condition when phosphorus concentration of overlying water was low. The results can provide a reasonable assessment and theoretical interpretation of environment factors affecting phosphorus of lake water.【期刊名称】《生态环境学报》【年(卷),期】2014(000)004【总页数】6页(P630-635)【关键词】沉积物;磷;吸附;释放;鄱阳湖【作者】徐进;徐力刚;龚然;丁克强【作者单位】南京工程学院环境工程学院,江苏南京 211167; 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,江苏南京210008;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,江苏南京210008;南京工程学院环境工程学院,江苏南京 211167;南京工程学院环境工程学院,江苏南京 211167【正文语种】中文【中图分类】X82沉积物是水体中营养物质最大的源和库(Perkins和Underwood, 2001; House和Denison,2000; Welch和Cooke, 1999)。

法兰尼净水器各级滤芯功能参数

法兰尼净水器各级滤芯功能说明FLN 聚丙烯熔喷滤芯(PP 棉) 过滤精度5微米1微米性能特点过滤精度高,流量大,结构均匀,纳污量大,使用寿命长;有良好的化学相容性,不含有保湿剂、抗静电剂以及粘结剂等任何有害物质,符合FDA 食品饮料的要求适用PH 值 1-13 最大压差 正向0.4Mpa 工作温度0.25Mpa ,<70℃过滤功能可截留孔径1-5微米以上的杂质,有效阻拦水中的铁锈、泥沙、虫卵、水藻等物质更换周期3-6个月FLN Polypropylene meltblown filter (PP cotton )Filtering accuracy 5 micron1 micronFeaturesHigh filtration precision, flow, uniform structure, pollutant carrying capacity, long life; has good chemical compatibility, does not contain moisturizing agents, antistatic agents, and binders and any other harmful substances, comply with FDA requirements for food and beveragePH value applicable 1-13The maximum pressuredifference Forward 0.4MpaOperating Temperature0.25Mpa ,<70℃Filtering 1-5 micron pore size can be trapped impurities, effectively blockingthe water rust, sediment, eggs, algae and other substancesDuration3-6months滤芯名称功能/参数滤芯名称功能/参数FLN 前置椰壳活性炭滤芯(Carbon )性能特点椰壳活性炭以优质椰子壳为原料,经系列生产工艺精加工而成。

