2009年宁波市中考数学试题及解析
盘点出现在中考数学填空_选择_题_省略_照射下利用影长求物体高度问题为例_徐骏

18), 则
EF=DE+DF =4.4
+0.2
=4.6,
由
AF EF
=01.4,
即
AB-0.3 4.6
=01.4, 可得
AB=11.8(米 ).
作者简介 徐骏 , 男 , 1978年 12月生 , 浙江上虞人 , 中学 一级教师 , 主要从事 课堂有效 教学研究和 解题教 学研究 .有 多篇论文 (案例 )获市一 等奖 , 在省 级以上 专业 期刊 发表论 文 30余篇 .
量树的高度 .在阳光下 , 一名同学测得一根长为 1米的竹
竿的影长为 0.4米 , 同时另一名同学测量树的高度时 , 发
现树的影子不全落在地面上 , 有一部分落在教学楼的第一
图 17 图 18
分析 影子既有在地上部分 , 又有在台阶踢面上的 ,
还有在台阶踏面上的 .过点 D作 DF⊥ AB于点 F(如图
华站在沿 DE方向的坡脚下 , 影子在平地上 , 两人的影长
分别为 4m与 2m,那么 , 塔高 AB =
m.
杆的影长为 2米 ,则电线杆的高度为
米.
图 5 图 6 图 7
分析 可用两种方法解答此题 : 法 1 过点 D作 DF⊥ CD交 AE于点 F, 过点 F作 FG
⊥ AB于点
初看此题 , 貌似平凡 , 甚至平庸 , 然细细品味 , 才
觉它有深藏不露的 “精彩 ”.首先 , 一道看似平凡的
题目 , 却考查了 “直径所对的圆周角是直角 ” 、“同弧
上的圆周角相等 ”、“圆的切线及其性质 ” 等等几乎
课标要求的所有与圆相关的知识点 ;第二 , 在考查圆
的基础上 , 巧妙地与勾股定理 、三角形中位线 、相似
最新2009年中考数学复习教材回归知识讲解+例题解析+强化训练(二次函数与方程(组)或不等式)文档

最新2009年中考数学复习教材回归知识讲解+例题解析+强化训练(二次函数与方程(组)或不等式)文档2009年中考数学复习教材回归知识讲解+例题解析+强化训练二次函数与方程(组)或不等式◆知识讲解(1)最大值或最小值的求法第一步确定a的符号:a>0有最小值,a<0有最大值;第二步求顶点,•顶点的纵坐标即为对应的最大值或最小值.(2)y轴与抛物线y=ax2+bx+c的交点为(0,c).(3)与y轴平行的直线x=h与抛物线y=ax2+bx+c有且只有一个交点(h,ah2+bh+c).(4)抛物线与x轴的交点.二次函数y=ax2+bx+c的图像与x轴的两个交点的横坐标x1,x2是对应的一元二次方程ax2+bx+c=0的两个实数根.抛物线与x•轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔△>0⇔抛物线与x轴相交.②有一个交点(顶点在x轴上)⇔△=0⇔抛物线与x轴相切;③没有交点⇔△<0⇔抛物线与x轴相离.(5)平行于x轴的直线与抛物线的交点.同(4)一样可能有0个交点,1个交点,2个交点.当有2个交点时,•两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2+bx+c=k 的两个实数根.(6)一次函数y=kx+n (k≠0)的图像L 与二次函数y=ax 2+bx+c (a≠0)的图像G 的交点,由方程组2y kx n y ax bx c =+⎧⎨=++⎩的解的数目确定:①当方程组有两组不同的解时⇔L 与G 有两个交点;②方程组只有一组解时⇔L 与G 只有一个交点;③方程组无解时⇔L 与G 没有交点.(7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x 轴的交点,•再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分.◆例题解析例1 如图所示,已知抛物线y=-12x 2+(5)x+m -3与x 轴有两个交点A ,B ,点A•在x 轴的正半轴上,点B 在x 轴的负半轴上,且OA=OB .(1)求m 的值;(2)求抛物线的解析式,并写出抛物线的对称轴和顶点C 的坐标;(3)问在抛物线上是否存在一点M ,△MAC•≌△OAC ,若存在,求出点M 的坐标;若不存在,请说明理由.【分析】抛物线与x 轴交于A ,B 两点,OA=OB ,故A ,B 两点关于y 轴对称,就可求得m 的值,由抛物线交y 轴的正半轴,得m 的确定值.【解答】(1)∵抛物线与y 轴交于正半轴,且OA=OB .∴23050m a m ->⎧⎪⎨-=⎪⎩由②得m=±5,由①m>3,故m=-5应舍去.∴m=5.(2)抛物线的解析式为y=-12x 2+2,对称轴是y 轴,顶点C 的坐标为C (0,2).(3)令y=0得 -12x 2+2=0,∴x=±2. ∴A (2,0),B (-2,0),C (0,2),△OAC 是等腰直角三角形.若存在一点M ,使△MAC ≌△OAC ,∵AC 为公共边,OA=OC ,∴点M 与O 关于直线AC 对称,∴M 点的坐标为(2,2).当x=2时,-1x2+2=0≠2.2∴M(2,2)不在抛物线上,即不存在一点M,使△MAC≌△OAC.【点评】存在性问题,通常是先假定存在,若能找出具备某种条件或性质的对象,就说明存在,其叙述过程就是理由;若不存在,就需要进一步说明理由.例2 已知二次函数y=x2-(2m+4)x+m2-4(x为自变量)的图像与y轴的交点在原点下方,与x轴交于A,B两点,点A在点B的左边,且A,B两点到原点的距离AO,OB•满足3(•OB-AO)=2AO·OB,直线y=kx+k与这个二次函数图像的一个交点为P,且锐角∠POB•的正切值4.(1)求m的取值范围;(2)求这个二次函数的解析式;(3)确定直线y=kx+k的解析式.【分析】利用抛物线与x轴的交点A,B的位置及与y轴交点的位置和A,B两点到原点的距离可以求出m的值,再利用一元二次方程根与系数的关系可以求解.【解答】(1)设点A,B的坐标分别为A (x1,0),B(x2,0)(x1<x2),依题意,方程x2-(2m+4)x+m2-4=0有两个不相等的实数根.∴△=[-(2m+4)] 2-4(m2-4)>0.解得m>-2.①又∵函数的图像与y轴的交点在原点下方,∴m2-4<0,∴-2<m<2.②(2)∵图像交y轴于负半轴,与x轴交于A,B两点,且x1<x2,∴x1<0,x2>0.由3(OB-AO)=2AO·OB可得3[x2-(-x1)]=2(-x1)·x2即3(x1+x2)=-2x1x2由于x1,x2是方程x2-(2m+4)x+m2-4=0的两个根,所以x1+x2=2m+4,x1·x2=m2-4.∴3(2m+4)=-2(m2-4)整理,得m2+3m+2=0.∴m=-1或m=-2(舍去).∴二次函数的解析式为y=x2-2x-3.(3)由y=x2-2x-3,得A(-1,0),B(3,0).∵直线y=kx+k 与抛物线相交,∴由223,,y x x y kx k ⎧=-+⎨=+⎩ 解得121,0.x y =-⎧⎨=⎩ 或2223,4.x k y k k =+⎧⎨=+⎩ ∵∠POB 为锐角.∴点P 在y 轴右侧,∴点P 坐标为(k+3,k 2+4k ),且k+3>0. ∵tan ∠POB=4,∴2|4|3k k k ++=4.如图所示,当点P 在x 轴上方时.243k kk ++=4.解得k 13k 2=-3经检验,k 13,k 2=-3都是方程的解,但k 2+3<0.∴k 2=-3∴直线的解析式为33当点P 在x 轴下方时,243k kk ++=-4,解得k3=-2,k4=-6.经检验,k3=-2,k4=-6是方程的解,但k4+3<0.∴k4=-6舍去.∴y=-2x-2.,或y=∴所求直线的解析式为-2x-2.【点评】本题以求解析式为目标,综合了函数,一元二次方程根与系数的关系,三角函数等知识,综合性强,灵活性大,解题关键是认真审题,认真分析纷繁复杂的条件,从中找到解题的突破口,易错点是在第(3)小题中忽视分类讨论而失解.◆强化训练一、填空题1.与抛物线y=2x2-2x-4关于x轴对称的图像表示的函数关系式是_______.2.已知二次函数y=(a-1)x2+2ax+3a-2的图像最低点在x轴上,那么a=______,此时函数的解析式为_______.3.(2006,湖北襄樊)某涵洞的截面是抛物线型,如图1所示,在图中建立的直角坐标系中,抛物线的解析式为y=-14x2,当涵洞水面宽AB为12m时,水面到桥拱顶点O•的距离为_______m.图 1 图24.(2006,山西)甲,乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球飞行的水平距离s(m)与其距地面高度h(m)之间的关系式为h=-112s2+23s+32.如图2,已知球网AB距原点5m,乙(用线段CD表示)扣球的最大高度为94m,•设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是_______.5.若抛物线y=12x2与直线y=x+m只有一个公共点,则m的值为_____.6.设抛物线y=x2+(2a+1)x+2a+5的图像与x•4轴只有一个交点,•则a18+•323a-6•的值为_______.7.已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点,那么△OAB•的面积等于______.8.(2008,安徽)图3为二次函数y=ax2+bx+c 的图像,在下列说法中:①ab<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随着x•的增大而增大.正确的说法有_______.(请写出所有正确说法的序号)图3 图4 图5二、选择题9.(2006,绍兴)小敏在某次投篮球中,球的运动路线是抛物线y=-15x2+3.5的一部分(图4),若命中篮圈中心,则他与篮底的距离是()A.3.5m B.4m C.4.5m D.4.6m10.当m在可以取值范围内取不同的值时,代)A.0 B.5 C.3D.911.二次函数y=ax2+bx+c的图像如图5所示,则下列结论:①a>0,②c>0,•③b2-4ac>0,其中正确的个数是()A.0个B.1个C.2个D.3个12.抛物线y=x2+(2m-1)x+m2与x轴有两个交点,则m的取值范围是()A.m>14B.m>-14C.m<14D .m<-1413.根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数y 的对应值,•判断方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的一个解x 的范围是( )A .6<x<6.17B .6.17<x<6.18C .6.18<x<6.19D .6.19<x<6.2014.若二次函数y=ax 2+bx+c (a≠0)的图像的顶点在第一象限且经过点(0,1)和(•-1,0),则S=a+b+c 的值的变化范围是( )A .0<S<2B .0<S<1C .1<S<2D .