相互独立事件同时发生的概率

合集下载

事件的相互独立性、条件概率与全概率公式-高考数学复习

事件的相互独立性、条件概率与全概率公式-高考数学复习
“两次取出的球的数字之和是7”,则(

A. 甲与丙相互独立
B. 甲与丁相互独立
C. 乙与丙相互独立
D. 丙与丁相互独立
目录
解析:
1
事件甲发生的概率 P (甲)= ,事件乙发生的概率 P
6
1
5
5
(乙)= ,事件丙发生的概率 P (丙)=
= ,事件丁发生的概
6
6×6
36
6
1
率 P (丁)=
= .事件甲与事件丙同时发生的概率为0, P (甲
)=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+
0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人需
使用设备的概率 P 2=0.6×0.5×0.5×0.4=0.06,故所求的概率 P =
3
2
3
5
( )·P ( )·P ( )=(1- )(1- )(1- )= .
4
3
8
96
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙
三人中,至少有一人答对这道题”是对立事件,
5
91
所以所求事件的概率为 P ( M )=1- = .
96
96
目录
解题技法
1. 求相互独立事件同时发生的概率的步骤
2∪…∪ An =Ω,且 P ( Ai )>0, i =1,2,…, n ,则对任意的事

件 B ⊆Ω,有 P ( B )=
∑ P ( Ai ) P ( B | Ai )
i=1
,我们称上面
的公式为全概率公式.
目录
1. 判断正误.(正确的画“√”,错误的画“×”)

