不等式证明方法

合集下载

不等式证明的常用方法

不等式证明的常用方法

不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。

高考数学证明不等式的基本方法

高考数学证明不等式的基本方法
讲末复习
知识网络
要点归纳
题型研修
知识网络
要点归纳
题型研修
1.比较法证明不等式 作差比较法是证明不等式的基本方法,其依据 是:不等式的意义及实数大小比较的充要条件. 证明的步骤大致是:作差——恒等变形——判 断结果的符号.
知识网络
要点归纳
题型研修
2.综合法证明不等式 综合法证明不等式的依据是:已知的不等式以及逻辑推理 的基本理论.证明时要注意的是:作为依据和出发点的几个 重要不等式(已知或已证)成立的条件往往不同,应用时要先 考虑是否具备应有的条件,避免错误,如一些带等号的不 等式,应用时要清楚取等号的条件,即对重要不等式中 “当且仅当……时,取等号”的题型研修
例 1 若 x,y,z∈R,a>0,b>0,c>0.求证:b+a cx2+c+b a
y2+a+c bz2≥2(xy+yz+zx).
证明 ∵b+a cx2+c+b ay2+a+c bz2-2(xy+yz+zx)
=bax2+aby2-2xy+bcy2+bcz2-2yz+acz2+acx2-2zx=
∴0< (n+1)n22+ +11+ +( n n+1)<1,即CCn+n1<1,
从而有 Cn+1<Cn.
知识网络
要点归纳
题型研修
跟踪演练 2 若 a,b,m,n 都为正实数,且 m+n=1, 试证: ma+nb≥m a+n b. 证明 ∵a,b,m,n 均为正数,且 m+n=1, ∴( ma+nb)2-(m a+n b)2 =ma+nb-m2a-n2b-2mn ab =m(1-m)a+n(1-n)b-2mn ab =mn( a- b)2≥0,又 ma+nb>0,m a+n b>0, ∴ ma+nb≥m a+n b.
知识网络

不等式的证明方法

不等式的证明方法

比较法
包括比差和比商两种方法。

综合法
证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,综合法又叫顺推证法或因导果法。

分析法
证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。

放缩法
证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。

数学归纳法
用数学归纳法证明不等式,要注意两步一结论。

不仅是要用数学归纳法证明,而且要结合实际去进行下一步
在证明第二步时,一般多用到比较法、放缩法和分析法。

反证法
证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。

三次基本不等式公式证明

三次基本不等式公式证明

三次基本不等式公式证明基本不等式可是数学中的一个重要知识点呢,咱们今天就来好好聊聊三次基本不等式公式的证明。

先来说说什么是三次基本不等式。

简单来讲,就是对于任意的实数a、b、c,都有a³ + b³ + c³ ≥ 3abc 成立。

那这到底是为啥呢?下面咱们就一步步来证明。

咱们先假设 a,b,c 都是正数。

这时候,咱们可以把 a³ + b³ + c³变形一下。

咱们先来看 a³ + b³这部分,根据立方和公式,a³ + b³ = (a + b)(a² - ab + b²) 。

因为 a² + b² ≥ 2ab ,所以 a² - ab + b² ≥ ab ,那么就有 a³ + b³ = (a + b)(a² - ab + b²) ≥ (a + b)ab 。

接下来,咱们把 a³ + b³ + c³中的前两项用刚才的结论替换掉,就得到a³ + b³ + c³ ≥ (a + b)ab + c³ 。

然后再看 (a + b)ab + c³这部分,因为(a + b) ≥ 2√(ab) ,所以 (a + b)ab ≥ 2ab√(ab) 。

现在咱们把 (a + b)ab + c³中的前半部分再用这个结论替换,就得到(a + b)ab + c³ ≥ 2ab√(ab) + c³ 。

这时候,咱们令x = √(ab) ,那么2ab√(ab) + c³ 就变成了 2x³ + c³。

根据均值不等式,对于任意两个正数 m,n,都有m³ + n³ + n³ ≥3mn²。

不等式证明几种方法

不等式证明几种方法
又∵0 <a,b,c< 1∴
同理: ,
以上三式相乘:(1a)a•(1b)b•(1c)c≤ 与①矛盾
∴原式成立
例五、已知a+b+c> 0,ab+bc+ca> 0,abc> 0,求证:a,b,c> 0
证:设a< 0,∵abc> 0,∴bc< 0
又由a+b+c> 0,则b+c=a> 0
∴ab+bc+ca=a(b+c) +bc< 0与题设矛盾
8.若x,y> 0,且x+y>2,则 和 中至少有一个小于2
一、裂项放缩
例1.(1)求 的值; (2)求证: .
解析:(1)因为 ,所以
(2)因为 ,所以
奇巧积累
:(1) (2)
(3)
(4)
(5) (6)
(7) (8)
(9)
(10) (11)
(11)
(12)
(13)
(14) (15)
(15)
例2.(1)求证:
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为 பைடு நூலகம்则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形为 ,截面积为 。所以本题只需证明 。
证明:设截面的周长为 ,则截面是圆的水管的截面面积为 ,截面是正方形的水管的截面面积为 。只需证明: 。
为了证明上式成立,只需证明 。
例3、已知a,b,m都是正数,并且 求证: (1)
证法一要证(1),只需证 (2)
要证(2),只需证 (3)
要证(3),只需证 (4)
已知(4)成立,所以(1)成立。