给政府关于水污染的英语作文

给政府关于水污染的英语作文Possible essay:Water Pollution and Government ActionWater is essential for life, but pollution threatens its quality and availability. In many parts of the world, water pollution is a serious and growing problem that affects not only human health but also ecosystems and economies. To address this issue, governments have a crucial role to play in preventing, controlling, and mitigating water pollution. In this essay, I will discuss the causes and effects of water pollution, the challenges and opportunities for government action, and the strategies and policies that can be adopted to improve water quality and sustainability.Causes and Effects of Water PollutionWater pollution is caused by various sources and typesof contaminants, such as chemicals, microorganisms, nutrients, sediment, and trash. Some of the common sources of water pollution include industrial discharges, agricultural runoff, sewage and wastewater treatment, oil spills, mining activities, and plastic waste. Thesecontaminants can harm aquatic life, degrade water quality, and endanger human health. For example, high levels of nutrients like nitrogen and phosphorus can cause eutrophication, which leads to oxygen depletion, algal blooms, and fish kills. Chemicals like lead, mercury, and pesticides can accumulate in food chains and cause neurological, developmental, and reproductive disorders. Microorganisms like bacteria, viruses, and protozoa can cause waterborne diseases like cholera, hepatitis, and diarrhea.The effects of water pollution are not limited to aquatic ecosystems but also affect terrestrial ecosystems and human societies. Water pollution can reduce biodiversity, alter habitats, and disrupt ecological processes. It can also reduce the availability and quality of water resources for drinking, irrigation, and industrial uses. Water pollution can also harm tourism and recreation industries, as well as fisheries and aquaculture. Moreover, water pollution can cause public health problems,especially for vulnerable populations like children, pregnant women, and low-income communities. The social and economic costs of water pollution can be substantial, andthe benefits of preventing and reducing water pollution can be significant.Challenges and Opportunities for Government ActionGovernments face various challenges and opportunities in addressing water pollution. One of the main challenges is the complexity and diversity of water pollution sources, types, and impacts. Water pollution is often a transboundary and multisectoral issue that requires cooperation and coordination among different stakeholders and levels of government. Another challenge is the lack of sufficient data, information, and monitoring systems to assess and manage water quality and pollution. Many countries and regions lack the capacity and resources to enforce and implement water pollution regulations and standards. Moreover, water pollution is often linked to broader environmental and social problems, such as climate change, land use, and poverty, which require integrated and holistic approaches.However, governments also have various opportunities to address water pollution and promote water quality and sustainability. For example, governments can develop andenforce water pollution regulations and standards that are based on scientific evidence and public participation. Governments can also invest in research, monitoring, and data collection to improve the understanding and management of water pollution. Governments can promote public awareness and education about water pollution and its impacts, as well as encourage voluntary actions and partnerships among stakeholders. Governments can also provide financial and technical support to help communities and industries adopt clean and green technologies and practices, as well as promote circular economy and waste reduction.Strategies and Policies for Improving Water Quality and SustainabilityTo improve water quality and sustainability, governments can adopt various strategies and policies that are tailored to their specific contexts and priorities. Some of the examples include:1. Water pollution prevention and control: Governments can adopt a pollution prevention approach that focuses on reducing or eliminating pollution sources before they enterwater bodies. Governments can also adopt a pollutioncontrol approach that aims to treat or remove pollutants from wastewater and stormwater before they are discharged into water bodies. This can involve the use of various technologies and practices, such as biological treatment, filtration, disinfection, and reuse.2. Integrated water resources management: Governmentscan adopt an integrated approach to water resources management that considers the interlinkages and trade-offs among different water uses and users, as well as theimpacts of water pollution and degradation on water quality and availability. This can involve the development of water allocation plans, water quality objectives, and ecosystem-based management strategies that involve stakeholders and reflect local needs and values.3. Green infrastructure and nature-based solutions: Governments can promote the use of green infrastructure and nature-based solutions that mimic natural processes and enhance the resilience and adaptability of water systems. This can involve the restoration and protection of wetlands, forests, and other natural habitats that provide ecosystemservices and reduce water pollution. This can also involve the use of green roofs, rain gardens, and other urban green spaces that capture and filter stormwater.4. Circular economy and waste reduction: Governments can promote the transition to a circular economy that minimizes waste and maximizes resource efficiency. This can involve the adoption of policies and incentives that promote waste reduction, reuse, and recycling, as well as the development of markets and industries that support circularity and innovation. This can also involve the promotion of sustainable production and consumption patterns that reduce the demand for water and energy.ConclusionWater pollution is a complex and urgent problem that requires government action and public participation. By adopting effective strategies and policies, governments can prevent, control, and mitigate water pollution, and promote water quality and sustainability. However, achieving these goals requires political will, technical capacity, and social awareness, as well as collaboration and partnership among different stakeholders and levels of government. Byworking together, we can ensure that water remains a source of life, health, and prosperity for all.。