-1<S<115.二次函数y=ax 2+bx+c (a≠0)的最大值是零,那么代数式│a│+244ac b a 的化简结果是( )A . aB .- aC .D .016.(2006,甘肃兰州)已知y=2x 2的图像是抛物线,若抛物线不动,把x 轴,y•轴分别向上,向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2+2 B.y=2(x+2)2-2C.y=2(x-2)2-2 D.y=2(x+2)2+2三、解答题17.(2006,吉林省)如图,三孔桥横截面的三个孔都呈抛物线形,•两小孔形状,大小都相同.正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),•小孔顶点N距水面4.5m(即NC=4.5m).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.18.(2008,安徽)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y= x2+3x+1的一部分,如图所示.-35(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4m,在一次表演中,人梯到起跳点A的水平距离是4m,问这次表演是否成功?请说明理由.19.(2006,沈阳市)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,则所获利润y A(万元)与投资金额x(万元)•之间存在正比例函数关系:y A=kx,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)•之间存在二次函数关系:y B=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元时,•可获得3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A,B两种产品共投资10万元.•请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.20.(2008,烟台)如图所示,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y•轴于M 点.抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴下方的部分是否存在点N,使以A,C,M,N•为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P•关于原点的对称点Q是否在抛物线L2上,请说明理由.21.已知:二次函数y=ax2+bx+c的图像经过点A(0,4),顶点在x轴上,•且对称轴在y轴的右侧.设直线y=x与二次函数图像自左向右分别交于P(x1,y1),Q(x2,y2)两点,•且OP:PQ=1:3.(1)求二次函数的解析式;(2)求△PAQ的面积;(3)在线段PQ上是否存在一点D,使△APD≌△QPA,若存在,求出点D坐标,•若不存在,说明理由.22.(2005,武汉市)已知二次函数y=ax2-ax+m 的图像交x轴于A(x1,0),B(x2,0)两点,x1<x2,交y轴的负半轴于C点,且AB=3,tan∠BAC-tan∠ABC=1.(1)求此二次函数的解析式;(2)在第一象限,抛物线上是否存在点P,使S△PAC=6?若存在,请你求出点P的坐标;• 若不存在,请你说明理由.答案:1.y=-2x2+2x+4 2.2;y=x2+4x+4 3.9 4.5.-126.5796 7.6 8.①②④9.B 10.B 11.C12.C 13.C 14.A 15.B 16.B 17.设抛物线解析式为y=ax2+6,依题意得,B(10,0).∴a×102+6=0,解得a=-0.06.即y=-0.06x2+6,当y=4.5时,-0.06x2+6=4.5,解得x=±5,∴DF=5,EF=10,即水面宽度为10m.18.(1)y=-35x2+3x+1=-35(x-52)2+194.∵-35<0,∴函数的最大值是194.答:演员弹跳离地面的最大高度是194m.(2)当x=4时,y=-35×42+3×4+1=3.4=BC,所以这次表演成功.19.(1)当x=5时,y A=2,2=5k,k=0.4.∴y A=0.4x,当x=2时,y B=2.4;当x=4时,y B =3.2.∴ 2.442,3.2164.a b a b =+⎧⎨=+⎩ 解得0.2,1.6.a b =-⎧⎨=⎩∴y B =-0.2x 2+1.6x .(2)设投资B 种商品x 万元,则投资A 种商品(10-x )万元,获得利润W 万元,根据题意可得W=-0.2x 2+1.6x+0.4(10-x )=-0.2x 2+1.2x+4.∴W=-0.2(x -3)2+5.8.当投资B 种商品3万元时,可以获得最大利润5.8万元.所以投资A 种商品7万元,B 种商品3万元,这样投资可以获得最大利润5.8万元.20.(1)令y=0时,得-x 2-2x+3=0,∴x 1=-3,x 2=1,∴A (-3,0),B (1,0). ∵抛物线L 1向右平移2个单位长度得抛物线L 2,∴C (-1,0),D (3,0).∴抛物线L 2为y=-(x+1)(x -3). 即y=-x 2+2x+3.(2)存在.如图所示.令x=0,得y=3,∴M(0,3).∵抛物线L2是L1向右平移2个单位长度得到的,∴点N(2,3)在L2上,且MN=2,MN∥AC.又∵AC=2,∴MN=AC.∴四边形ACNM为平行四边形.同理,L1上的点N′(-2,3)满足N′M∥AC,N′M=AC,∴四边形ACMN′是平行四边形.∴N(2,3),N′(-2,3)即为所求.(3)设P(x1,y1)是L1上任意一点(y1≠0),则点P关于原点的对称点Q(-x1,-y1),且y1=-x12-2x1+3,将点Q的横坐标代入L2,得y Q=-x12-2x1+3=y1≠-y1.∴点Q不在抛物线L2上.21.(1)抛物线过(0,4)点.∴c=4,∴y=ax 2+bx+4又OP :PQ=1:3,∴x 1:x 2=1:4由24y x y ax bx =⎧⎨=++⎩得ax 2+(b -1)x+4=0,∵x 1,x 2是该方程的两个根,∴x 1+x 2=-1ba -,x 1·x 2=4a .消去x 1得25a=(b -1)2.∵抛物线的对称轴在y 轴右侧∴-2b a >0,∴b a<0,又抛物线的顶点在x 轴上, ∴b 2=16a 得a=1,b=-4(b=49舍去).∴y=x 2-4x+4.(2)如图所示,S △PAQ =S △AQO -S △APO=12×4×x 2-12×4×x 1=2(x 2-x 1)22112()4x x x x +-2116()b a a---9. (3)存在点D ,设D (m ,n )易得P (1,1),Q (4,4),由△APD∽△QPA得PA2=PQ·PD,运用勾股定理得│m-1│=53,得m=83或23.∵1<m<4,∴D(83,83).22.(1)∵AB=3,x1<x2,∵x2-x1=3.由根与系数的关系有x1+x2=1,∴x1=-1,x2=2.∴OA=1,OB=2,x1·x2=ma=-2.∵tan∠BAC-tan∠ABC=1,∴=1,∴OC=2∴m=-2,a=1.∴此二次函数的解析式为y=x2-x-2.(2)在第一象限,抛物线上存在一点P使S△APC=6.解法一:过点P作直线MN∥AC交x轴于点M,交y轴于点N,连接PA,PC,MC,NA,如图所示.∵MN∥AC,∴S △MAC =S △NAC =S △PAC =6.由(1)有OA=1,OC=2∴12×AM×2=12×CN×1=6, ∴AM=6,CN=12.∴M (5,0),N (0,10).∴直线MN 的解析式为y=-2x+10.由2210,2.y x y x x =-+⎧⎨=--⎩ 得12123,4,4.18.x x y y ==-⎧⎧⎨⎨==⎩⎩(舍去). ∴在第一象限,抛物线上存在点P (3,4),使S △PAC =6.解法二:设AP 与y (0,n )(n>0).∴直线AP 的解析式为y=nx+n .22,.y x x y nx n ⎧=--⎨=+⎩∴x 2-(n+1)x -n -2=0,∴x A +x P =n+1,∴x P =n+2.又S △PAC =S △ADC +S △PDC =12CD·AO+12CD·x p =12CD (AO+x p ). ∴12(n+2)(1+n+2)=6,n 2+5n -6=0. ∴n=-6(舍去)或n=1.∴在第一象限,抛物线上存在点P(3,4),使S△PAC =6.。
2009年中考数学保送生招生试卷及答案(浙江省余姚)

余姚中学2009年4月保送生选拔卷(数学)(本卷满分:120分,时间:90分钟)一、选择题(每小题5分、共40分)1、如果多项式200842222++++=b a b a p ,则p 的最小值是( ) (A) 2005 (B) 2006 (C) 2007 (D) 2008 2、菱形的两条对角线之和为L,面积为S,则它的边长为( ). (A)2124L S - (B)2124L S + (C)21S L 42- (D)21S L 42+3、方程1)1(32=-++x x x 的所有整数解的个数是( )(A )5个 (B )4个 (C )3个 (D )2个 4、已知梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于O ,△AOD 的面积为4, △BOC 的面积为9,则梯形ABCD 的面积为( )(A )21 (B )22 (C )25 (D )26 5、方程|xy |+|x+y|=1的整数解的组数为( )。
(A )8 (B) 6 (C) 4 (D) 2 6、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。
其中准确的说法是( )(A) ①② (B) ①③ (C) ②④ (D )③④7、一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°)。