不等式的证明方法经典例题

不等式的证明方法经典例题

不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。

注意ab b a 222≥+的变式应用。

常用2222b a b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。

一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。

1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。

2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。

6、已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。

7、已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。

四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。

9、1<b ,求证:1)1)(1(22≤--+b a ab 。

10、122=+y x ,求证:22≤+≤-y x11、已知a>b>c,求证:.411ca cb b a -≥-+- 12、已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3.13、已知x 2-2xy +y 2≤2,求证:| x +y |≤10. 14、解不等式15+--x x >21 15、-1≤21x --x ≤2.五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 六、利用“1”的代换型17、.9111 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。

高考数学导数与不等式 导数方法证明不等式

高考数学导数与不等式 导数方法证明不等式
(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数,若直接构造函数求导,难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.提示:在构造函数证明不等式时,常会用到一些放缩技巧:(1)舍去一些正项(或负项);(2)在和或积中换大(或换小)某些项;(3)扩大(或缩小)分式的分子(或分母);(4)构造基本不等式(通常结合代换法,注意对指数的变换).
探究点二 双变量不等式的证明
[思路点拨]首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性;解: f'(x)=1-ln x-1=-ln x,x∈(0,+∞).当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
[总结反思]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,即若证明f(x)>g(x)在区间D上恒成立,则构造函数h(x)=f(x)-g(x),再根据函数h(x)的单调性,证明h(x)>0在区间D上恒成立.
课堂考点探究
课堂考点探究
变式题 [2021·云南师大附中模拟] 已知函数f(x)=aex+b,若f(x)的图像在点(0,f(0))处的切线方程为y=x+1.(1)求a,b的值;
课堂考点探究
例2 [2021·辽宁丹东二模] 已知函数f(x)=ln(ax)-x+a.(2)当0<a≤1时,证明:f(x)≤(x-1)ex-a-x+a.

导数证明不等式的几个方法

导数证明不等式的几个方法

导数证明不等式的几个方法在高等数学中,我们学习了很多种方法来证明不等式。

其中一种常见的方法是使用导数。

导数是用来描述函数变化率的概念,因此可以很好地用来证明不等式。

本文将介绍几种使用导数证明不等式的方法。

一、利用导数的正负性来证明不等式这种方法是最直接的方法之一、假设我们要证明一个函数f(x)在一个区间上大于等于0,我们可以先求出函数f(x)的导数f'(x),然后根据f'(x)的正负性来判断f(x)的增减情况。

如果f'(x)大于等于0,则说明f(x)在整个区间上是递增的;如果f'(x)小于等于0,则说明f(x)在整个区间上是递减的。

根据递增或递减的性质,我们可以得出f(x)大于等于0的结论。

例如,我们要证明函数f(x)=x^2在区间[0,∞)上大于等于0。

首先求出f(x)的导数f'(x)=2x。

然后我们发现在整个区间上,f'(x)大于等于0,说明f(x)是递增的。

由于f(0)=0,因此可以得出f(x)大于等于0的结论。

二、利用导数的单调性来证明不等式这种方法是一种延伸和推广。

与前一种方法类似,我们可以根据导数的单调性来判断函数f(x)的增减情况。

如果f'(x)在一个区间上是递增的,那么f(x)在该区间上是凸的;如果f'(x)在一个区间上是递减的,那么f(x)在该区间上是凹的。

利用这个性质,我们可以得出一些重要的结论。

例如,如果我们要证明一个凸函数在一个区间上大于等于一个常数c,那么只需要证明在这个区间的两个端点上的函数值大于等于c,同时导数在这个区间上是递增的。

三、利用导数的极值来证明不等式这种方法利用了导数的极值特性。

如果一个函数f(x)在一些点x0处的导数为0,并且在这个点的左右两侧的导数符号发生了改变,那么我们可以得出结论,在x0处取得极值。

如果f(x)在x0处取得最大值,那么在这个点的左侧函数值都小于等于f(x0),而在这个点的右侧函数值都大于等于f(x0);反之,如果f(x)在x0处取得最小值,那么在这个点的左侧函数值都大于等于f(x0),而在这个点的右侧函数值都小于等于f(x0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

abnmABCD
E
F

不等式证明方法(二)
1、单调函数法
当x属于某区间,有0)`(xf,则)(xf单调上升;若0)`(xf,则)(xf单
调下降。推广之,若证)()(xgxf,只须证)()(agaf及)`()`(xgxf即可,
],[bax