氨氮与磷在三种人工湿地填料上的吸附动力学

氨氮与磷在三种人工湿地填料上的吸附动力学莫文锐;黄建洪;田森林;武炳君;易皓【摘要】利用吸附动力学实验研究了浮石、陶结和陶粒对氨氮和磷的吸附动力学特征.结果表明:浮石对氨氮与磷的吸附容量明显比陶结和陶粒的大.人工湿地填料浮石和陶粒对氨氮与磷,以及陶结对氨氮的等温吸附动力学特征均可以用准一级、准二级和Bangham模型加以描述.其中浮石对氨氮和磷以及陶结对氨氮的吸附以化学吸附反应控制为主,而陶粒对磷的吸附过程则以扩散反应控制为主.三种填料对氨氮和磷的吸附均以表面吸附为主.%The adsorption characteristics of ammonium nitrogen (NH4+-N) and phosphorus (P) on artificial wetland fillers pumice, lightweight ceramic pellet, and haydite were studied based on adsorption kinetics experiment. Results show that pumice has much higher adsorption capacity to NH+4-N and P than lightweight ceramic pellet and haydite. Pseudo first order model, pseudo second order model and Bangham formula can be used to describe the absorption kinetics of NH4+-N and P on the three kinds of artificial wetland filers. Particularly, the adsorption of NH4+-N and P by pumice and the adsorption of NH4+-N by lightweight ceramic pellet are dominated by chemical adsorption, yet the adsorption of P by haydite is controlled by diffusion effect. Moreover, the adsorption of NH4+-N and P on the three kinds of artificial wetland fillers is all dominated by surface adsorption.【期刊名称】《化学研究》【年(卷),期】2012(023)001【总页数】3页(P21-23)【关键词】湿地;填料;氨氮;磷;吸附;动力学【作者】莫文锐;黄建洪;田森林;武炳君;易皓【作者单位】昆明理工大学环境科学与工程学院,云南昆明650500;环境保护部华南环境科学研究所,广东广州510655;昆明理工大学环境科学与工程学院,云南昆明650500;环境保护部华南环境科学研究所,广东广州510655;昆明理工大学环境科学与工程学院,云南昆明650500;兰州交通大学环境与市政工程学院,甘肃兰州730070;环境保护部华南环境科学研究所,广东广州510655【正文语种】中文【中图分类】X703氨氮与磷皆为造成水体富营养化的主要污染物[1-2].填料是人工湿地这种污水处理系统的重要组分,其吸附作用可大幅提高湿地处理效果.大规模处理污水的人工湿地出于实际应用的经济性考虑,一般都不采用改性材料作为填料,而充分利用当地自然资源,选择合适的填料[3-5],对人工湿地低耗而有效地去除污水中营养物质具有现实意义.目前鲜见关于天然浮石和陶结作为湿地填料并吸附污水中氨氮与磷的相关研究,作者选择了云南当地廉价易得的天然浮石、陶结与陶粒这三种多孔矿物质类吸附材料作为研究对象,研究其对氨氮与磷的吸附动力学特征,以期为湿地填料的选择及工业化应用提供理论依据.天然浮石取自云南腾冲火山石加工石厂,陶结与陶粒则取自云南环保陶粒厂,均经破碎过筛而得到粒径为8~12μm的实验填料颗粒,颗粒在阳光下晾晒一天后装瓶备用.SEM-EDS分析得到供试填料的表面主要元素的质量分数如表1所示.将500mL一定浓度的自配水样置于1 000mL具塞锥形瓶(也可是容量瓶或烧杯)中,加入一定粒径的填料25g,在25℃下以200r·min-1的转速分别振荡10、20、40、60、80、100、120、140、160、180min后用注射器抽取一定体积水样并通过滤膜过滤后测定其污染物含量并据此计算不同吸附时间的填料对污染物的吸附量.