高数作业(一)(答案)

高数作业(一)(答案)
高数作业(一)(答案)

常微分方程

第一节 微分方程的基本概念

1、试指出下列方程是什么方程,并指出微分方程的阶数.

.1ln )cos()4(;052)3(;

42)2(;)1(3

2

2

2

2+=+''=+??

?

??-+-??

?

??+=x y y xy dx dy dx y d x

x dx dy dx dy x y x dx

dy

解 (1)

是一阶线性微分方程,因方程中含有的

dx

dy

和y 都是一次. (2) 是一阶非线性微分方程,因方程中含有的dx

dy

的平方项. (3) 是二阶非线性微分方程,因方程中含有的

dx

dy

的三次方. (4)

是二阶非线性微分方程,因方程中含有非线性函数)cos(y ''和.ln y

2、设一物体的温度为100℃, 将其放置在空气温度为20℃的环境中冷却. 根据冷却定律:物体温度的变化率与物体和当时空气温度之差成正比, 设物体的温度T 与时间t 的函数关系为

),(t T T = 则可建立起函数)(t T 满足的微分方程

)20(--=T k dt

dT

其中)0(>k k 为比例常数. 这就是物体冷却的数学模型. 根据题意, )(t T T =还需满足条件 .1000

==t T

3、设一质量为m 的物体只受重力的作用由静止开始自由垂直降落. 根据牛顿第二定律:物体所受的力F 等于物体的质量m 与物体运动的加速度α成正比,即αm F =,若取物体降落的铅垂线为x 轴,其正向朝下,物体下落的起点为原点,并设开始下落的时间是0=t ,物体下落的距离x 与时间t 的函数关系为)(t x x =,则可建立起函数)(t x 满足的微分方程

g dt

x

d =22 其中g 为重力加速度常数. 这就是自由落体运动的数学模型.

根据题意,)(t x x =还需满足条件

.0,

0)0(0

===t dt dx

x 4、验证函数x C x y sin )(2+=(C 为任意常数)是方程

0sin 2cot =--x x x y dx

dy

的通解, 并求满足初始条件0|

2

==

π

x y 的特解.

解 要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将x C x y sin )(2+=求一阶导数,得

dx

dy

,cos )(sin 22x C x x x ++= 把y 和

dx

dy

代入方程左边得 x x x y dx

dy

sin 2cot --x x x x C x x C x x x sin 2cot sin )(cos )(sin 222-+-++=.0≡ 因方程两边恒等,且y 中含有一个任意常数,故x C x y sin )(2+=是题设方程的通解. 将初始条件02

==π

x y 代入通解x C x y sin )(2

+=中,得C +=402

π, .4

2

π-=C 从而所求特解为 .s i n

422x x y ???

?

??-=π 第二节 一阶微分方程

1、形如 的微分方程为可分离变量的微分方程;

形如 的一阶微分方程称为齐次微分方程;

形如 的方程称为一阶线性微分方程. 当 时, 这个方程称为一阶齐次线性方程,它的通解为 ;当 时, 这个方程称为一阶非齐次线性方程,它的通解为 . 解: 形如

)()(y g x f dx

dy

=的微分方程为可分离变量的微分方程; 形如

??

?

??=x y f dx dy 的一阶微分方程称为齐次微分方程; 形如

)()(x Q y x P dx

dy

=+的方程称为一阶线性微分方程. 当,0)(≡x Q 这个方程称为一阶齐次线性方程,它的通解为.)(?-=dx

x P Ce y 当,0)(≡x Q 这个方程称为一阶非齐次线性方

程,它的通解为[]

?-?+=?dx x P dx x P e C dx e x Q y )()()(. 2、求微分方程ydy dx y xydy dx +=+2

的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得

dx x dy y y 11

1

2-=-

两端积分

?

?

-=-dx x dy y y

111

2得 ||ln |1|ln |1|ln 2

1

12C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 3 、已知,tan 2cos )(sin 22x x x f +=' 当10<

.1sin 1sin cos sin tan 2

2222

y y

x

x x x x -=-== 所以原方程变为,121)(y y y y f -+

-='即.11

2)(y

y y f -+-=' 所以 =)(y f ???

? ??-+-y y 112dy 2y -=,)1ln(C y +-- 故 C x x x f +-+-=)]1ln([)(2).10(<

x y x y dx dy tan +=满足初始条件6

==x y 的特解. 解 题设方程为齐次方程,设,x

y u =则,dx du

x u dx dy +=

代入原方程得,tan u u dx du x

u +=+分离变量得.1

cot dx x

udu = 两边积分得||ln ||ln |sin |ln C x u +=,,sin Cx u =

将x

y u =

回代,则得到题设方程的通解为.sin Cx x y

=

利用初始条件,6/|1π==x y 得到.2

1=C 从而所求题设方程的特解为.21

sin x x y =

5、求解微分方程.2

2dx

dy xy dx dy x

y =+ 解 原方程变形为

=-=2

2

x xy y dx dy ,12

-???

??x

y x y (齐次方程) 令,x

y u =则,ux y =,dx du

x u dx dy +=故原方程变为,12-=+u u dx du x u 即.1-=u u dx du x 分离变量得??

?

??-u 11.x dx du =两边积分得||ln ||ln x C u u =+-或.||ln C u xu +=

回代,x

y u =

便得所给方程的通解为 .||ln C x y

y +=

6、求方程x

x

y x y sin 1=+

'的通解.

解 ,1)(x x P =

,s i n )(x

x x Q =于是所求通解为 ?

??

? ?

?+?=???-C dx e x

x e y dx x dx x 1

1

sin ??

? ?

?+?=?-C dx e x

x e x x ln ln sin ).cos (1C x x

+-= 7、求方程

2/5)1(1

2+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程.先求对应齐次方程的通解.

由012

=+-y x dx dy ?12+=x dx y dy ?C x y ln )1ln(2ln ++=?.)1(2+=x C y 用常数变易法,把C 换成,u 即令,)1(2+=x u y 则有

),1(2)1(2+++'=x u x u dx

dy

代入所给非齐次方程得,)1(1/2+='x u 两端积分得,)1(3

2

2/3C x u ++= 回代即得所求方程的通解为

.)1(32)1(2/32??

?

???+++=C x x y

第三节 可降阶的二阶微分方程

1、求方程x e y x cos 2-=''满足1)0(,0)0(='=y y 的特解. 解 对所给方程接连积分二次,得

,sin 2

112C x e y x

+-=

' (1) ,cos 4

1

212C x C x e y x +++= (2)

在(1)中代入条件,1)0(='y 得,211=C 在(2)中代入条件,0)0(=y 得,4

52-=C 从而所求题设方程的特解为

.4

521cos 412-++=x x e y x

2、求方程02)1(222

=-+dx dy

x dx

y d x 的通解. 解 这是一个不显含有未知函数y 的方程.令),(x p dx

dy

=则,22dx dp dx y d =于是题设方程降阶为,02)1(2=-+px dx

dp

x 即.122dx x x p dp +=两边积分,得 |,|ln )1ln(||ln 12C x p ++=即)1(21x C p +=或

).1(21x C dx

dy

+= 再积分得原方程的通解

.3231C x x C y +???