例1、20x,求证:xxxtansin。
证明:当0x时,0tansinxxx,而
)`(tansec`1cos)`(sin2xxxxx
故得xxxtansin。
2、分解法
按照一定的法则,把一个数或式分解为几个数或式,使复杂问题转化为简单
易解的基本问题,以便分而治之,各个击破,从而达到证明不等式的目的。

例2、2n,且Nn,求证:
)11(131211nnn

n

证明:因为



11131121)11(131211nn

n


n
n
nnnnnnn1134232134232••••••

所以
)11(131211nnn

n

3、几何法
借助几何图形,运用几何或三角知识可使某些证明变易。
例3、已知:Rmba,,,且ba,求证:bambma。
证明:以b为斜边,a为直角边作ABCRt
延长AB至D,使mBD,延长AC至E,使ADED,过C作AD的平
行线交DE于F,则ABC∽ADE,令nCE,

所以nbmaACABba

又CFCE,即mn,所以banbmambma。
4、放缩法(增减法、加强不等式法)
在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使
不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)
的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目
的。值得注意的是“放”、“缩”得当,不要过头。常用方法为:改变分子(分母)
放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法。

例4、求证:01.0100009999654321••••。

证明:令100009999654321••••p,则

10000110001
11100009999143121100009999654321
222222222222
2
•••••••p

所以01.0p。
5、数学归纳法
对于含有)(Nnn的不等式,当n取第一个值时不等式成立,如果使不等式
在)(Nnkn时成立的假设下,还能证明不等式在1kn时也成立,那么肯
定这个不等式对n取第一个值以后的自然数都能成立。
例5、已知:Rba,,Nn,1n,求证:11nnnnabbaba。

证明:(1)当2n时,abababba222,不等式成立;
(2)若kn时,11kkkkabbaba成立,则
111111)()(kkkkkkkkkk
bababbaababbaaba

=kkkkkkkkkkabbabababbababbaabba21112)()2(,
即kkkkabbaba11成立。
根据(1)、(2),11nnnnabbaba对于大于1的自然数n都成立。
6、换元法
在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明
达到简化。

例6、已知:1cba,求证:31cabcab。
证明:设ta31,)(31Rtatb,则tac)1(31,




tattaatattcabcab)1(3131)1(

3131313

1

31)1(3
1
22
taa
(因为012aa,02t),

所以31cabcab。
7、三角代换法
借助三角变换,在证题中可使某些问题变易。
例7、已知:122ba,122yx,求证:1byax。

证明:设sina,则cosb;设sinx,则cosy
所以1)cos(coscossinsinbyax。
8、等式法
应用一些等式的结论,可以巧妙地给出一些难以证明的不等式的证明。
例8、cba,,为ABC的三边长,求证:444222222222cbacbcaba。

证明:由海伦公式))()((cpbpappSABC,
其中)(21cbap。
两边平方,移项整理得
4442222222
222)(16cbacbcabaSABC

而0ABCS,所以444222222222cbacbcaba。

一、选择题
1.设0<x<1,则a=x2,b=1+x,c=x11中最大的一个是( )
A.a B.b C.c D.不能确定
2. 若不等式x2-logax<0在0,12内恒成立,则实数a的取值范围是 ( )

A.116,1 B.0,116 C.(0,1) D.(1,+∞)
3. 设x,y∈R,a>1,b>1,若ax=by=3,a+b=23,则1x+1y的最大值为( )
A.2 B.32 C.1 D.12
4. 不等式2log211log3212xx>0的解集是 ( )
A.[2,3] B.(2,3) C.[2,4] D.(2,4)
5. 设 0ab, 那么 21()abab 的最小值是
A. 2 B. 3 C. 4 D. 5
二、填空题
1. 设x,y为实数,满足3≤xy2≤8,4≤x2y≤9,则x3y4的最大值是________.
2. 若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.

3. 设函数f(x)=x2-1.对任意x∈32,+∞,fxm-4m2f(x)≤f(x-1)+4f(m)恒成立,则实数
m的取值范围是________.

4. 设x>0,y>0,A=yxyx1,B=yyxx11,则A,B的大小关系是__________________.

三、解答题
1.若x,y均为正数,且x+y>2.,求证:xy1与yx1中至少有一个小于2.
2.已知an=3221••+…+)1(nn(n∈N*),求证:2)1(nn<an<2)1(2n对n∈N
*
恒成立.

3. 13.若a,b,c为三角形三边,x,y,z∈R,x+y+z=0,求证:a2yz+bzzx+c2xy≤0.

相关文档
最新文档