被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为 ( )(A) 7 2° (B )108°或14 4° (C )144° (D ) 7 2°或144°8、如图,已知圆心为A 、B 、C 的三个圆彼此相切,且均与直线l 相切.若⊙A、⊙B、⊙C 的半径分别为a 、b 、c(0<c<a<b),则a 、b 、c 一定满足的关系式为 ( ) (A )2b=a+c (B )=b c a +(C )b ac 111+= (D)ba c 111+=二、填空题(每小题5分,共30分)9、已知a ﹑b 为正整数,a=b-2005,若关于x 方程x 2-ax+b=0有正整数解,则a 的最小值是________.10、如图,在△ABC 中,AB=AC, AD ⊥BC, CG ∥AB, BG 分别交AD,AC 于E,F.若b a BE EF =,那么BEGE等于 . ABCGF ED11、已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x1,0),且1<x1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1.其中准确的结论是_____________.(填写序号)12、如图,⊙O 的直径AB 与弦EF 相交于点P ,交角为45°, 若22PF PE +=8,则AB 等于 .13、某商铺专营A ,B 两种商品,试销一段时间,总结得到经营利润y 与投人资金x(万元)的经验公式分别是yA=x 71,yB=x 73。
浙江省宁波市中考数学试题分类解析 专题12 押轴题

宁波市2002-2013年中考数学试题分类解析专题12 押轴题一、选择题1. (2002年浙江宁波3分)如图,有一住宅小区呈四边形ABCD,周长为2000 m,现规划沿小区周围铺上宽为3m的草坪,则草坪的面积是(精确至lm2)【】2. (2003年浙江宁波3分)如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,AB=CD=EF=GH=1cm,BC=DE=FG=HA=2cm,则这个八边形的面积等于【】【分析】如图,延长AB、DC交于M点,延长CD、FE交于N点,延长EF、HG交于P点,延长GH、BA交于Q点,则MNPQ是正方形,△BCM、△DEN、△FGP、△AHQ均为等腰直角三角形∴这个八边形的面积等于=矩形面积-4个小三角形的面积13341172=⨯-⨯⨯⨯=。
故选A。
3. (2003年浙江宁波3分)如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,AB=CD=EF=GH=1cm,BC=DE=FG=HA=2cm,则这个八边形的面积等于【】4. (2005年浙江宁波3分)一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色的概率是【】A. 12B.13C.14D.16【答案】D。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,设4个珠子分别为红1,红2,蓝1,蓝2,从这个袋中任取2个珠子的所有情况有(红1,红2),(红1,蓝1),(红1,蓝2),(红2,蓝1),(红2,蓝2),(蓝1,蓝2)6种,都是蓝色的情况为1种,∴从这个袋中任取2个珠子,都是蓝色的概率是16。
故选D。
5. (2006年浙江宁波大纲卷3分)已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是【】6. (2006年浙江宁波课标卷3分)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=5,将腰DC绕点D逆时针方向旋转90°至DE,连接AE,则△ADE的面积是【】A.1 B.2 C.3 D.47. (2007年浙江宁波3分)如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光 的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别 为2m 和1m ,那么塔高AB 为【 】【答案】A 。
【VIP专享】最新2009年中考数学复习教材回归知识讲解+例题解析+强化训练(平面直角坐标系)文档

xA yA
例 1 已知点 A(a,-5),B(8,b)根据下列要求,确定 a,b 的值.
(1)A,B 两点关于 y 轴对称;(2)A,B 两点关于原点对称;
(3)AB∥x 轴;(4)A,(1)两点关于 y 轴对称时,它们的横坐标互为相反数,而纵坐标相同;
(0,6),(-8,0),求 Rt△ABO 的内心的坐标.
a b
【分析】本题考查勾股定理,直角三角形内心的概念,运用内心到两坐标轴的距离,
2009 年中考数学复习教材回归知识讲解+例题解析+强化训练
平面直角坐标系
◆知识讲解 ①坐标平面内的点与有序实数对一一对应; ②点 P(a,b)到 x 轴的距离为│b│,到 y 轴距离为│a│,到原点距离为
a2 b2 ;
③各象限内点的坐标的符号特征:P(a,b),P在第一象限 a>0 且 b>0, P 在第二象限 a<0,b>0,P 在第三象限 a<0,b<0,P 在第四象限
(2)两点关于原点对称时,两点的横纵坐标都互为相反数;
(3)两点连线平行于 x 轴时,这两点纵坐标相同(但横坐标不同);
(4)当两点位于一,三象限两坐标轴夹角的平分线上时,每个点的横纵坐标相同.
【解答】(1)当点 A(a,-5),B(8,b)关于 y 轴对称时有:
xB yB
(2)当点
ba
8 5
a>0,b<0; ④点 P(a,b):若点 P 在 x 轴上 a 为任意实数,b=0; P 在 y 轴上 a=0,b 为任意实数;P 在一,三象限坐标轴夹角平分线上 a=0; P 在二,四象限坐标轴夹角平分线上 a=-b;
⑤A(x1,y1),B(x1,y2):A,B 关于 x 轴对称 x1=x2,y1=-y2; A、B 关于的 y 轴对称 x1=-x2,y1=y2; A,B 关于原点对称 x1=-x2,y1=-y2;AB∥x 轴 y1=y2 且 x1≠x2; AB∥y 轴 x1=x2 且 y1≠y2(A,B 表示两个不同的点).
2009年中考答案中考数学试卷真题(附答案解析)

G (第23题图(1))
∴CD=20-x …………………………………5 分
A
∵ tan ACD AD ,即 tan 30 x
…6 分
M
DC
20 x
B
D
C
∴
x
20 1
tan tan
30 30
20 10 3 1
3 1 7.3 (米) …7 分
N G
(第23题图(2))
答:路灯 A 离地面的高度 AD 约是 7.3 米.
∴∠OCD=90° ………………………3 分
∴∠OCB+∠DCF=90°
∵∠D+∠DCF=90°
∴∠OCB=∠D ………………………4 分
∵OB=OC
D
∴∠OCB=∠B
∵∠B=∠AEC
∴∠D=∠AEC ………………………5 分
(3)在 Rt△OCF 中,OC=5,CF=4
A C
O F E
B (第25题图 )
…………………………2 分
所以,抛物线的关系式为 y=(x-2)2-1=x2-4 x+3 ……3 分
(2)∵点 M(x,y1),N(x+1,y2)都在该抛物线上 ∴y1-y2=(x2-4 x+3)-[(x+1)2-4(x+1)+3]=3-2 x …………4 分
当
3-2
x>0,即
x
3 2
时,y1>y2
F
E (第22题图 )
C B
23.解:(1)见参考图 ……………………………3 分
A
(不用尺规作图,一律不给分。对图(1)画出弧 EF 给 1 分,
画出交点 G 给 1 分,连 AG 给 1 分;对图(2),画出弧 AMG
D
给 1 分,画出弧 ANG 给 1 分,连 AG 给 1 分)
009年中考数学综合题分类讲解答案
2009综合题分类讲解答案例1、解:⑴由题意可设抛物线的解析式为1)2x (a y 2+-= ∵抛物线过原点, ∴1)20(a 02+-= ∴41a -=. 抛物线的解析式为1)2x (41y 2+--=,即x x 41y 2+-= ⑵如图1,当OB 为边即四边形OCDB 是平行四边形时,CD ∥=OB,由1)2x (4102+--=得4x ,0x 21==,∴B(4,0),OB =4. ∴D 点的横坐标为6将x =6代入1)2x (41y 2+--=,得y =-3,∴D(6,-3);根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,的坐标为(-2,-3),当OB 为对角线即四边形OCBD 是平行四边形时,D 点即为A 点,此时D 点的坐标为(2,1) ⑶如图2,由抛物线的对称性可知:AO =AB,∠AOB =∠ABO. 若△BOP 与△AOB 相似,必须有∠POB =∠BOA =∠BPO 设OP 交抛物线的对称轴于A′点,显然A′(2,-1) ∴直线OP 的解析式为x 21y -= 由x x 41x 212+-=-,得6x ,0x 21==.∴P(6,-3)过P 作PE ⊥x 轴,在Rt △BEP 中,BE =2,PE =3, ∴PB =13≠4.∴PB≠OB,∴∠BOP≠∠BPO, ∴△PBO 与△BAO 不相似,同理可说明在对称轴左边的抛物线上也不存在符合条件的P 点. 所以在该抛物线上不存在点P ,使得△BOP 与△AOB 相似.练习1、解:(1)由已知可得:3375040a a c ⎧=⎪⎪+=⎨⎪=⎪⎩解之得,203a b c =-==,.因而得,抛物线的解析式为:223y x x =-. (2)存在.设Q 点的坐标为()m n ,,则223n m =-, 要使,BQ PB OCP PBQ CP OC =△∽△=223m +=解之得,12m m ==.当1m =2n =,即为Q点,所以得Q要使,BQ PB OCP QBP OC CP =△∽△,则有33n -=,即223333m +=解之得,12m m ==m =时,即为P 点,当1m =3n =-,所以得3)Q -. 故存在两个Q 点使得OCP △与PBQ △相似.Q点的坐标为3)-.(3)在Rt OCP △中,因为tan CP COP OC ∠==30COP ∠=. 当Q点的坐标为时,30BPQ COP ∠=∠=. 所以90OPQ OCP B QAO ∠=∠=∠=∠=.因此,OPC PQB OPQ OAQ ,,,△△△△都是直角三角形.又在Rt OAQ △中,因为tan 3QA QOA AO ∠==.所以30QOA ∠=. 即有30POQ QOA QPB COP ∠=∠=∠=∠=. 所以OPC PQB OQP OQA △∽△∽△∽△, 又因为QP OP QA OA ,⊥⊥30POQ AOQ ∠=∠=, 所以OQA OQP △≌△.练习2解:(1)OCD △与ADE △相似。
宁波市镇海应行久外语实验学校2009年中考模拟试题 余满龙