? ??+=

3、 求微分方程初值问题

3,1

,2)1(0

02='

='=''+==x x y y

y x y x 的特解.

解 题设方程属),(y x f y '=''型.设,p y ='代入方程并分离变量后,有.122

dx x x

p dp += 两端积分,得,)1ln(||ln 2C x p ++=即)1(21x C y p +='=).(1c e C ±= 由条件,30='=x y 得,31=C 所以).1(32x y +='

两端再积分,得.323C x x y ++=又由条件,10==x y 得,12=C 于是所求的特解为 .133++=x x y 4、求方程02='-''y y y 的通解. 解 设),(y p y ='则,dy dp p

y =''代入原方程得,02=-?p dy dp

p y 即.0=???

?

??-?p dy dp y p 由,0=-?

p dy dp y 可得,1y C p =所以,1y C dx

dy = 原方程通解为 .12x C e C y =

5、 求微分方程)(22

y y y y '-'=''满足初始条件,1)0(=y 2)0(='y 的特解. 解 令,p y ='由,dy

dp

p

y =''代入方程并化简得 ).1(2-=p dy

dp

y

上式为可分离变量的一阶微分方程,解得,12+='=Cy y p 再分离变量,得

,1

2dx Cy dy

=+由初始条件,1)0(=y

2)0(='y 定出,1=C 从而得

,12

dx y dy

=+再两边积分,得1arctan C x y +=或),tan(1C x y += 由1)0(=y 定出,4

1arctan 1π

==C 从而所求特解为).4

tan(π

+

=x y

第四节 ~ 第六节 二阶线性微分方程

1、二阶线性微分方程的一般形式是 ,其中 是自变量x 的已知函数,当右端项 时, 方程成为 ,这个方程称为二阶齐次线性微分方程,相应地,右端项 时,原方程称为二阶非齐次线性微分方程.

解 二阶线性微分方程的一般形式是)()()(22x f y x Q dx dy

x P dx y d =++,其中)(x P 、)(x Q 及

)(x f 是自变量x 的已知函数,当右端项0)(=x f 时, 方程成为0)()(22=++y x Q dx dy

x P dx

y d ,

这个方程称为二阶齐次线性微分方程,相应地,右端项()0f x ≠时,原方程称为二阶非齐次线性微分方程.

2、设*y 是方程二阶非齐次线性微分方程 的一个特解,而Y 是其对应的齐次方程 的通解,则 就是二阶非齐次线

性微分方程的通解.

解 设*

y 是方程)()()(22x f y x Q dx dy

x P dx

y d =++的一个特解,而Y 是其对应的齐次方程

0)()(2

2=++y x Q dx dy

x P dx

y d 的通解,则*+=y Y y 就是二阶非齐次线性微分方程的通解. 3、求方程032=-'-''y y y 的通解.

解 所给微分方程的特征方程为,0322=--r r

其根3,121=-=r r 是两个不相等的实根,因此所求通解为.321x x e C e C y +=-

4、求方程044=+'+''y y y 的通解.

解 特征方程为,0442=++r r 解得1r 2r =,2-=故所求通解为.)(221x e x C C y -+=

5、求方程052=+'+''y y y 的通解.

解 特征方程为,0522=++r r 解得2,1r ,21i ±-=故所求通解为

).2sin 2cos (21x C x C e y x +=-

6、下列方程具有什么样形式的特解?

(1) ;653x e y y y =+'+'' (2) ;3652x xe y y y -=+'+'' (3) .)13(22x e x y y y -+-=+'+''

解 (1) 因3=λ不是特征方程0652=++r r 的根,故方程具有特解形式:;30*x e b y = (2) 因2-=λ是特征方程0652=++r r 的单根,故方程具有特解形式:;)(210*x e b x b x y -+= (3) 因1-=λ是特征方程0122=++r r 的二重根,所以方程具有特解形式:

.)(21202*x e b x b x b x y -++=

7、求方程1332+=-'-''x y y y 的一个特解.

解 题设方程右端的自由项为x m e x P x f λ)()(=型,其中,13)(+=x x P m .0=λ 对应的齐次方程的特征方程为,0322=--r r 特征根为,11-=r .32=r 由于0=λ不是特征方程的根,所以就设特解为.10*b x b y += 把它代入题设方程,得 ,13323100+=---x b b x b 比较系数得,1323

3100?

??=--=-b b b 解得.1110??

?=-=b b 于是,所求特解为.3

1

*+-=x y

8、求方程x y y sin 4=+''的通解.

解 对应齐次方程的特征方程的特征根为,2,1i r ±=故对应齐次方程的通解

.sin cos 21x C x C Y +=

作辅助方程.4ix e y y =+''

i =λ 是单根,故设.*

ix Axe y =代入上式得42=Ai ?,2i A -=

∴*y ix ixe 2-=),cos 2(sin 2x x i x x -=取虚部得所求非齐次方程特解为.cos 2*

x x y -=

从而题设方程的通解为

.cos 2sin cos 21x x x C x C y -+=

9、设函数)(x y 满足,1)0(,)](sin 6[1)(02=-+='?

y dt t y t x y x

求)(x y .

解 将方程两端对x 求导,得微分方程 ,sin 62x y y =+''即),2cos 1(3x y y -=+'' 特征方程为,012=+r 特征根为,1i r =,2i r -=对应齐次方程的通解为,sin cos 21x C x C Y += 注意到方程的右端)(x f x 2cos 33-=),()(21x f x f +=且i i 2±=±βα不是特征根,根据非齐次方程解的叠加原理,可设特解

*y *

2

*1y y +=,2sin 2cos x c x b a ++= 代入方程定出,0,1,3===c b a 从而原方程的通解为

y .32cos sin cos 21+++=x x C x C

又在原方程的两端令,0=x 得

,1)0(=y ,1)0(='y 又在原方程的两端令,0=x 得,1)0(='y ,1)0(=y ,1)0(='y

,1)0(='y

定出,1,321=-=C C 从而所求函数为

.32cos cos 3sin )(++-=x x x x y

第八节 数学建模——微分方程的应用举例

逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.

一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.

如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.

设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有

)]()[()

(t h H t kh dt

t dh -= 其中0>k 是比例常数. 这个方程为Logistic 方程. 请求解该方程. 解 分离变量得

,)(kdt h H h dh =- 两边积分,)

(??=-kdt h H h dh

得 ,)]ln([ln 1

1C kt h H h H

+=-- 或

,21k H t H C k H t e C e h

H h

==-+ 故所求通解为

,11)(22kHt

kHt kHt Ce H e C He C t h -+=+=

其中的???