吸附量的计算如式(1)所示:式中,qt为t时的吸附量(mg·kg-1);ρ0与ρt分别为初始及t时溶液中污染物的质量浓度(mg·L-1);V 是溶液体积(L);m为填料质量(kg).氨氮与磷分别用纳氏试剂法(GB 7479-1987)和钼酸铵分光光度法(GB 11893-1989)测定.图1是填料吸附量qt随时间t变化的曲线.图1显示,浮石对氨氮与磷的吸附容量明显大于陶结和陶粒.浮石和陶粒对氨氮与磷以及陶结对氨氮的吸附量在吸附初期会随时间快速上升,到了后期吸附速率会放缓,直至缓慢达到吸附平衡,达到平衡所需时间均不超过160min.而陶结对磷则由初期25min内的少量吸附到50min后出现解吸量大于吸附量的现象,表明其总体上会向水体释磷而无吸附效果,故不再探讨其吸磷动力学特征.污染物的等温吸附动力学特征可用准一级模型、准二级模型和Bangham公式描述,还可根据拟合出的动力学方程估算某时刻的吸附量和达到平衡吸附量所需的时间.准一级吸附动力学模型为:准二级吸附动力学模型为:Bangham吸附速度公式为:式中:qt和qe分别为t时刻和平衡时的吸附量(mg·kg-1);t为吸附时间(min);k1与k2分别为准一级和准二级吸附速率常数;n和k皆为Bangham 公式的常数.用式(2)~(4)这三种吸附动力学模型对氨氮的吸附动力学过程进行拟合,结果见表2.由表2可知,这三种模型均能较好地描述人工湿地填料对氨氮的等温吸附动力学特征,R2都达到了0.9以上.准二级动力学方程对浮石和陶结吸附氨氮的拟合较准一级动力学方程要稍好些,说明化学吸附机制对浮石和陶结吸附氨氮过程的控制要稍强于扩散机制的控制.而陶粒对氨氮的吸附过程则用准一级模型拟合得更好些,说明吸附过程以扩散机制控制为主.Bangham吸附速度公式能较好地描述三种填料对氨氮的等温吸附动力学特征,说明三种填料对氨氮的吸附以表面吸附为主[6]. 用式(2)~(4)这三种吸附动力学模型对磷的吸附动力学过程进行拟合,结果见表3.由表3可知,这三种模型均能较好地描述浮石和陶粒对磷的等温吸附动力学特征,R2都达到了0.97以上.准二级动力学方程对浮石吸附磷的拟合要好于准一级动力学方程,说明化学吸附机制对浮石吸附磷过程的控制要强于扩散机制的控制.而陶粒对磷的吸附过程则用准一级模型拟合得稍好些,说明吸附过程受扩散机制控制要稍强于受化学吸附机制控制.Bangham吸附速度公式能较好地描述浮石和陶粒对磷的等温吸附动力学特征,说明这两种填料对磷的吸附以表面吸附为主.1)浮石对氨氮与磷的吸附容量明显大于陶结和陶粒.浮石与陶粒对氨氮与磷以及陶结对氨氮的吸附在初期吸附速率较快,后期则放缓,最后均在160min内缓慢达到吸附平衡.2)准一级、准二级和Bangham模型均能较好地描述人工湿地填料浮石与陶粒对氨氮与磷、陶结对氨氮的等温吸附动力学特征.浮石吸附氨氮和磷及陶结吸附氨氮的过程均以受化学吸附机制控制为主,而陶粒吸附磷的过程以受扩散机制控制为主.三种填料对氨氮以及浮石和陶粒对磷的吸附均以表面吸附为主.【相关文献】[1]肖辉煌,张盼月,曾光明,等.沸石用于去除废水中的氨氮[J].环境保护科学,2007,33(2):7-10.[2]刘波,陈玉成,王莉玮,等.4种人工湿地填料对磷的吸附特性分析[J].环境工程学报,2010,4(1):44-48.[3]XU De Fu,XU Jian Ming,WU Jian Jun,et al.Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems[J].Chemosphere,2006,63(2):344-352.[4]BUBBA M D,ARIAS C A,BRIX H.Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm[J].Water Research,2003,37(14):3390-3400.[5]袁东海,景丽洁,高士祥,等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005,26(1):51-55.[6]王宪,钱爱红,邱海源,等.固定化海藻对金属离子吸附效果的研究[J].海洋学报,2005,27(5):126-130.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Available online at www.scienced ̄rect.com 一 ScienceDi rect 