2009年中考模拟试题(2009.3)宁波市镇海应行久外语实验学校 余满龙温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! 参考公式:二次函数y =ax 2+bx +c 的顶点坐标是)44,2(2ab ac a b --. 一、选择题(每小题3分,共36分) 1.计算3)7(-的结果是( ) A.21B.-21C.343D.-3432.下列命题中,属于真命题的是( ) A.同旁内角互补B.在三角形的内角中,至少有一个钝角C.对于方程02=++c bx ax (a ≠0),若ac b 42-≥0,则原方程必有两个实数根 D.面积相等的两个三角形全等3.如果点M 在直线1y x =-上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1)4.不等式组13x x >-⎧⎨<⎩的解集为( )A.1x >-B.3x <C.13x -<<D.无解5.下列计算错误的是( ) A.abab ab 21211=- B.228±= C.222532x x x =+ D.1)1(2009-=-6.下列图案中是轴对称图形的是( )7.烟花厂为庆祝神舟七号发射成功特别设计制作一种新型礼炮,这种礼炮的升空高度h (m )A B C D与飞行时间t (s )的关系式是120252++-=t t h ,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A.3SB.4SC.5SD.6S8.如果用□表示1个立方体,用▇表示两个立方体重叠,用▇表示三个立方体重叠,那么,如图1,是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )9.给出下列函数:①2y x =;②21y x =-+;③()20y x x=>;④()21y x x =<-.其中,y 随x 的增大而减小的函数是( )A.①②B.①③C.②④D.②③④10.如图,在梯形ABCD 中,AD ∥BC ,2AD =,8BC =,6AC =,8BD =,则此梯形的面积是( )A.24B.20C.16D.1211.如图,在ABC ∆中,点D 在AC 上,DE BC ⊥,垂足为点E ,若2AD DC =,4AB DE =,则sin B 的值是( )A.12B.3D.3412. 一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为( )x o A 4A 3A 2A 1APPPPD.C.B.A.图1第10题BEDCA第11题A.n 211-B.121-n C.1)21(+n D.n 21二、填空题(每小题3分,共18分)13.国家游泳中心-----“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260000平方米,将260000用科学记数法表示应为____________.14.如图,OAB 是以12cm 为半径的扇形,AC 切弧AB 于点A 交OB 的延长线于点C,如果弧AB 的长等于6cm,AC =8cm.则图中阴影部分的面积为___________.15.将一些钉子钉在一块木板上,使得它们在水平方向与垂直方向都相隔一个单位长度,用一条橡皮圈套在如图所示的四个钉子上形成一个四边形,则该四边形的面积是________个长度单位平方. 16.函数112-+=x x y 中,自变量x 的取值范围是 17.如图,已知∠AOB =30°,OM =4cm,以M 为圆心画圆,当⊙M 的半径r 满足_______时, ⊙M 与射线OA 只有一个公共点.18.下列是三种化合物的结构及分子式,请按其规律,写出后一种化合物的分子式 .第18题C第14题第15题第17题M OBA∙三、解答题(共66分)19.(6分)计算:︒⋅--+-÷+60tan 3)232009()2(16)31(03220.(6分)如图,直线l 经过点A (3,-2),B (0,1),将该直线向左平移3个单位得到直线l '.(1)在图中画出直线l '的图象. (2)求直线l '的解析式.21.(6分)“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中甲医生和护士A 的概率.22.(6分)(2008年湘潭) 先化简,再求值:2221121x x x x x x --⋅+-+,其中x 满足2320x x -+=.第20题23.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠CAQ=30°,然后延河岸走了110米到达B处,测得∠DBQ=45°,求河流的宽度(结果可带根号).24.(10分)宁波市某中学开展以“纪念改革开放三十周年”为主题的教育活动,举办了演讲、书法、作文、手抄报、小品、漫画六项比赛(每个同学限报一项),学生参赛情况如下表:认真阅读统计表后,回答下列问题:(1)请补充完成这统计表;(2)本次参加比赛的总人数是人,本次比赛项目的“众数”是;(3)手抄报作品与漫画作品的获奖人数分别是6人和3人,你认为“手抄报作品比漫画作品的获奖率高”这种说法否正确,请说明你的理由;(第24题图) 25.(10分)在直角坐标平面中,O 为坐标原点,二次函数2(1)4y x k x =-+-+的图象与y 轴交于点A ,与x 轴的负半轴交于点B ,且6OAB S ∆=. (1)求点A 与点B 的坐标; (2)求此二次函数的解析式;(3)如果点P 在x 轴上,且△ABP 是等腰三角形,求点P 的坐标.26.(14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,. (1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究: ①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.恭喜你完成了测试,相信你一定做得很出色,一定要仔细检查呦!参考答案一、选择题二、填空题 13.2.6×51014.12.解析:阴影面积=△AOC 面积-扇形OAB 的面积=21×12×8-21×12×6=12. 15.4.5 .解析: 3×3-21×1×2-21×1×1-21×2×2=4.5 16.x ≥-21且x ≠1. 17.2cm 18.104H C 三、解答题19.解:原式=3+16÷(-8)+1-3×3=3-2+1-3=-1. 20.(1)如图所示:(2)直线l '经过点(0,2)和(-3,1),设它的解析式为b kx y +=,则⎩⎨⎧=+--=132b k b 解得⎩⎨⎧-=-=21b k ∴直线l '的解析式为2--=x y .第20题21. 解:(1)用列表法或树状图表示所有可能结果如下:①列表法: ②树状图:(2)P (恰好选中医生甲和护士A )=16 ∴恰好选中医生甲和护士A 的概率是1622. 解:2221121x x x x x x --⋅+-+=2(1)(1)(1)1(1)x x x x x x x -+-⋅=+- 2320,(2)(1)0x x x x -+=∴--= 1,x ∴=或 2.x =当1x =时,2(1)0,x -=分式22121x x x --+无意义.∴原式的值为2.23.过D 作DH ∥CA 交PQ 于H ,过D 作DG ⊥PQ ,垂足为G , ∵ PQ ∥MN ,DH ∥CA∴ 四边形CAHD 是平行四边形. ∴AH =CD =50,∠DHQ =∠CAQ =30°, 在Rt △DBG 中,∵∠DBG =∠BDG =45°, ∴ BG =DG ,设BG =DG =x , 在Rt △DHG 中,得HG =x 3, 又BH =AB -AH =110-50=60, ∴ 60+x =x 3, ∴x =30 3 +30(米). 河流的宽为(30 3 +30)米. 24.解:(1)75,30,24;(2)300,作文;(3)不正确.因为手抄报作品的获奖率为10%,漫画作品的获奖率为20%. 25. 解:(1)由解析式可知,点A 的坐标为(0,4). ∵1462OAB S BO ∆=⨯⨯=,∴BO =3.第23题答图∴点B 的坐标为(-3,0).(2)把点B 的坐标(-3,0)代入4)1(2+-+-=x k x y ,得2(3)(1)(3)40k --+-⨯-+=. 解得351-=-k .∴所求二次函数的解析式为4352+--=x x y . (3)因为△ABP 是等腰三角形,所以 ①当AB =AP 时,点P 的坐标为(3,0).②当AB =BP 时,点P 的坐标为(2,0)或(-8,0).③当AP =BP 时,设点P 的坐标为(x ,0).根据题意,得3422+=+x x . 解得 67=x .∴点P 的坐标为(67,0).综上所述,点P 的坐标为(3,0)、(2,0)、(-8,0)、(67,0). 26. 解:(1)由直角三角形纸板的两直角边的长为1和2,知A C ,两点的坐标分别为(12)(21),,,.设直线AC 所对应的函数关系式为y kx b =+.有221k b k b +=⎧⎨+=⎩,.解得13k b =-⎧⎨=⎩,. 所以,直线AC 所对应的函数关系式为3y x =-+.(2)①点M 到x 轴距离h 与线段BH 的长总相等.因为点C 的坐标为(21),, 所以,直线OC 所对应的函数关系式为12y x =.又因为点P 在直线AC 上,所以可设点P 的坐标为(3)a a -,. 过点M 作x 轴的垂线,设垂足为点K ,则有MK h =. 因为点M 在直线OC 上,所以有(2)M h h ,.因为纸板为平行移动,故有EF OB ∥,即EF GH ∥. 又EF PF ⊥,所以PH GH ⊥.法一:故Rt Rt Rt MKG PHG PFE △∽△∽△,(第24题答图)从而有12GK GH EF MK PH PF ===. 得1122GK MK h ==,11(3)22GH PH a ==-.所以13222OG OK GK h h h =-=-=.又有13(3)(1)22OG OH GH a a a =-=--=-.所以33(1)22h a =-,得1h a =-,而1BH OH OB a =-=-,从而总有h BH =.法二:故Rt Rt PHG PFE △∽△,可得12GH EF PH PF =-. 故11(3)22GH PH a ==-.所以13(3)(1)22OG OH GH a a a =-=--=-.故G 点坐标为3(1)02a ⎛⎫-⎪⎝⎭,. 设直线PG 所对应的函数关系式为y cx d =+,有330(1)2a ca d c a d -=+⎧⎪⎨=-+⎪⎩,.解得233c d a =⎧⎨=-⎩ 所以,直线PG 所对的函数关系式为2(33)y x a =+-. 将点M 的坐标代入,可得4(33)h h a =+-.解得1h a =-. 而1BH OH OB a --=-,从而总有h BH =.②由①知,点M 的坐标为(221)a a --,,点N 的坐标为12a a ⎛⎫ ⎪⎝⎭,.ONH ONG S S S =-△△1111133(1)222222a NH OH OG h a a a -=⨯-⨯=⨯⨯-⨯⨯- 22133133224228a a a ⎛⎫=-+-=--+ ⎪⎝⎭.当32a =时,S 有最大值,最大值为38. S 取最大值时点P 的坐标为3322⎛⎫ ⎪⎝⎭,.。
2009年中考数学复习教材回归知识讲解+例题解析+强化训...