? ??>==

-01

12H C e C C C 是正常数.

向量代数与空间解析几何

第一节 ~ 第三节 向量的基本概念与运算

1、在平行四边形ABCD 中, 设?→

?AB =a , ?→

?AD =b . 试用a 和b 表示向量?→

?MA 、?→

?MB 、?→

?MC 、

?→

?MD , 其中M 是平行四边形对角线的交点.

解 由于平行四边形的对角线互相平分, 所以 a +b ?→??→?==AM AC 2, 即 -(a +b )?→

?=MA 2, 于是 21-=?→

?MA (a +b ).

因为?→

??→

?-=MA MC , 所以

2

1=?→

?MC (a +b ).

又因-a +b ?→

??→

?==MD BD 2, 所以21=?→?MD (b -a ). 由于?→

??→?-=MD MB , 所以2

1=?→

?MB (a -b ).

2、已知三点M (1,,、A (2,,和B (2,,,求∠AMB .

解 从M 到A 的向量记为a , 从M 到B 的向量记为b , 则∠AMB 就是向量a 与b 的夹角. a ={1,,,b ={1,,.

因为a ?b =1?1+1?0+0?1=1, 2011||222=++=a , 2101||222=++=b . 所以21221||||cos =?=?=∠b a b a AMB .从而3π=∠AMB .

3、设}2,0,1{-=a ,}1,1,3{-=b ,求b a ?和b a ?. 解 51)2(10)3(1-=?-+?+-?=?b a .

}1,5,2{521

1

320

1=++=--=?k j i k

j

i

b a

4、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求: (1) 向量21P P 的坐标表示;(2) 向量21P P 的模;

(3) 向量21P P 的方向余弦;(4)与向量21P P 方向一致的单位向量. 解 (1) }2,6,3{}57),2(4,21{21-=-----=P P ;

74926)3(222==++-=

(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为

B

C

D

362

cos ,cos ,cos 777

αβγ=-==;

(4) k j i k j i

7

2

76737263)(21++-=++-=

=

P P

5、求与}3,2,1{-=a 共线,且28=?b a 的向量b . 解 由于b 与a 共线,所以可设

}3,2,{λλλλ-==a b ,

由28=?b a ,得

28}3,2,{}3,2,1{=-?-λλλ,

即2894=++λλλ,所以2=λ,从而

}6,4,2{-=b .

6、已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c . 解 先求出与向量b a ?方向一致的单位向量,然后乘以6±.

k j i k

j i b a +-=-=?220

11201, 31)2(2222=+-+=?b a ,

故与b a ?方向一致的单位向量为}1,2,2{3

1-.于是

}1,2,2{3

6

-±=c ,

即 }2,4,4{-=c 或}2,4,4{--=c .

第四节 平面与空间直线

1、求通过点)4,1,2(0-M 和z 轴的平面方程.

解 因为z 轴的单位向量}1,0,0{=k 和1,4}{2,0-=OM 均在所求平面内,故可取该平面的一个法向量为}0,2,1{0=?=OM k n ,于是所求方程为

0)4(0)1(2)2(1=-?+++-?z y x ,

即 02=+y x .

2、求满足下列条件的平面方程:

(1) 过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ; (2) 过x 轴且与平面025=++z y x 的夹角为

π

3

. 解

}1,1,1{

-=

}2,1,3{-=,由题设知,所求平面的法向量为 k j i k

j

i

n 452

131113121--=--=?=P P P P ,

又因为平面过点)2,1,0(1P ,所以所求平面方程为

0)2(4)1(5)0(=-----z y x ,

即 01345=+--z y x .

(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影

0=A ,又平面过原点,所以可设它的方程为

0=+Cz By ,

由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为

π1

cos 32=

≠=,所以0≠B )

,令C B C '=,则有0='+z C y ,由题设得

2222221

2)5(10121503cos ++'++?'+?+?=

π

C C , 解得 3='C 或1

3

C '=-, 于是所求平面方程为03=+z y 或03=-z y .

3、已知平面在x 轴上的截距为2,且过点)0,1,0(-和)3,1,2(,求此平面方程. 解 设所求平面方程为

1=++c

z

b y a x ,

由题设知 1,2-==b a , 平面过点)3,1,2(,所以

131122=+-+c

,得3=c .于是,所求平面方程为 13

12=+-+z y x , 即 06263=-+-z y x . 4、求过原点且垂直于平面022=+-z y 的直线. 解 直线与平面垂直,则与平面的法向量

n ={0,2,-1}平行,取直线方向向量s =n ={0,

2,-1},由于直线过原点,所以直线方程为

z y

x -==2

0 . 5、求过点)0,1,0(0M 且垂直于平面023=+-y x 的直线方程.

解 因所求直线的方向向量s 与已知平面的法向量同向,所以可取}0,1,3{-=s ,故所求方程为0

113z y x =--=.

6、求过点)1,1,2(,平行于直线1

2

2132--=+=-z y x 且垂直于平面0532=+-+z y x 的平面方程.

解 用点法式.所给直线的方向向量}1,2,3{-=s ,所给平面的法向量}3,2,1{1-=n .

1321484123

?=-=-++-i j k

s n i j k ,

由题设知,所求平面的法向量s n ⊥且1⊥n n ,取11

()24

=-?=--n s n i j k ,于是所求平面方程为

0)1()1(2)2(=-----z y x ,

即 012=+--z y x

7、求与两平面 x -4z =3和2x -y -5z =1的交线平行且过点(-3, 2, 5)的直线的方程. 解平面x -4z =3和2x -y -5z =1的交线的方向向量就是所求直线的方向向量s , 因为 )34(

512 401

)52()4(k j i k j i k j i k i s ++-=---=--?-=,

所以所求直线的方程为

1

5

3243-=

-=+z y x . 8、求直线2

4

1312-=

-=-z y x 与平面2x +y +z -6=0的交点.

解 所给直线的参数方程为

x =2+t , y =3+t , z =4+2t , 代入平面方程中, 得

2(2+t )+(3+t )+(4+2t )-6=0.

解上列方程, 得t =-1. 将t =-1代入直线的参数方程, 得所求交点的坐标为 x =1, y =2, z =2.

9、求过点(2, 1, 3)且与直线12131-=-=+z

y x 垂直相交的直线的方程.

解 过点(2, 1, 3)与直线

1

2131-=-=+z y x 垂直的平面为 3(x -2)+2(y -1)-(z -3)=0, 即3x +2y -z =

直线12131-=-=+z y x 与平面3x +2y -z =5的交点坐标为)73 ,713 ,72(-.

以点(2, 1, 3)为起点, 以点)73 ,713 ,72(-为终点的向量为

)4 ,1 ,2(7

6)373 ,1713 ,272(--=----.