相互独立事件同时发生的概率典型例题

相互独立事件同时发生的概率典型例题

相互独立事件同时发生的概率典型例题例1甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为和,求:(1)两个人都译出密码的概率;(2)两个人都译不出密码的概率;(3)恰有1个人译出密码的概率;(4)至多1个人译出密码的概率;(5)至少1个人译出密码的概率.分析:我们把“甲独立地译出密码”记为事件,把“乙独立地译出密码”记为事件,显然为相互独立事件,问题(1)两个都译出密码相当于事件、同时发生,即事件.问题(2)两人都译不出密码相当于事件.问题(3)恰有1个人译出密码可以分成两类:发生不发生,不发生发生,即恰有1个人译出密码相当于事件.问题(4)至多1个人译出密码的对立事件是两个人都未译出密码,即事件.由于、是独立事件,上述问题中,与,与,与是相互独立事件,可以用公式计算相关概率.解:记“甲独立地译出密码”为事件,“乙独立地译出密码”为事件,、为相互独立事件,且.(1)两个人都译出密码的概率为:.(2)两个人都译不出密码的概率为:(3)恰有1个人译出密码可以分为两类:甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:(4)“至多1个人译出密码”的对立事件为“有两个人译出密码”,所以至多1个人译出密码的概率为:.(5)“至少有1个人译出密码”的对立事件为“两人未译出密码”,所以至少有1个人译出密码的概率为:.说明:如果需要提高能译出密码的可能性,就需要增加可能译出密码的人,现在可以提出这样的问题:若要达到译出密码的概率为99%,至少需要像乙这样的人多少个?我们可以假设有个像乙这样的人分别独立地破译密码,此问题相当于次独立重复试验,要译出密码相当于至少有1个译出密码,其对立事件为所有人都未译出密码,能译出密码的概率为,按要求,,故,可以计算出,即至少有像乙这样的人16名,才能使译出密码的概率达到99%.例2如图,开关电路中,某段时间内,开关开或关的概率均为,且是相互独立的,求这段时间内灯亮的概率.分析:我们把“开关合上”记为事件,“开关合上”记为事件,“开关合上”记为事件C,是相互独立事件且由已知,它们的概率都是,由物理学知识,要求灯亮,有两种可能性,一个是、两开关合上,即事件发生,另一个是开关合上,即事件发生,也就是灯亮相当于事件发生.解:分别记“开关合上”、“开关合上”、“开关合上”为事件,由已知,是相互独立事件且概率都是.开关、合上或开关合上时灯亮,所以这段时间内灯亮的概率为:说明:本题的解题过程中,灵活使用了概率中的一些符号,比如,表示事件与事件同时发生,表示事件与事件至少有一个发生,表示与至少有一个发生,所以分成了三个互斥事件:发生不发生,不发生发生,与都发生,而其中不发生发生即,又不发生即与至少有一个不发生,从而又分成了三个互斥事件:、、,符号语言的正确理解与使用,不仅是提高数学能力的需要,而且也使数学解题过程简便明了,一些数学结论表述更加方便.我们可以尝试理解并领会下列结论:,,.例3掷三颗骰子,试求:(1)没有一颗骰子出现1点或6点的概率;(2)恰好有一颗骰子出现1点或6点的概率.分析:我们把三颗骰子出现1点或6点分别记为事件,由已知,是相互独立事件.问题(1)没有1颗骰子出现1点或6点相当于,问题(2)恰有一颗骰子出现1点或6点可分为三类:,三个事件为互斥事件.问题(1)可以用相互独立事件的概率公式求解,问题(2)可以用互斥事件的概率公式求解.解:记“第1颗骰子出现1点或6点”为事件,由已知是相互独立事件,且.(1)没有1颗骰子出现1点或6点,也就是事件全不发生,即事件,所以所求概率为:.(2)恰好有1颗骰子出现1点或6点,即发生不发生不发生或不发生发生不发生或不发生不发生发生,用符号表示为事件,所求概率为:说明:再加上问题:至少有1颗骰子出现1点或6点的概率是多少?我们逆向思考,其对立事件为“没有一颗骰子出现1点或6点,即问题(1)中的事件,所求概率为,在日常生活中,经常遇到几个独立事件,要求出至少有一个发生的概率,比如例1中的至少有1个人译出密码的概率,再比如:有两门高射炮,每一门炮击中飞机的概率都是0.6,求同时发射一发炮弹,击中飞机的概率是多少?把两门炮弹击中飞机分别记为事件A与B,击中飞机即 A与B至少有1个发生,所求概率为.例4 某工厂的产品要同时经过两名检验员检验合格方能出厂,但在检验时也可能出现差错,将合格产品不能通过检验或将不合格产品通过检验,对于两名检验员,合格品不能通过检验的概率分别为,不合格产品通过检验的概率分别为,两名检验员的工作独立.求:(1)一件合格品不能出厂的概率,(2)一件不合格产品能出厂的概率.分析:记“一件合格品通过两名检验员检验”分别记为事件和事件,问题(1)一件合格品不能出厂相当于一件合格品至少不能通过一个检验员检验,逆向考虑,其对立事件为合格品通过两名检验,即发生,而的概率可以用相互独立事件的概率公式求解.