2009年中考数学复习教材回归知识讲解+例题解析+强化训练一次函数◆知识讲解1.正比例函数的定义一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.2.正比例函数的图像正比例函数y=kx(k是常数且k≠0)的图像是一条经过原点(0,0)和点(1,k)•的直线,我们称它为直线y=kx;当k>0时,直线y=kx经过第一,三象限,y随着x的增大而增大,当k<0时,直线y=kx 经过第二,四象限,y随着x的增大而减少.3.一次函数的定义如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数.一次函数的标准形式为y=kx+b,是关于x的一次二项式,其中一次项系数k必须是不为零的常数,b可以为任何常数.当b=0而k≠0时,它是正比例函数,由此可知正比例函数是一次函数的特殊情况.当k=0而b≠0时,它不是一次函数.4.一次函数的图像一次函数y=kx+b(k≠0)的图像是一条直线,通常也称直线y=kx+b,由于两点确定一条直线,故画一次函数的图像时,只要先描出两点,再连成直线就可以了,为了方便,通常取图像与坐标轴的两个交点(0,b),(-bk,0)就行了.5.一次函数的图像与性质直线y=kx+b(k≠0)中,k和b决定着直线的位置及增减性,当k>0时,y随x的增大而增大,此时若b>0,则直线y=kx+b经过第一,二,三象限;若b<0,则直线y=kx+b经过第一,三,四象限,当k<0时,y随x的增大而减小,此时当b>0时,直线y=kx+b经过第一,二,四象限;当b<0时,直线y=kx+b 经过第二,三,四象限.6.一次函数图像的平移与图像和坐标轴围成的三角形的面积一次函数y=kx+b沿着y轴向上(“+”)、下(“-”)平移m(m>0)•个单位得到一次函数y=kx+b ±m;一次函数y=kx+b沿着x轴向左(“+”)、•右(“-”)平移n(n>0)个单位得到一次函数y=k (x±n)+b;一次函数沿着y轴平移与沿着x轴平移往往是同步进行的.只不过是一种情况,两种表示罢了;直线y=kx+b与x轴交点为(-bk,0),与y轴交点为(0,b),且这两个交点与坐标原点构成的三角形面积为S△=12²│-bk│²│b│.◆例题解析例1 (2006,江西省)已知直线L 1经过点A (-1,0)与点B (2,3),另一条直线L 2经过点B ,且与x 轴相交于点P (m ,0). (1)求直线L 1的解析式;(2)若△APB 的面积为3,求m 的值.【分析】函数图像上的两点坐标也即是x ,y 的两组对应值,•可用待定系数法求解,求函数与坐标轴所围成的三角形面积关键是求出函数解析式的k ,b 的值. 【解答】(1)设直线L 的解析式为y=kx+b ,由题意得 0,2 3.k b k b -+=⎧⎨+=⎩解得1,1.k b =⎧⎨=⎩所以,直线L 1的解析式为y=x+1.(2)当点P 在点A 的右侧时,AP=m -(-1)=m+1,有S △APC =12³(m+1)³3=3. 解得m=1,此时点P 的坐标为(1,0);当点P 在点A 的左侧时,AP=-1-m ,有S=³(-m -1)³3=3,解得m=-3,此时,点P 的坐标为(-3,0).综上所述,m 的值为1或-3.【点评】先设一次函数的解析式,再代入点的坐标,利用方程组求解,其步骤是:设、代,求、答. 例2 (2004,黑龙江省)下图表示甲,乙两名选手在一次自行车越野赛中,路程y (km )随时间x (min )的变化的图像(全程),根据图像回答下列问题: (1)求比赛开始多少分钟时,两人第一次相遇? (2)求这次比赛全程是多少千米?(3)求比赛开始多少分钟时,两人第二次相遇.【分析】观察图像知,甲选手的路程y 随时间x 变化是一个分段函数,第一次相遇时是在AB 段,故求出15≤x ≤33时的函数关系式;欲求出比赛全程,则需知乙的速度,这可由第一次相遇时的路程与时间的关系求得,要求第二次相遇时间,•即先求甲在BC 段的函数关系式,再求出BC 和OD 的交点坐标即可.【解答】(1)当15≤x ≤33时,设y AB =k 1x+b 1,将(15,5)与(33,7)代入得:1111515733k b k b =+⎧⎨=+⎩解得1119103k b ⎧=⎪⎪⎨⎪=⎪⎩∴y AB =19x+103当y=6时,有:6=19x+103,解得x=24. ∴比赛进行到24min 时,两人第一次相遇. (2)设y OD =kx ,将(24,6)代入得:6=24k, ∴k=14∴y OD =14x 当x=48时,y OD =14³48=12 ∴比赛全程为12km .(3)当33≤x ≤43时,设y BC =k 2x+b 2,将(33,7)和(43,12)代入得:22227331243k b k b =+⎧⎨=+⎩解得2212192k b ⎧=⎪⎪⎨⎪=-⎪⎩∴y BC =12x -192∴1192214x y x y -=⎧=⎪⎪⎨⎪⎪⎩解得19238x y =⎧⎪⎨=⎪⎩∴比赛进行到38min 时,两人第二次相遇.【点评】解答图像应用题的要领是从图像的形状特点、变化趋势、相关位置、相关数据出发,充分发掘图像所蕴含的信息,利用函数、方程(组)、不等式等知识去分析图像以解决问题.例3 (2006,贵州铜仁)铜仁某水果销售公司准备从外地购买西瓜31t ,柚子12t ,现计划租甲,乙两种货车共10辆,将这批水果运到铜仁,已知甲种货车可装西瓜4t 和柚子1t ,乙种货车可装西瓜,柚子各2t .(1)该公司安排甲,乙两种货车时有几种方案?(2)若甲种货车每辆要付运输费1800元,乙种货车每辆要付运输费1200元,•则该公司选择哪种方案运费最少?最少运费是多少元?【解答】(1)设安排甲种货车x 辆,则安排乙种货车为(10-x )辆,依题意,得42(10)312(10)12x x x x +-≥⎧⎨+-≥⎩解这个不等式组,得5.5≤x ≤8. ∵x 是整数,∴x 可取6,7,8. 即安排甲,乙两种货车有三种方案:①甲种货车6辆,乙种货车4辆 ②甲种货车7辆,乙种货车3辆 ③甲种货车8辆,乙种货车2辆(2)设运费为y 元,则y=1800x+1200(10-x )=600x+12000. ∴当x 取6时,运费最少,最少运费是:15600元.【点评】本例需要考生构建一元一次不等式和一次函数来解决实际问题,以考查学生运用综合知识,分析、解决问题的能力.◆强化训练 一、填空题1.(2006,绍兴)如图所示,一次函数y=x+5的图像经过点P (a ,b ),Q (c ,d ),•则a (c -d )-b (c -d )的值为______. 2.(2005,重庆市)直线y=-43x+8与x 轴,y 轴分别交于点A 和点B ,M 是OB 上的一点,•若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的解析式为______.3.(2006,白云区)关于x 的一次函数y=(a -3)x+2a -5的图像与y 轴的交点不在x •轴的下方,且y 随x 的增大而减小,则a 的取值范围是______.4.已知一次函数y=kx+b (k ≠0)的图像经过点(0,1),且y 随x 的增大而增大,•请你写出一个符合上述条件的函数关系式_______.5.(2005,黑龙江省)一次函数y=kx+3•的图像与坐标轴的两个交点之间的距离为5,则k 的值为________. 6.(2005,包头市)若一次函数y=ax+1-a 中,y 随x 的增大而增大,且它的图像与y 轴交于正半轴,则│a -1│.7.(2005,四川省)如果记y=221x x+=f (x ),并且f (1)表示当x=1时y 的值,即f (1)=22111+=12;f (12)表示当x=12时y 的值,即f (12)=22()112(1)2+=15;如果f (1)+f (2)+f (12)+f (3)+f (13)+…+f (n )+f (1n)=______.(结果用含n 的代数式表示,n 为正整数).8.如图所示,点M 是直线y=2x+3上的动点,过点M 作MN垂直x轴于点N,y轴上是否存在点P,使以M,N,P为顶点的三角形为等腰直角三角形.小明发现:当动点M运动到(-1,1)时,y轴上存在点P(0,1),此时有MN=MP,能使△NMP为等腰直角三角形.在y 轴和直线上还存在符合条件的点P和点M.请你写出其他符合条件的点P的坐标_______.二、选择题9.(2006,南安)如图所示,一个蓄水桶,60min可匀速将一满桶水放干.其中,水位h(cm)随着放水时间t(min)的变化而变化.h与t的函数的大致图像为()10.(2005,杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限D.第一,三,四象限11.(2008,济南)济南市某储运部紧急调拨一批物资,调进物资共用4h,调进物资2h后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(t)•与时间t(h)之间的函数关系如图5-35所示,•这批物资从开始调进到全部调出所需要的时间是()A.4h B.4.4h C.4.8h D.5h12.(2006,泉州)小明所在学校离家距离为2km,某天他放学后骑自行车回家,行驶了5min后,因故停留10min,继续骑了5min到家,下面哪一个图像能大致描述他回家过程中离家的距离s(km)与所用时间t(min)之间的关系()13.(2006,黄冈)如图所示,在光明中学学生体力测试比赛中,甲,•乙两学生测试的路程s(m)与时间t(s)之间的函数关系图像分别为折线OABC和线段OD,•下列说法正确的()A.乙比甲先到达终点B.乙测试的速度随时间增加而增大C.比赛进行到29.7s时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快14.(2005,黄冈市)有一个装有进,出水管的容器,单位时间内进,•出的水量都是一定的.已知容器的容积为600L,又知单开进水管10min可把空容器注满.若同时打开进,出水管,20min可把满容器的水放完.现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是下图中的()15.(2005,重庆市)为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图a,b所示,某天0点到6点(•至少打开一个水管),该蓄水池的蓄水量如图c所示,并给出以下3个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水,则一定正确的论断是()(a) (b) (c)A.①③B.②③C.③D.①②③16.(2008,重庆)如图所示,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,•以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动,而四边形ADMN的面积y(cm2)与两动点的运动时间t(s)的函数图像大致是()三、解答题17.