所求直线的方程为43

1122-=

--=-z y x .

高等数学作业上-1 (答案)

第一章函数 极限 连续 §1函数 1. 解:(1) 要使24sin x -有意义,必须.2,042≤≥-x x 即使所以定义域为[-2,2]. (2)当时,且1 3≠≠x x 3 41 2+-x x 有意义;而要使2+x 有意义,必须,2-≥x 故函数 的定义域为:).,3()3,1()1,2[+∞-、、 (3),1010.101110ln 110ln arccos e x e e x e x x ≤≤∴≤≤≤≤-,即有意义,则使要使即 定义域为].10,10 [ e e (4)要使)1(+x tg 有意义,则必有.,2,1,0,2 1 ±±=+≠ +k k x ππ ;即函数定义域为 .,2,1,0,12? ?? ?? ?±±=-+≠∈ k k x R x x ππ且 (5)当有意义,时有意义;又当时x arctg x x x 1 033≠-≤故函数的定义域为: ].3,0()0(、,-∞ (6)x k k x k sin )2,1,0()12(2时当 ±±=+≤≤ππ有意义;有要使216x -有意义, 必须有.44≤≤-x 所以函数的定义域为:].,0[],4[ππ、 -- 2. .2)2 1(,2)21 (,2)0(,1)2(,2)3(2 1-=-====f f f f f 3. 解:3134,34)]([22≤≤-+--+-= x x x x x x g f 有意义;必须因此要使, 即[])(x g f 的定义域为[1,3]。 4.解? ?? ??>-=<=???? ???>-=<=; 0,1,0,0,0, 1,1, 1,1, 0, 1,1)]([x x x e e e x g f x x x ?????????>=<==, 1,1,1,1,1,)]([) (x e x x e e x f g x f 。 5.有意义,时当)(sin 1sin 0x f x ≤≤故其定义域为).2,1,0]()12(,2[ ±±=+k k k ππ。 6.???-<++-≥+=+?? ?<+-≥-=-; 1,52, 1,32)1(;1,52, 1,12)1(2 2 x x x x x x f x x x x x x f

七年级下册数学作业本答案2020(苏教版)

七年级下册数学作业本答案2020(苏教版) 1、 =-0.5 =2 2、略 3、略 4、-1.50062×10^4 5、-0.00203 6、-1/(1+2a) -3/(2ab 2(x-y) 7、<-2.5 8、扩大5倍 选择题 ABC 12、 (1)=b/(a+b) (2)=3/(x-1) (3)=【(x-y)2/xy】× 【xy/(x+y)2】 = (x 2-2xy+y 2)/(x 2+2xy+y 2) (4)=(32x^7)/(9 y^3) 13、 x-12=2x+1 x=1 14、(1) x带入原式= (-2/5 – 2k)/-6/5k = 8/5 k=-5 (2)原式=x 2/(x 2+x) 当x=-1/2时,原式=-1 15、原式的倒数=3(x 2+1/x 2-1)=-9/4 16、原式=(a+ab+abc)÷(a+ab+abc)=1 17、设小李x,小王x+2。 60/(x+2)=48/x x=8 x+2=10 1、(1)右 4 下 5 下 5 右 4 点A′ 点B′ ∠C′ 线段B′C′ (2)相同距离

(3)相等相等相等 (4)形状 (5)距离 (6)略 2、图自己画啊 (1)一个定点这个定点 (2) 旋转中心相等相等相等 (3)大小形状 (4)略 3、图自己画 (1)180° 另一个图形两个图形这点两个图形成中心对称对称中心交点 (2)初始旋转中心旋转角0°<α<360° (3)180° 初始图形对称中心 (4)略 4、图自己画 (1)成轴对称直线 (2)相等相等相同不变 (3)两对对应点中点的垂线 (4)相互重合轴对称图形直线 (5)过圆心的直线无数边中点的中垂线 3 4 2

(完整)同济版高等数学下册练习题(附答案)

第八章 测 验 题 一、选择题: 1、若a → ,b → 为共线的单位向量,则它们的数量积 a b →→ ?= ( ). (A) 1; (B)-1; (C) 0; (D)cos(,)a b →→ . 向量a b →→?与二向量a → 及b → 的位置关系是( ). 共面; (B)共线; (C) 垂直; (D)斜交 . 3、设向量Q → 与三轴正向夹角依次为,,αβγ,当 cos 0β=时,有( ) ()(); (); ()A Q xoy B Q yoz C Q xoz D Q xoz ⊥r r r r 面; 面面面 5、2 ()αβ→ → ±=( ) (A)22αβ→→±; (B)2 2 2ααββ→→→ →±+; (C)2 2 ααββ→→→ →±+; (D)2 2 2ααββ→→→ →±+. 6、设平面方程为0Bx Cz D ++=,且,,0B C D ≠, 则 平面( ). (A) 平行于轴;x ;(B) y 平行于轴; (C) y 经过轴;(D) 经过轴y . 7、设直线方程为111122 00A x B y C z D B y D +++=??+=?且 111122,,,,,0A B C D B D ≠,则直线( ). (A) 过原点; (B)x 平行于轴; (C)y 平行于轴; (D)x 平行于轴. 8、曲面2 50z xy yz x +--=与直线5 13 x y -=- 10 7 z -= 的交点是( ). (A)(1,2,3),(2,1,4)--;(B)(1,2,3); (C)(2,3,4); (D)(2,1,4).-- 9、已知球面经过(0,3,1)-且与xoy 面交成圆周 22160 x y z ?+=?=?,则此球面的方程是( ). (A)2 2 2 6160x y z z ++++=; (B)222 160x y z z ++-=; (C)2 2 2 6160x y z z ++-+=; (D)2 2 2 6160x y z z +++-=. 10、下列方程中所示曲面是双叶旋转双曲面的是( ). (A)2 2 2 1x y z ++=; (B)22 4x y z +=; (C)22 2 14y x z -+=; (D)2221916 x y z +-=-. 二、已知向量,a b r r 的夹角等于3 π ,且2,5a b →→==,求 (2)(3)a b a b →→→→ -?+ . 三、求向量{4,3,4}a → =-在向量{2,2,1}b → =上的投影 . 四、设平行四边形二边为向量 {1,3,1};{2,1,3}a b → → =-=-{}2,1,3b =-,求其面积 . 五、已知,,a b →→ 为两非零不共线向量,求证: ()()a b a b →→→→-?+2()a b →→ =?. 六、一动点与点(1,0,0)M 的距离是它到平面4x =的距离的一半,试求该动点轨迹曲面与yoz 面的交线方程 . 七、求直线L :31258x t y t z t =-?? =-+??=+? 在三个坐标面上及平面 π380x y z -++=上的投影方程 . 八、求通过直线 122 232 x y z -+-==-且垂直于平面3250x y z +--=的平面方程 .