International Journal of Sediment Research 28(2013)246-253 

IN I.ERNATIoNAL JOURNAL0F SEDIMENT 

RESEARCH 

Effects of sediment particle morphology on adsorption of phosphorus elements Hong—wei FANG ,Ming—hong CHEN ,Zhi-he CHEN ,Hui.ming ZHAO ,and Guo-jian HE 

Abstract Sediment particle surface morphology affects phosphorus adsorption.This paper studied the phosphorus adsorption on sediment particle by using a Scanning Electron Microscope(SEM)and an Energy Dispersive X—ray Spectroscopy (EDS).Sediment samples from the Yangtze,Yellow and Yongding rivers in China were chosen to measure the particle surface morphology,surface gray scale and element distribution maps.These samples were firstly cleaned and put into phosphate solution for adsorption.Both the Langmuir equation and Freundlich equation were used for descriptions of adsorption—desorption isotherms for sediments.Particles were then dried and scanned.The results show that the adsorption of phosphorus depends on the surface morphology of particles.Phosphorus exists mostly in the ridges and channels,while a few exist in the slopes.and casually in the peaks,passes and pits. 

Key Words:Surface morphology,Scanning electron microscope,Adsorption,Element distribution 

1 Introduction Sediment particle surface morphology plays an important role on sediment transport research(Graf,1 97 1:Yalin.1 977; Chien and Wan.1 999).Despite the numerous experimental results concerning physico—chemical processes on the surfaces offine sediment particles and nano.particles,especially for adsorption(Gupta et a1.,2001:Liu et a1.,2008),our understanding of the surface Physico.chemical processes still relies on the traditional double elec仃ic layer and adsorbed water film analysis.In the previous study,the sediment particles were analyzed as a ball and the particle surface morphology was Iargely unknown(Reiner and Radke,1 993:Mohan and Singh.2002). As pointed out by Krinsley and Doornkamp(1973)and Vilks and Wang(19811,almost all the sediment particles studied have a rather irregular outline and show primary glacial features.These features include not only relict conchoida1 fractures and dish.shaped concavities but also 1ess frequently paralle1 steps or striac.Because of long distance transport,many exposed particle surfaces have current markings,particularly mechanical V-marks, superimposed on the glacial features.Furthermore.angular edges have been rounded due to mechanica1 abrasion.In addition,surface solution and silica coating OCCur during surface physico—chemical processes,thus producing pits,pores and deposits.A1l these features have a strong impact on the interface actions on sediment surfaces.including physical action,chemical action and biofilm growing on the surface.This Paper focused on the adsorption and desorption action and element distribution on the sediment surface influenced by sediment surface morphology.The development of observation devices made it possible to figure out the mechanica1 process of adsorption and desorption directly.The mathematic statistics method was then applied to analyze the static results Of adsorption and attempt to determine rules for these complex physico—chemical processes. 

2 Research methods A super high resolution Field Emission Gun Scanning Electron Microscope(¥5500)was used for investigating particle surface texture.This system scans an electron beam across the sediment particle line by line,collecting the electrons emitted from the particle(Buzio et a1.,2003;Athene,2003;Gillies and Prestidge,2004).The highest resolution of this 

Prof.,Department ofHydraulic Engineering,the State Key Laboratory ofHydro Science and Engineering,Tsinghua University, Beijing 100084,China Assoc.,Prof.,College ofWater Resources and Civil Engineering,China Agricultural University,Beijing 100083,China; Corresponding author,E—mail:chenminghong@cau.edu.on;Tel:+86 10 62738486 Instructor,Department of Water Resources and Environment,Sun Yat—sen University,Guangzhou 5 1 0275,China Ph.D.,Department ofHydraulic Engineering,the State Key Laboratory ofHydro Science and Engineering,Tsinghua University, Beijing 100084,China Assoc.Prof.,Depa ̄ment ofHydraulic Engineering,the State Key Laboratory ofHydro Science and Engineering,Tsinghua University,Beijing 100084,China Note:The original manuscript ofthis paper was received in Jan.201 1.The revised version was received in Sept.2012.Discussion 

相关文档
最新文档