(2008,河北)如图所示,直线L1的解析表达式为y=-3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C.(1)求点D的坐标;(2)求直线L2的解析表达式;(3)求△ADC的面积;(4)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.18.(2008,南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),下图中的折线表示y•与x之间的函数关系.根据图像进行以下探究:信息读取:(1)甲,乙两地之间的距离为_____km;(2)请解释图中点B的实际意义.图像理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.•在第一列快车与慢车相遇30min后,第二列快车与慢车相遇,•求第二列快车比第一列快车晚出发多少小时.19.(2005,•黑龙江省)•某企业有甲,•乙两个长方体的蓄水池,将甲池中的水以6m3/h的速度注入乙池,甲,乙两个蓄水池中水的深度y(m)与注水时间x(h)之间的函数图像如图所示,结合图像回答下列问题:(1)分别求出甲,乙两个蓄水池中水的深度y与注水时间x之间的函数关系式;(2)求注水多长时间甲,乙两个蓄水池水的深度相同;(3)求注水多长时间甲,乙两个蓄水池的蓄水池相同.20.(2005,哈尔滨市)甲,乙两名同学进行登山比赛,图5-42所示为甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,•各自行进的路程随时间变化的图象,根据图像中的有关数据回答下列问题:(1)分别求出表示甲,乙两同学登山过程中路程s(km)与时间t(h)的函数解析式;(不要求写出自变量t的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1h,沿原路下山,在点B 处与乙相遇,此时点B与山顶距离为1.5km,相遇后甲,•乙各自按原来的线路下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?21.(2005,长春市)如图a所示,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线的函数关系式为y=34x,AD=8.矩形ABCD沿DB方向以每秒1•单位长度运动,同时点P从点A出发做匀速运动,沿矩形ABCD的边经过点B到达点C,用了14s.(1)求矩形ABCD的周长.(2)如图b所示,图形运动到第5s时,求点P的坐标;(3)设矩形运动的时间为t.当0≤t≤6时,点P所经过的路线是一条线段,•请求出线段所在直线的函数关系式;(4)当点P在线段AB或BC上运动时,过点P作x轴,y轴的垂线,垂足分别为E,F,则矩形PEOF 是否能与矩形ABCD相似(或位似)?若能,求出t的值;若不能,说明理由.22.(2006,绍兴)某校部分住校学生,放学后到学校锅炉房打水,每人接水2L,•他们先同时打开两个放水龙头,后来故故障关闭一个放水龙头,假设前后两个接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(L)与接水时间x(min)的函数图像如图所示.请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3min”.•你说可能吗?请说明理由.答案:1.25 2.y=-12x+3 3.52≤a<3 4.y=3x+1(答案不唯一)5.±346.1 7.n-128.(0,0)(0,34)(0,-3)9.C 10.B 11.B 12.D 13.C 14.A 15.D 16.D 17.(1)由y=-3x+3知,令y=0,得-3x+3=0,∴x=1.∴D(1,0).(2)设直线L2的解析式表达式为y=kx+b,由图像知:直线L2过点A(4,0)和点B(3,-32),∴40,332k bk b+=⎧⎪⎨+=-⎪⎩,∴3,26.kb⎧=⎪⎨⎪=-⎩∴直线L的解析表达式为y=32x-6.(3)由33,36.2y xy x=-+⎧⎪⎨=-⎪⎩解得2,3.xy=⎧⎨=-⎩∴C(2,-3).∵AD=3,∴S△=12³3³│-3│=92.(4)P(6,3).18.(1)900.(2)图中点B的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图像可知,慢车12h行驶的路程为900km,所以慢车的速度为90012km/h=75km/h ; 当慢车行驶4h 时,慢车和快车相遇, 两车行驶的路程之和为900km , 所以慢车和快车行驶的速度之和为9004km/h=225km/h . 所以快车的速度为150km/h .(4)根据题意,快车行驶900km 到达乙地, 所以快车行驶900150h=6h 到达乙地. 此时两车之间的距离为6³75km=450km , 所以点C 的坐标为(6,450).设线段BC 所表示的y 与x 之间的函数关系式为y=kx+b , 把(4,0),(6,450)代入得 04,4506,k b k b =+⎧⎨=+⎩解得225,900.k b =⎧⎨=-⎩所以,线段BC 所表示的y 与x 之间的函数关系式为y=225x -900,自变量x •的取值范围是4≤x ≤6. (5)慢车与第一列快车相遇30min 后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把x=4.5代入y=225x -900.得y=112.5.此时慢车与第一列快车之间的距离等于两列快车之间的距离,是112.5km . 所以两列快车出发的间隔时间是 112.5÷150h=0.75h .即第二列快车比第一列快车晚出发0.75h .19.(1)设y 甲=k 1x+b 1,把(0,2)和(3,0)代入,解得k 1=-23,b 1=2. ∴y 甲=-23x+2. 设y 乙=k 2x+b 2,把(0,1)和(3,4)代入. 解得k 2=1,b 2=1, ∴y 乙=x+1.(2)根据题意,得2231x y x y +=-+⎧=⎪⎨⎪⎩ 解得x=35.所以注水35h 甲,乙两个蓄水池中水的深度相同.(3)设甲蓄水池的底面积为S1,乙蓄水池的底面积为S2,th甲,乙两个蓄水池的蓄水量相同,根据题意,得2S1=3³6,S1=9(4-1)S2=3³6=,S2=6S1(-23t+2)=S2(t+1)解得t=1.∴注水1h甲,乙两个蓄水池的蓄水量相同.20.(1)设甲,乙两同学登山过程中,路程s(km)与时间t(h)•的函数解析式分别为s甲=k1t,s乙=k2t,由题意,得6=2k1,6=3k2.∴k1=3,k2=2∴解析式分别为s甲=3t,s乙=2t.(2)甲到在山顶时,由图像可知,当s甲=12(km),代入s甲=3t,得:t=4(h).∴s乙=2³4=8(km)∴12-8=4(km)答:当甲到达山顶时,乙距山顶的距离为4km.(3)由图像可知:甲到达山顶并休息1h后点D的坐标为(5,12)由题意,得:点B的纵坐标为12-32=212,代入s乙=2t,解得:t=214,∴点B(214,212)设过B,D两点直线解析式为s=kx+b.由题意,得212124125t bt b⎧=+⎪⎨⎪=+⎩解得642kb=-⎧⎨=⎩∴直线BD的解析式为s=-6t+42∴当乙达到山顶时,s乙=12,得t=6,把t代入s=-6t+42得s=6(km)答:当乙达到山顶时,甲距山脚6km.21.(1)AD=8,B点在y=34x上,则y=6,B点坐标为(8,6),AB=6,矩形的周长为28.(2)由(1)可知AB+BC=14,P点走过AB,BC的时间为14s,因此点P的速度为每秒1•个单位.∵矩形沿DB方向以每秒1个单位长运动,出发5s后,OD=5,此时D点坐标为(4,3)同时,点P沿AB方向运动了5个单位,则点P坐标为(12,8).(3)点P运动前的位置为(8,0),5s后运动到(12,8)已知它运动路线是一条线段,•设线段所在直线为y=kx+b.∴80,128.k bk b+=⎧⎨+=⎩解得216.kb=⎧⎨=-⎩直线解析式为y=2x-16.(4)方法一:①当点P在AB边运动时,即0≤t≤6.点D的坐标为(45t,35t).∴点P的坐标为(8+45t,85t).若PE BAOE DA=,则85485tt+=68,解得t=6.当t=6时,点P与点B重合,此时△PEO与△BAD相形.若PE DAOE BA=,则85485tt+=86,解得t=20.因为20>6,所以此时点P不在AB边上,舍去.②当点P在BC边运动时,即6≤t≤14.点D的坐标为(45t,35t).∴点P的坐标为(14-15t,35t+6).若PE BAOE DA=,则3651145tt+-=68,解得t=6.此情况①已讨论.若PE DAOE BA=,则3651145tt+-=86,解得t=19013.因为19013>14,此时点P 不在BC 边上,舍去. 综上,当t=6时,点P 到达点B 时,此时△PEO 与△BAD 相形. 方法二:当点P 在AB 上没有到达点B 时,P E B E O E O E <=34,PEOE更不能等于43.则点P 在AB 上没到达点B 时,两个三角形不能构成相似形. 当点P 到达点B 时,△PEO 与△BAD 相似,此时t=6. 当点P 越过点B 在BC 上时,PE OE >34. 若PE OE =43时,由点P 在BC 上时,坐标为(14-15t ,35t+6),(6≤t ≤14). 3651145t t+-=43,解得t=19013,但19013>14.因此当P 在BC 上(不包括点B )时,△PEO 与△BAD 不相似. 综上所述,当t=6时,点P 到达点B ,△PEO 与△BAD 是相似形. 22.(1)锅炉内原有水96L ,接水2min 后锅炉内的余水量为80L ,等. (2)当0≤x ≤2时,y=-8x+96 当x>2时,y=-4x+88∵前15位同学接完水时余水量为 (96-15³2L )=66L ∴66=-4x+88 x=5.5min(3)小敏说法是可能的,即从第1min 开始8位同学连接接完水恰好用了3min .一次函数◆知识讲解1.正比例函数的定义一般地,形如y=kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数. 2.正比例函数的图像正比例函数y=kx (k 是常数且k ≠0)的图像是一条经过原点(0,0)和点(1,k )•的直线,我们称它为直线y=kx;当k>0时,直线y=kx经过第一,三象限,y随着x的增大而增大,当k<0时,直线y=kx 经过第二,四象限,y随着x的增大而减少.3.一次函数的定义如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数.一次函数的标准形式为y=kx+b,是关于x的一次二项式,其中一次项系数k必须是不为零的常数,b可以为任何常数.当b=0而k≠0时,它是正比例函数,由此可知正比例函数是一次函数的特殊情况.当k=0而b≠0时,它不是一次函数.4.