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

高数下典型习题及参考答案

第八章典型习题 一、填空题、选择题 1、y x z += 1的定义域为 ; 2、1 1lim 0-+→→xy xy y x ; 3、设xy z 3=, x z ??= ; 4、 z z x ?==?设则 5、由方程z y x e xyz e =++确定了函数()y x z z ,=,求dz 。 6、函数()y x f z ,=在点()00,y x 处()00,y x f x ,()00,y x f y 存在,则()y x f ,在该点( ) A 、连续 B 、不连续 C 、不一定连续 D 、可微 二、解答题 1、求曲面632222=++z y x 在点P (1,1,1)的切平面方程和法线方程。 2、2,y z f x y f x ? ?= ?? ?已知 ,其中为可微函数,y z x z ????,求。 3、设()y x z z ,=是由方程 y z z x ln =确定,求x z ??,y z ??。 4、做一个表面积为12平方米的长方体无盖铁皮箱,问长、宽、高如何选取,才能使铁箱的容积为最大。 第九章、第十章典型习题 一、填空题、选择题 1、将二重积分()dxdy y x f D ??,化为二次积分,其中积分区域D 是由0,,42≥==x x y y 所围成,下列各式 中正确的是( )A 、()dy y x f dx x ??2 04 ,2 B 、()dy y x f dx ??4 4 , C 、()dx y x f dy y ??0 40 , D 、()dx y x f dy y ? ?0 40 , 2、设Ω是由1,0,1,0,1,0======z z y y x x 所围成的区域,则=???Ω xyzdxdydz 3、旋转抛物面2 2 2y x z +=在20≤≤z 那部分的曲面面积S=( )

高等数学同济大学第六版 第八章 单元练习题 参考答案

第八章 空间解析几何与向量代数 单元测试题 参考答案: 一、填空题 1.点(),,M x y z 关于x 轴的对称点为1M (),,x y z --;关于x O y 平面的对称点为 2M (),,x y z -;关于原点的对称点为3M (),,x y z ---. 2. 平行于a ={1,1,1} 若向量}5,1,{λ=a 与向量}50,10,2{=b 平行,λ为 15 . 3.已知两点() 1,2,41M 和()2,0,32M ,则向量21M M 在三个坐标轴上的投影分别是 –1 2- 、 1 ,在坐标轴方向上的分量分别是i - 、j 2- 、k , = 2 , 方向余弦 =αcos 21-、 =βcos 2 2-、=γcos 21 , 方向角=α 0120、 =β 0 135、 =γ 060, 与21M M 同方向的单位向量是??????--21,22,21 . 4. 已知两向量k j i a 1046+-=,k j i b 943-+=,则=+b a 2k j i 8412-+, =-b a 23k j i 482012+-,b a 23-在oz 轴上的投影为48 . 5.过点(1,2,1)M -且与直线2341x t y t z t =-++??=-??=-? 垂直的平面方程是340x y z --+= 二、选择题 1. 向量a 与b 的数量积?a b =( C ). A a rj P b a ; B ?a rj P a b ; C a rj P a b ; D b rj P a b . 2. 非零向量,a b 满足0?=a b ,则有( C ). A a ∥b ; B =λa b (λ为实数); C ⊥a b ; D 0+=a b . 3. 设a 与b 为非零向量,则0?=a b 是( A ). A a ∥b 的充要条件; B a ⊥b 的充要条件; C =a b 的充要条件; D a ∥b 的必要但不充分的条件.

初二年级下册数学课堂作业本答案

初二年级下册数学课堂作业本答案 参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠5 2.2,1,3,BC 3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD 和∠DEC,同旁内角是∠AFD 和∠AED6.各4对.同位角有∠B 与∠GAD,∠B 与∠DCF,∠D 与∠HAB,∠D 与∠ECB;内错角有∠B 与∠BCE, ∠B 与∠HAB,∠D 与∠GAD,∠D 与∠DCF;同旁内角有∠B 与∠DAB, ∠B 与∠DCB,∠D 与∠DAB,∠D与∠DCB 【1.2(1)】1.(1)AB,CD (2)∠3,同位角相等,两直线平行 2.略3.AB∥CD,理由略 4.已知,∠B,2,同位角相等,两直线平行5.a与 b平行.理由略6.DG∥BF.理由如下:由DG,BF 分别是∠ADE 和∠ABC 的角平分线,得∠ADG=12∠ADE,∠ABF= 12 ∠ABC,则∠ADG=∠ABF, 所以由同位角相等,两直线平行,得DG∥BF 【1.2(2)】1.(1)2,4,内错角相等,两直线平行 (2)1,3,内错 角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行 (2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角 是同旁内角且互补,所以两直线平行4.平行.理由如下:由 ∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以 ∠DEC+∠ABC=180°,AB∥DE (同旁内角互补,两直线平 行)5.(1)180°;AD;BC(2)AB 与CD 不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得 ∠ABD+∠BDC=180° 7.略 【1.3(1)】1.D 2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理 由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴ ∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行, 同位角相等;305.β=44°. ∵ AB∥CD,∴ α=β6.(1)∠B=∠D (2) 由2x+15=65-3x解得x=10,所以∠1=35°

高等数学(下)课后习题答案

高等数学(下) 习题七 1. 在空间直角坐标系中,定出下列各点的位置: A(1,2,3); B(-2,3,4); C(2,-3,-4); D(3,4,0); E(0,4,3); F(3,0,0). 解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限; 点D在xOy面上;点E在yOz面上;点F在x轴上. 2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢? 答: 在xOy面上的点,z=0; 在yOz面上的点,x=0; 在zOx面上的点,y=0. 3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢? 答:x轴上的点,y=z=0; y轴上的点,x=z=0; z轴上的点,x=y=0. 4. 求下列各对点之间的距离: (1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4); (3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3). 解:(1)s= (2) s== (3) s== (4) s== 5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 s== s== x s== y s==. 5 z 6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则

222222 (4)1(7)35(2) z z -++-=++-- 解得14 9 z= 即所求点为M(0,0, 14 9 ). 7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC为等腰直角三角形. 8. 验证:()() ++=++ a b c a b c. 证明:利用三角形法则得证.见图7-1 图7-1 9. 设2,3. u v =-+=-+- a b c a b c试用a , b, c表示23. u v - 解: 232(2)3(3) 224393 5117 u v -=-+--+- =-++-+ =-+ a b c a b c a b c a b c a b c 10. 把△ABC的BC边分成五等份,设分点依次为D 1,D2,D3,D4,再把各分点与A连接, 试以AB=c,BC=a表示向量 1 D A, 2 D A, 3 D A和 4 D A. 解: 11 1 5 D A BA BD =-=-- c a 22 2 5 D A BA BD =-=-- c a 33 3 5 D A BA BD =-=-- c a 44 4 . 5 D A BA BD =-=-- c a 11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M的投影为M',则 1 Pr j cos604 2. 2 u OM OM =?=?= 12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量

高等数学作业集答案第八章

第八章 空间解析几何与向量代数 §8.1向量及其线性运算 1.填空题 (1)点)1,1,1(关于xoy 面对称的点为()1,1,1(-),关于yoz 面对称的点为()1,1,1(-),关于xoz 面对称的点为()1,1,1(-). (2)点)2,1,2(-关于x 轴对称的点为()2,1,2(-),关于y 轴对称的点为()2,1,2(---),关于z 轴对称的点为()2,1,2(-),关于坐标原点对称的点为()2,1,2(--). 2. 已知两点)1,1,1(1M 和)1,2,2(2M ,计算向量21M M 的模、方向余弦和方向角. 解:因为)0,1,1(21=M M ,故2||21=M M ,方向余弦为2 2 cos = α,2 2 cos = β,0cos =γ,方向角为4πα=,4πβ=, 2πγ=. 3. 在yoz 平面上,求与)1,1,1(A 、)2,1,2(B 、)3,3,3(C 等距离的点. 解:设该点为),,0(z y ,则 222222)3()3(9)2()1(4)1()1(1-+-+=-+-+=-+-+z y z y z y , 即?????-+-+=-+-+-+=-+2 2222 2) 3()3(9)2()1(4)2(4)1(1z y z y z z ,解得???==33y z ,则该点为)3,3,0(. 4. 求平行于向量k j i a 432-+=的单位向量的分解式. 解:所求的向量有两个,一个与a 同向,一个与a 反向. 因为 29)4(32||222=-++=a ,所以)432(29 1k j i e a -+± =. 5.设k j i m 22-+=,k j i n ++=2,求向量n m a +=4在各坐标轴上的投影及分向量. 解:因为k j i k j i k j i n m a 796)2()22(44-+=+++-+=+=, 所以在x 轴上的投影为6=x a ,分向量为i i a x 6=,y 轴上的投影为 9=y a ,分向量为j j a y 9=,z 轴上的投影为7-=z a ,分向量为k k a z 7-=. 6. 在yOz 平面上,求与)1,2,1(A 、)0,1,2(B 和)1,1,1(-C 等距离的点.

《高等数学基础》作业

高等数学基础 形成性考核册 专业:建筑 学号: 姓名:牛萌 河北广播电视大学开放教育学院 (请按照顺序打印,并左侧装订)

高等数学基础形考作业1: 第1章 函数 第2章 极限与连续 (一)单项选择题 ⒈下列各函数对中,( C )中的两个函数相等. A. 2 )()(x x f =,x x g =)( B. 2)(x x f = ,x x g =)( C. 3 ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,1 1 )(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于( C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = ⒊下列函数中为奇函数是( B ). A. )1ln(2 x y += B. x x y cos = C. 2 x x a a y -+= D. )1ln(x y += ⒋下列函数中为基本初等函数是( C ). A. 1+=x y B. x y -= C. 2 x y = D. ?? ?≥<-=0, 10 ,1x x y ⒌下列极限存计算不正确的是( D ). A. 12lim 2 2 =+∞→x x x B. 0)1ln(lim 0 =+→x x C. 0sin lim =∞→x x x D. 01 sin lim =∞→x x x ⒍当0→x 时,变量( C )是无穷小量. A. x x sin B. x 1 C. x x 1 sin D. 2)ln(+x ⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。 A. )()(lim 00 x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义 C. )()(lim 00 x f x f x x =+→ D. )(lim )(lim 0 x f x f x x x x -+→→=

高数作业本答案(上册)

第一章 答案 习题1.1 1.判断题:1)× 2)× 3)√ 4)× 5)× 6)× 7)× 8)× 2.1)不同;2)不同;3)相同;4)不同;5)不同; 3.1)],0[],4(ππ?--;2)? ?????±±=-π+π≠+∞-∞∈ 2,1,0,12),,(|k k x x x 且; 3)当]1,[21a a a -≤ 时,为,当φ时,为2 1 >a 。 4.1)13-=x y ;2)]2,2[,3arcsin 31-∈=x x y ;3))1,0(,1log 2 ∈-=x x x y ; 4)? ??≤<-≤≤-+=10,1 1,1x x x x y . 5.? ??≠==1,01 ,1))((x x x g f ;1))((=x f g . 习题1.2~1.3 1. 1)(lim 0 =- →x f x ,1)(lim 0 =+ →x f x ,1)(lim 0 =→x f x ; 1)(lim 0 -=?- →x x ,1)(lim 0 =?- →x x ,)(lim 0 x x ?-→不存在. 2. 1)极限不存在;2)2 )1cot 1(arctan lim 0 π =+→x arc x x . 3. 略 习题1.4 1.判断题:1)× 2)× 3)√ 4)× 2.C ;D. 习题1.5 1.1)1;2) 21;3)21;4)21. 2. 1)41;2))(21m n mn -;3)2 1 ;4)6. 3.1)0;2)1;3)0;4)1;5)不存在;6)1;7)0 习题1.6 1.1)1;2) 2 5 1+; 2.1)2 e ;2)4 -e 3.1)2;2) 32;3)2 2-;4)e ;5)e 1;6)2π.

《高等数学》第八章练习题及答案

《高等数学(下册)》第八章练习题 一、填空题 1、________________ )sin(==dz xy z 则, 设 2、设),cos(2y x z =,则=??)2,1(πx z 3、函数22)(6y x y x z ---=的极值点为 4、设xy e z =,则=dz 5、设y z ln z x =,则=?zx z 二、选择题 )2 0( D. )0 2( C. )0 0( B. )2 2( A.) (33) ( 12233,,,,的极小值点为,函数、y x y x y x f --+= 2、),(y x f 在点),(00y x 处偏导数),(),(0000y x f y x f y x ''、存在就是),(y x f 在该点连续的( )、 (a)充分条件, (b)必要条件, (c)充要条件, (d)既非充分条件又非必要条件。 3、设)2ln(),(x y x y x f +=,则=())1,1(-'x f 、 (A),31 (B),31- (C),65 (D).6 5- 三、计算题 方程。处的切线方程与法平面,,在点求曲线、)1 2 1( 2 132 ???==x z x y 2、设),(y x z z =就是由方程0),(=--z y z x F 确定的隐函数,F 具有一阶连续偏导数,且,0≠'+'v u F F 其中,,z y v z x u -=-=求.,y z x z ???? 3、求曲面3222-=+-z xz y x 在点)1,2,1(处的切平面及法线方程。 4、设,222z y x e u ++=而y x z sin 2=,求x u ??、 5、求曲线t z e y e x t t ===-,,,对应于0=t 点处的切线与法平面方程。 6、求函数)4(2y x y x z --=在闭域4,0,0≤+≥≥y x y x 上的最大值及最小值。