一次函数的图像一次函数y=kx+b(k≠0)的图像是一条直线,通常也称直线y=kx+b,由于两点确定一条直线,故画一次函数的图像时,只要先描出两点,再连成直线就可以了,为了方便,通常取图像与坐标轴的两个交点(0,b),(-bk,0)就行了.5.一次函数的图像与性质直线y=kx+b(k≠0)中,k和b决定着直线的位置及增减性,当k>0时,y随x的增大而增大,此时若b>0,则直线y=kx+b经过第一,二,三象限;若b<0,则直线y=kx+b经过第一,三,四象限,当k<0时,y随x的增大而减小,此时当b>0时,直线y=kx+b经过第一,二,四象限;当b<0时,直线y=kx+b 经过第二,三,四象限.6.一次函数图像的平移与图像和坐标轴围成的三角形的面积一次函数y=kx+b沿着y轴向上(“+”)、下(“-”)平移m(m>0)•个单位得到一次函数y=kx+b ±m;一次函数y=kx+b沿着x轴向左(“+”)、•右(“-”)平移n(n>0)个单位得到一次函数y=k (x±n)+b;一次函数沿着y轴平移与沿着x轴平移往往是同步进行的.只不过是一种情况,两种表示罢了;直线y=kx+b与x轴交点为(-bk,0),与y轴交点为(0,b),且这两个交点与坐标原点构成的三角形面积为S△=12²│-bk│²│b│.◆例题解析例1 (2006,江西省)已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式;(2)若△APB的面积为3,求m的值.【分析】函数图像上的两点坐标也即是x,y的两组对应值,•可用待定系数法求解,求函数与坐标轴所围成的三角形面积关键是求出函数解析式的k,b的值.【解答】(1)设直线L的解析式为y=kx+b,由题意得0,2 3.k b k b -+=⎧⎨+=⎩解得1,1.k b =⎧⎨=⎩所以,直线L 1的解析式为y=x+1.(2)当点P 在点A 的右侧时,AP=m -(-1)=m+1,有S △APC =12³(m+1)³3=3. 解得m=1,此时点P 的坐标为(1,0);当点P 在点A 的左侧时,AP=-1-m ,有S=³(-m -1)³3=3,解得m=-3,此时,点P 的坐标为(-3,0).综上所述,m 的值为1或-3.【点评】先设一次函数的解析式,再代入点的坐标,利用方程组求解,其步骤是:设、代,求、答. 例2 (2004,黑龙江省)下图表示甲,乙两名选手在一次自行车越野赛中,路程y (km )随时间x (min )的变化的图像(全程),根据图像回答下列问题: (1)求比赛开始多少分钟时,两人第一次相遇? (2)求这次比赛全程是多少千米?(3)求比赛开始多少分钟时,两人第二次相遇.【分析】观察图像知,甲选手的路程y 随时间x 变化是一个分段函数,第一次相遇时是在AB 段,故求出15≤x ≤33时的函数关系式;欲求出比赛全程,则需知乙的速度,这可由第一次相遇时的路程与时间的关系求得,要求第二次相遇时间,•即先求甲在BC 段的函数关系式,再求出BC 和OD 的交点坐标即可.【解答】(1)当15≤x ≤33时,设y AB =k 1x+b 1,将(15,5)与(33,7)代入得:1111515733k b k b =+⎧⎨=+⎩解得1119103k b ⎧=⎪⎪⎨⎪=⎪⎩∴y AB =19x+103当y=6时,有:6=19x+103,解得x=24. ∴比赛进行到24min 时,两人第一次相遇. (2)设y OD =kx ,将(24,6)代入得:6=24k, ∴k=14∴y OD =14x 当x=48时,y OD =14³48=12 ∴比赛全程为12km .(3)当33≤x ≤43时,设y BC =k 2x+b 2,将(33,7)和(43,12)代入得:22227331243k b k b =+⎧⎨=+⎩解得2212192k b ⎧=⎪⎪⎨⎪=-⎪⎩∴y BC =12x -192∴1192214x y x y -=⎧=⎪⎪⎨⎪⎪⎩解得19238x y =⎧⎪⎨=⎪⎩∴比赛进行到38min 时,两人第二次相遇.【点评】解答图像应用题的要领是从图像的形状特点、变化趋势、相关位置、相关数据出发,充分发掘图像所蕴含的信息,利用函数、方程(组)、不等式等知识去分析图像以解决问题.例3 (2006,贵州铜仁)铜仁某水果销售公司准备从外地购买西瓜31t ,柚子12t ,现计划租甲,乙两种货车共10辆,将这批水果运到铜仁,已知甲种货车可装西瓜4t 和柚子1t ,乙种货车可装西瓜,柚子各2t .(1)该公司安排甲,乙两种货车时有几种方案?(2)若甲种货车每辆要付运输费1800元,乙种货车每辆要付运输费1200元,•则该公司选择哪种方案运费最少?最少运费是多少元?【解答】(1)设安排甲种货车x 辆,则安排乙种货车为(10-x )辆,依题意,得42(10)312(10)12x x x x +-≥⎧⎨+-≥⎩解这个不等式组,得5.5≤x ≤8.∵x是整数,∴x可取6,7,8.即安排甲,乙两种货车有三种方案:①甲种货车6辆,乙种货车4辆②甲种货车7辆,乙种货车3辆③甲种货车8辆,乙种货车2辆(2)设运费为y元,则y=1800x+1200(10-x)=600x+12000.∴当x取6时,运费最少,最少运费是:15600元.【点评】本例需要考生构建一元一次不等式和一次函数来解决实际问题,以考查学生运用综合知识,分析、解决问题的能力.◆强化训练一、填空题1.(2006,绍兴)如图所示,一次函数y=x+5的图像经过点P(a,b),Q(c,d),•则a(c-d)-b(c-d)的值为______.2.(2005,重庆市)直线y=-43x+8与x轴,y轴分别交于点A和点B,M是OB上的一点,•若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为______.3.(2006,白云区)关于x的一次函数y=(a-3)x+2a-5的图像与y轴的交点不在x•轴的下方,且y 随x的增大而减小,则a的取值范围是______.4.已知一次函数y=kx+b(k≠0)的图像经过点(0,1),且y随x的增大而增大,•请你写出一个符合上述条件的函数关系式_______.5.(2005,黑龙江省)一次函数y=kx+3•的图像与坐标轴的两个交点之间的距离为5,则k 的值为________.6.(2005,包头市)若一次函数y=ax+1-a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则│a-1│.7.(2005,四川省)如果记y=221xx+=f(x),并且f(1)表示当x=1时y的值,即f(1)=22111+=12;f(12)表示当x=12时y的值,即f(12)=22()112(1)2+=15;如果f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)=______.(结果用含n的代数式表示,n为正整数).8.如图所示,点M是直线y=2x+3上的动点,过点M作MN垂直x轴于点N,y轴上是否存在点P,使以M,N,P为顶点的三角形为等腰直角三角形.小明发现:当动点M运动到(-1,1)时,y轴上存在点P(0,1),此时有MN=MP,能使△NMP为等腰直角三角形.在y轴和直线上还存在符合条件的点P和点M.请你写出其他符合条件的点P的坐标_______.二、选择题9.(2006,南安)如图所示,一个蓄水桶,60min可匀速将一满桶水放干.其中,水位h(cm)随着放水时间t(min)的变化而变化.h与t的函数的大致图像为()10.(2005,杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限D.第一,三,四象限11.(2008,济南)济南市某储运部紧急调拨一批物资,调进物资共用4h,调进物资2h后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(t)•与时间t(h)之间的函数关系如图5-35所示,•这批物资从开始调进到全部调出所需要的时间是()A.4h B.4.4h C.4.8h D.5h12.(2006,泉州)小明所在学校离家距离为2km,某天他放学后骑自行车回家,行驶了5min后,因故停留10min,继续骑了5min到家,下面哪一个图像能大致描述他回家过程中离家的距离s(km)与所用时间t(min)之间的关系()13.(2006,黄冈)如图所示,在光明中学学生体力测试比赛中,甲,•乙两学生测试的路程s(m)与时间t(s)之间的函数关系图像分别为折线OABC和线段OD,•下列说法正确的()A.乙比甲先到达终点B.乙测试的速度随时间增加而增大C.比赛进行到29.7s时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快14.(2005,黄冈市)有一个装有进,出水管的容器,单位时间内进,•出的水量都是一定的.已知容器的容积为600L,又知单开进水管10min可把空容器注满.若同时打开进,出水管,20min可把满容器的水放完.现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是下图中的()15.(2005,重庆市)为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图a,b所示,某天0点到6点(•至少打开一个水管),该蓄水池的蓄水量如图c所示,并给出以下3个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水,则一定正确的论断是()(a) (b) (c)A.①③B.②③C.③D.①②③16.(2008,重庆)如图所示,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,•以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动,而四边形ADMN的面积y(cm2)与两动点的运动时间t(s)的函数图像大致是()。
历年宁波中考数学压轴题
历年宁波中考数学压轴题1.(2006 宁波课标26)对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”.(1)如果设正方形OGFN的边长为l,这七块部件的各边长中,从小到大的四个不同值分别为l、x1、x2、x3,那么x1= ______;各内角中最小内角是_______度,最大内角是 ________度;用它们拼成的一个五边形如图②,其面积是 ________;(2)请用这副七巧板,既不留下一丝空白,又不相互重叠,拼出2种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上;(格点图中,上下、左右相邻两点距离都为1)(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的凸多边形,其边数不能超过8”.你认为这个结论正确吗?请说明理由.注:不能拼成与图①或②全等的多边形!2.(2006 宁波大纲 26)知⊙O过点D(4,3),点H与点D关于y轴对称,过H作⊙O的切线交y轴于点A(如图①).(1)求⊙O的半径;(2)求sin∠HAO的值;(3)如图②,设⊙O与y轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连结并延长DE、DF交⊙O于点B、C,直线BC交y轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化?请说明理由.3.(2007 宁波 27)四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP 交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形AB CD的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).4.(2008 宁波 26)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准..纸.的短边长为a . (1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边AB 与长边AD 对齐折叠,点B 落在AD 上的点B '处,铺平后得折痕AE ;第二步 将长边AD 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF . 则:AD AB 的值是 ,AD AB ,的长分别是 , . (2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E F G H ,,,分别在“16开”纸的边AB BC CD DA ,,,上,求DG 的长.(4)已知梯形MNPQ 中,MN PQ ∥,90M =∠,2MN MQ PQ ==,且四个顶点M N P Q ,,,都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.5.(2009 宁波 26)如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),将四边形OABC 绕点O 按顺时针方向旋转α度得到四边形OA ′B ′C ′,此时声母OA ′、直线B ′C ′分别与直线BC 相交于P 、Q . (1)四边形的形状是 ,当α=90°时,BPPQ的值是 . (2)①如图2,当四边形OA ′B ′C ′的顶点B ′落在y 轴正半轴上时,求BPPQ的值; ②如图3,当四边形OA ′B ′C ′的顶点B ′落在直线BC 上时,求ΔOPB ′的面积.A B C D BC A DEG H F FE B ' 4开 2开 8开16开 图1 图2图3 (第26题) a(3)在四边形OABC 旋转过程中,当000180α<≤时,是否存在这样的点P 和点Q ,使BP=12BQ 若存在,请直接写出点P 的坐标;基不存在,请说明理由.6.(2010 宁波 26)如图1在平面直角坐标系中,O 是坐标原点,▱ABCD 的顶点A 的坐标为(﹣2,0),点D 的坐标为(0,2错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁波市2009年初中毕业生学业考试 数 学 试 题
考生须知: 1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷Ⅰ、答题卷Ⅱ.试题卷共6页,有三个大题,26个小题,满分120分,考试时间为120分钟. 2.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上. 3.答题时,把试题卷Ⅰ的答案在答题卷Ⅰ上对应的选项位置用2B铅笔涂黑、涂满.将试题卷Ⅱ答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效. 4.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线
2yaxbxc的顶点坐标为2424bacbaa,.
试题卷Ⅰ 一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.下列四个数中,比0小的数是( )
A.23 B.2 C.π D.1 2.等腰直角三角形的一个底角的度数是( ) A.30° B.45° C.60° D.90° 3.一个不透明的布袋装有4个只有颜色不同的球,其中2个红球,1个白球,1个黑球,搅匀后从布袋里摸出1个球,摸到红球的概率是( )
A.12 B.13 C.14 D.16 4.据《宁波市休闲旅游基地和商务会议基地建设五年行动计划》,预计到2012年,宁波市接待游客容量将达到4640万人次.其中4640万用科学记数法可表示为( )
A.90.46410 B.84.6410 C.74.6410 D.646.410
5.使二次根式2x有意义的x的取值范围是( ) A.2x B.2x C.x≤2 D.2x≥ 6.如图是由4个立方块组成的立体图形,它的俯视图是( )
A. B. C. D. 7.下列调查适合作普查的是( ) A.了解在校大学生的主要娱乐方式
(第6题) B.了解宁波市居民对废电池的处理情况 C.日光灯管厂要检测一批灯管的使用寿命 D.对甲型H1N1流感患者的同一车厢的乘客进行医学检查
8.以方程组21yxyx的解为坐标的点()xy,在平面直角坐标系中的位置是( ) A.第一象限 B.第二象限 C.第三角限 D.第四象限 9.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是( ) A.110° B.108° C.105° D.100°
10.反比例函数kyx在第一象限的图象如图所示,则k的值可能是( ) A.1 B.2 C.3 D.4 11.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是( ) A.△AOM和△AON都是等边三角形 B.四边形MBON和四边形MODN都是菱形 C.四边形AMON与四边形ABCD是位似图形 D.四边形MBCO和四边形NDCO都是等腰梯形
12.如图,点A、B、C在一次函数2yxm的图象上,它们的
横坐标依次为1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( ) A.1 B.3 C.3(1)m D.3(2)2m 试题卷Ⅱ 二、填空题(每小题3分,共18分) 13.实数8的立方根是 . 14.不等式组6020xx的解是 . 15.甲、乙、丙三名射击手的20次测试的平均成绩都是8环,方差分别是20.4S甲(环2), 1 2 3 4 D C B A E (第9题) 1 2 2 1 O y x (第10题) D B C A N M O (第11题) (第12题) x 1 1 2 O y A B C 23.2S乙(环2),21.6S
丙(环2),则成绩比较稳定的是 .(填“甲”“乙”“丙”
中的一个) 16.如图,在坡屋顶的设计图中,ABAC,屋顶的宽度l为10米,坡角为35°,则坡屋顶高度h为 米.(结果精确到0.1米)
17.如图,梯形ABCD中,ADBC∥,7040BC°,°,作DEAB∥交BC于点E,若3AD,10BC,则CD的长是 . 18.如图,A⊙、B⊙的圆心A、B在直线l上,两圆的半径都为1cm,开始时圆心距4cmAB,现A⊙、B⊙同时沿直线l以每秒2cm的速度相向移动,则当两圆相切时,A⊙运动的时间为 秒.
三、解答题(第19~21题各6分,第22题10分,第23~24题各8分,第25题10分,第26题12分,共66分)
19.先化简,再求值:(2)(2)(2)aaaa,其中1a.
20.如图,点A,B在数轴上,它们所对应的数分别是4,2235xx,且点A、B到原点的距离相等,求x的值.
21.(1)如图1,把等边三角形的各边三等分,分别以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,则这个六角星的边数是 . (2)如图2,在5×5的网格中有一个正方形,把正方形的各边三等分,分别以居中那条线段为一边向外作正方形,并去掉居中的那条线段.请你把得到的图形画在图3中,并写出这个图形的边数. (3)现有一个正五边形,把正五边形的各边三等分,分别以居中那条线段为一边向外作正五边形,并去掉居中的那条线段,得到的图形的边数是多少?
A B C
h
l
(第16题)
A
B C
D E (第17题)
B A
(第18题) l
A B 0 4 (第20题)
(图1) (第21题) (图2) (图3) 22.2009年宁波市初中毕业生升学体育集中测试项目包括体能(耐力)类项目和速度(跳跃、力量、技能)类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形统计图.(另附:九年级女生立定跳远的计分标准)
(1)求这10名女生在本次测试中,立定跳远距离..的极差和中位数,立定跳远得分..的众数和平均数. (2)请你估计该校选择立定跳远的200名女生中得满分的人数.
23.如图,抛物线254yaxaxa与x轴相交于点A、B,且过点(54)C,. (1)求a的值和该抛物线顶点P的坐标; (2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.
10名女生立定跳远距离条形统计图 距离(cm)
210 180 150 120 90 60 30 0 1 2 3 4 5 6 7 8 9 10 女生序号
(第22题)
174 196 199 205 201 200 183 200 197 189
成绩(cm) 197 189 181 173 „
分值(分) 10 9 8 7 „
九年级女生立定跳远计分标准
(注:不到上限,则按下限计分,满分为10分)
A B P x
y O (第23题)
C(5,4) 24.已知,如图,O⊙的直径AB与弦CD相交于E,BCBD,O⊙的切线BF与弦AD的延长线相交于点F. (1)求证:CDBF∥;
(2)连结BC,若O⊙的半径为4,3cos4BCD,求线段AD、CD的长.
25.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%. (1)该市政府2008年投入改善医疗卫生服务的资金是多少万元? (2)该市政府2009年投入“需方”和“供方”的资金各多少万元? (3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.
26.如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(80),,直线BC经过点(86)B,,(06)C,,将四边形OABC绕点O按顺时针方向旋转度得到四边形OABC,此时直线OA、直线BC分别与直线BC相交于点P、Q. (1)四边形OABC的形状是 ,
当90°时,BPBQ的值是 ;
(2)①如图2,当四边形OABC的顶点B落在y轴正半轴时,求BPBQ的值; ②如图3,当四边形OABC的顶点B落在直线BC上时,求OPB△的面积.
A D F B
C O E
(第24题)
Q C B
A O x
P A B C
(图1)
y