高等数学下册复习题及答案

一、解答下列各题(本大题共3小题,总计15分) 1、( 本 大 题5分 ) 设L 由y =x 2及y =1所围成的区域D 的正向边界, 求 ?+++L dy y x x dx y x xy )()(2 4233 2、(本小题5分) 设f (x ,y )是连续函数,交换二次积分??2 3 ),(10x x dy y x f dx 的积分次序。 3、(本小题5分) 设()f x 是以2π为周期的函数,当 x ∈-?? ?? ?ππ232, 时, ()f x x =。又设()S x 是()f x 的 以2π为周期的Fourier 级数之和函数。试写出()S x 在 []-ππ,内的表达式。 二、解答下列各题(本大题共7小题,总计42分) 1、(本小题6分) 设z=z(x,y)由方程x 2 +y 2 +z 2 =ln(y z )确定,求z z x y ,。 2、(本小题6分) 设z y xy x =++232 (),求z z x y ,。 3、(本小题6分) 设f x y (,)有连续偏导数,u f e e x y =(,),求d u 。

利用极坐标计算二次积分 5、(本小题6分) 求微分方程''-'+=y y y x e x 22的一个特解。 6、(本小题6分) 求幂级数n n x n )3 2(11 -∑ ∞ =的收敛域。 7、(本小题6分) 求微分方程0)42()2(32=-+++dy y x y x dx y y 的通解。 三、解答下列各题 (本大题共2小题,总计13分) 1、(本小题7分) 求曲面x xy xyz ++=9在点(,,)123处的切平面和法线方程 。 2、(本小题6分) 试求由x 2+y 2+z 2≤4与x 2+y 2≤3z 所确定的立体的体积。 四、解答下列各题 (本大题共2小题,总计13分)

高等数学同济大学第六版第八章单元练习题参考答案.doc

第八章空间解析几何与向量代数单元测试题参考答案: 一、填空题 1. 点M x, y, z关于x轴的对称点为M1 x, y, z ;关于xOy平面的对称点为M 2x, y, z ;关于原点的对称点为M3 x, y, z . 2. 平行于a ={1 ,1,1} 的单位向量为1 1,1,1 ;若向量 a { ,1,5} 与向量 b { 2,10,50} 3 平行,为1 . 5 3. 已知两点M1 4, 2,1 和 M 2 3,0,2 ,则向量M1M2在三个坐标轴上的投影分别是–1 2 、1 ,在坐标轴方向上的分量分别是i 、 2 j 、 k , M1M 2 2 , 方向余弦cos 1 、 cos 2 、 cos 1 , 方向角1200 、 2 2 2 1350 、60 0 , 与M1M2 同方向的单位向量是 1 , 2 , 1 . 2 2 2 4. 已知两向量a 6i 4 j 10k , b 3i 4 j 9k ,则 a 2b 12i 4 j 8k , 3a 2b 12i 20 j 48k , 3a 2b 在oz轴上的投影为48 . x t 2 5.过点 M (1,2, 1) 且与直线y 3t 4 垂直的平面方程是 x 3 y z 4 0 z t 1 二、选择题 1.向量a与b的数量积 a b=(C). A a rj 2.非零向量 A a ∥b b a ;B a rj a b ; C a rj a b ; D b rj a b.a, b 满足a b0 ,则有(C). ; B a b (为实数);C a b ;D a b0 . 3.设 a 与b为非零向量,则a A a ∥b的充要条件; C a b 的充要条件;b0是(A). B a ⊥b的充要条件; D a ∥b的必要但不充分的条件.

高数下册第十一章第七次作业答案

第七次作业 1.函数3 2z xy u = 在点A )2,1,5(处沿到点B )14,4,9(的方向 → AB 上的方向导数为 。 解 填13 992 802,8)2,1,5(3 )2,1,5()2,1,5(32)2,1,5(====xyz u z y u y x {}12,3,4,603) 2,1,5(22 )2,1,5(====→AB T z xy u z ,13 12 cos ,133cos ,134cos ===γβα 则u 在点A 处沿→ AB 的方向导数为: 13 992131260133801348)2,1,5(=?+?+?=??T u 2.函数 ()2 2 2 ln z y x u -+=在点 M )1,1,1(-处的梯度 =M gradu 。 解 填{}2,2,2-- 2 22222222z y x z 2z u ,z y x y 2y u ,z y x x 2x u -+-=??-+=??-+=??

2,2,2) 1,1,1()1,1,1()1,1,1(=??-=??=??∴---z u y u x u {}2,2,2-=∴M gradu 3.对二元函数(,)z f x y =而言( ) 。 A.,x y f f 存在且连续,则(,)f x y 沿任一方向的方向导数存在; B. (,)f x y 的偏导数都存在,则(,)f x y 沿任一方向的方向导 数存在; C.沿任一方向的方向导数存在,则函数(,)f x y 必连续; D .以上结论都不对。 解 填(A ) x y f f ,存在且连续f ?可微?沿任一方向的方向导数存在。 4.若函数(,,)u u x y z = 在点(,,)x y z 处的三个偏导数都存在 且不全为0,则向量,,u u u x y z ????????????的方向是函数u 在点 (,,)x y z 处的( ) 。 A .变化率最小的方向; B .变化率最大的方向; C .可能是变化率最小的方向,也可能是变化率最大的方向; D .既不是变化率最小的方向,也不是变化率最大的方向。 解 填(B )

(完整版)高数答案(下)习题册答案第六版下册同济大学数学系编

第八章 多元函数的微分法及其应用 § 1 多元函数概念 一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ??求-=+=. 二、求下列函数的定义域: 1、2 221)1(),(y x y x y x f ---= };1|),{(2 2≠+x y y x 2、x y z arcsin = };0,|),{(≠≤x x y y x 三、求下列极限: 1、222)0,0(),(sin lim y x y x y x +→ (0) 2、 x y x x y 3)2,(),()1(lim +∞→ (6e ) 四、证明极限 2 42)0,0(),(lim y x y x y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2 x y =趋于(0,0)时,极限为2 1 , 二者不相等,所以极限不存在 五、证明函数?? ??? =≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x y x xy y x f 在整个xoy 面上连续。 证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。当)0,0(),(=y x 时, )0,0(01 sin lim 2 2)0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。所以函数 在整个xoy 面上连续。 六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数 1、设z=x y xe xy + ,验证 z x y +=??+??y z y x z x 证明:x y x y x y e x ,e x y e y +=??-+=??y z x z ,∴z xy xe xy xy x y +=++=??+??y z y x z x 42244222222)()),,((y y x x y y x y y x f +-=+-=?答案:

高数上册练习题

上册练习题 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2.  ) 时(  ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()() x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt = -? ,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ()( , )(2)( )(1 =+=? x f dt t f x x f x f 则是连续函数,且 设 (A )2 2x (B )2 2 2 x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 )31(lim . 6. , )(cos 的一个原函数 是已知 x f x x = ? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++= 22 2 21 n n n n n n π π ππ . 8. = -+? 2 121 2 2 11 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. . d ) 1(17 7x x x x ? +-求

六年级下数学课堂作业本答案

六年级下数学课堂作业本答案 六年级下数学课堂作业本答案 一、填空题:(22分) 1、()÷24=38=24:()=()% 2、六年级数学下册数学期中考试卷:在2、 3、 4、6、9中选四个写出一个比例式:()。 3、在一个比例中,两个外项的积是12,其中一个内项是23,则另一个内项是()。 4、一瓶50克的盐水,盐与水的质量比是24∶1,盐有()克,将这瓶盐水搅拌均匀后平均分成两份,其中一份的含盐率是()%。 5、在一个比例式中,两个比的比值等于25,这个比例的两个内项分别是10以内相邻的两个质数,这个比例式是()。 6、总价一定,数量和单价成()比例,比例尺一定,图上距离和实际距离成()比例。 7、小圆半径是2厘米,大圆半径是3厘米,小圆与大圆周长的比是(),面积的比是()。 8、一件上衣七五折后售价是135元,这件上衣的原价是()元 9、六年级一班有50人参加数学考试,结果2人不达标,达标率是()%。 10、把一个棱长6cm的正方体木料削成一个最大的圆锥体,这个圆锥体的体积是()。 11、一个圆锥的体积是48立方厘米,高是8厘米,底面积是()平方厘米。

12、一辆车往返甲乙,去时用4小时,回来时,速度提高了17,回来时用()小时。 13、早上8时,小华在操场上量得1米长的竹竿的影长1.5米。同时,他还量得操场上旗杆的影长18米,操场上旗杆有()米。 14、纳税是每个公民应尽的义务。做服装生意的王叔叔上月营业额是6000元,如果按5%的税率缴纳营业税,王叔叔上月应缴营业 税()元? 15、如果甲数的4/5等于乙数的2/3,那么甲数:乙数=(:) 16、一圆柱,半径与高的比是4︰5,将这个圆柱的底面分成许 多相等的'小扇形,切开拼成一个近似长方体,长方体的长比宽多 8.56cm,这个圆柱的体积是()。 17、小亮练习投篮160次,命中率是60%,他有()次命中。 二、判断题:(5分) 1、圆的面积和半径成正比例。() 2、如果圆锥的体积是圆柱体积的,那么它们一定等底等高。() 3、如果一个比例的两个内项互为倒数,那么它的两个外项也互 为倒数。() 4、圆锥体的体积一定,它的底面积与高成反比例。() 5、吨等于40%吨。() 三、选择题:(7分) 1、将一个圆锥的底面直径扩大到原来的3倍,要使体积不变,高要缩小到原来的()。A.B.C.D. 2、两个正方形的边长的比是1∶3,那么,这两个正方形的面积 比是()。 A1∶3B3∶1C1∶9D9∶1

南京工程学院高等数学第八章习题答案

习题8.1 1. 解 2. 解 3.解 4.解设 则 5. 解 A: Ⅴ B : Ⅳ C: Ⅶ D : Ⅲ 6. A点在XOY 面上,点 B在 YOZ 面上, C点在 Z轴上,点D 在Y轴上。 7. (1) A点关于 xOy 平面的对称点是(2,-3,1) B点关于 xOy 平面的对称点是(a,b,-c) A点关于 yOz 平面的对称点是(-2,-3,1) B点关于 xOy 平面的对称点是(-a,b,c) A点关于 xOz 平面的对称点是(2,3,-1) B点关于 xOz 平面的对称点是(a,-b,c) A点关于x轴、y轴、z轴的对称点分别是(2,3,1)(-2,-3,1)(-2,3,-1) B点关于 x轴、y轴、z轴的对称点分别是(a,-b,-c) (-a,b,-c) (-a,-b,c) A点关于原点的对称点为(-2,3-1) B点关于原点的对称点为(-a,-b,-c) 8. 9.解 所以△M1M2M3为等腰三角形。 10.解

11. 解 12. 解 13. 解 14. 解 15. 解(1) 16. 解 17. 解 18 解 19. 解 习题8.2 1. 解(1)

(2) (3) 2. 解(1)(2)(3) (4) (5) 3. 解 4. 解 5. 解 6. 解利用向量积的几何意义 7. 解(1) (2) 8. 解 (1)

(2) (3) 10. 解(1) (2) 13. 解 习题8.3 1. 解 2. 解 3. 解(1)(2) 4~8见课本P317

9. 10. 解习题 8.4 1. 解

2. 解(1)平面中表示点(-6,-8),空间中表示一条直线; (2)平面中表示点(2,0),空间中表示一条直线; (3)平面中表示点(1,0),(0,1),空间中表示两条直线; 3. 解 4. (1)解 (2)解 (3) 解 5. (1)解 (2) 解 6. 解由参数方程得于是 于是得到在xOy坐标面上的投影为 在xOz坐标面上的投影为 在xOz坐标面上的投影为

高等数学上册作业1-8有答案

第一学期高等数学(一)作业(八) 三、计算下列定积分 班级: 姓名: 学号: 1、x x x d ) 1(1 21 4 ? +. 一、填空题 1、定积分=+? x x x d 4120 . 2、设 )(x f 连续,且? -+=x a t t x f x F d )()(,则=')(x F . 3、设0>b ,且?=b x x x 0 1d e ,则常数=b . 4、设 a x x m =? d c o s 2 π0 (m 为正整数),则=+? x x x m d )(sin 2π0 2 . 5、=+?-x x x d e 11 12 .(提示:利用[]x x f x f x x f a a a d )()(d )(0 ??-+=-). 二、单项选择题 1、设 ???<≥=1 ,01 ,ln )(x x x x f ,且?-=x t t f x F 1 d )()(,则=)2(F . (A) 12ln 2+; (B) 12ln 2-; (C) 21-; (D) 2 1 . 2、定积分()=++?-112 23d 1cos x x x x x . (A )0; (B )31; (C )3 2 ; (D )1. 3、设 x x f e )13(=+,则定积分=? -72 d )(x x f . (A))e e (31 2 --; (B) )e e (1 2 --; (C) )e e (3 112 --; (D) )e e (27--. 4、设 ? =1 22d )(x x f ,且1d )()(1 ='?x x f x f x ,则=)1(f . (A ) 3; (B )2; (C )2或2-; (D )3或3-. 5、反常积分 =? ∞+-0 d e x x x n ,其中n 为正整数. (A) n ; (B) !n ; (C) 1; (D) ∞+. 2、x x x d ) ln 2(1 e 1 2 ? +. 3、? --2π2 π3d cos cos x x x . 4、 {} x x d ,1max 22 2? -.

相关文档
最新文档