我们把“一件不合格品通过两名检验员检验”分别记为事件和事件,则问题(2)一件不合格品能出厂相当于一件不合格品同时通过两名检验员检验,即事件发生,其概率可用相互独立事件概率公式求解.解:(1)记“一件合格品通过第i名检验员检验”为事件,“一件合格品不能通过检验出厂”的对立事件为“一件合格品同时通过两名检验员检验”,即事件发生.所以所求概率为.(2)“一件不合格品能通过第i名检验员检验”记为事件,“一件不合格品能出厂”即不合格品通过两名检验员检验,事件发生,所求概率为:.例5某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提出了三种方案:(1)双方各出3人;(2)双方各出5人;(3)双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利?三种方案中,哪一种方案系队获胜的概率更大一些,哪一种方案对系队更有利.进行几场比赛相当于进行几次独立重复试验,可以用n次独立重复试验中某事件发生次的概率方式解题.解:记一场比赛系队获胜为事件,事件的对立事件为校队获胜,所以用方案(1),发生两次为系队胜,发生3次也为系队胜,所以系队胜的概率为:用方案(2),发生3、4、5次为系队胜.所以系队胜的概率为:用方案(3),发生4、5、6、7次为系队胜.所以系队胜的概率为:比较可以看出,双方各出3个人对系队更有利,获胜概率为0.352.实际上,对弱队而言,比赛场数越少,对弱队越有利,侥幸取胜的可能性越大.说明:在日常生活中,经常出现方案的比较问题,或者方案是否合理的论证问题,比如产品抽查,抽检几件比较合理,因为抽多了浪费人力,抽少了容易让不合格产品出厂.设备维修安排几位维修工较合理,安排人员过多造成浪费,安排人员过少设备不能及时维修,这些问题都可以用本题的思维方法,先设计一个独立重复试验,然后抓某个事件发生的概率,看概率是否较小.我们可以看例子:10台同样的设备,各自独立工作,设备发生故障的概率为0.01,现在安排1名维修工,试说明这种配备是否合理?10台设备各自独立工作,相当于10次独立重复试验,有1名维修工人,若两台以上机器发生故障则得不到及时维修,其对立事件为至多1台机器发生故障,我们可以得到多于1台机器发生故障的概率为:.从结果来看,得不到及时维修的概率很小,安排一人维修比较合理.习题精选一、选择题1.甲盒中有200个螺杆,其中有160个A型的,乙盒中有240个上螺母,其中有180个A 型的,现从甲、乙两盒中各任取一个,则能配成A型的螺栓概率为().A.B.C.D.2.流星穿过大气层落在地面上的概率为0.002,则流星数量为10个的流星群穿过大气层有4个落在地面上的概率约为()A.B.C.D.3.有10门炮同时向目标各发射一发炮弹,如果每门炮的命中率都是0.1,则目标被击中的概率约为()A.0.45 B.0.55 C.0.65 D.0.754.某人参加一次考试,若五道题中解对四题则为及格,已知他的解题正确率为,则他及格的概率是().A.B.C.D.二、填空题5.从甲、乙、丙三种零件中各取1件组成某产品,所用三零件必须是正品,所得产品才是合格品.已知三种零件的次品率分别为2%,3%,5%,则产品的次品率是______.6.两台独立在两地工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,则有仅有1台雷达发现飞行目标的概率为___________.7.一袋中有8个白球,4个红球;另一袋中,有6个白球,6个红球.从每袋中任取一个球,则取得颜色相同的球的概率是_________.三、解答题8、对贮油器进行8次独立射击,若第一次命中只能使汽油流出而不燃烧,第二次命中才能使汽油燃烧起来.每次射击命中目标的概率为0.2,求汽油燃烧起来的概率.9.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,求灯亮的概率10.设有两架高射炮,每一架击中飞机的概率都是0.6,试求同时射击一发炮弹而命中飞机的概率是多少?又若一架敌机侵犯,要以0.99的概率击中它,问需要多少架高射炮?11.一个工人看管8部同一类型的机器,在一小时内四部机器需要工人照看的概率等于,求下列事件的概率.求(1)一小时内,8部机器中有4部需要工人照看;(2)一小时内,需要工人照看的机器不多于6部.参考答案一、选择题1.C; 2.B; 3.C; 4.D;二、填空题5.0.0969; 6.0.22; 7.;三、解答题8.解:使汽油燃起来至少需要在这8次射击中有2次命中,故其概率为:9.解:证A、B、C、D这4个开关闭合分别为事件A,B,C,D,记A与B至少有一个不闭合为事件E,则.亮灯的概率为P,则.10.解:两架高射炮同时射击一发炮弹而命中飞机,有两种情况:两发炮弹恰有一发命中或两发炮弹都命中,所以.设需要n架高射炮,同时发射一发炮弹命中飞机的概率为0.99.则所以.11.解:(1)因为在一小时内,每台机器需要工人照看的概率都是.一小时内,8部机器中有4部需要工人照看,即为在8次独立重复试验中这个事件恰好发生4次.所以.(2)一小时内,需要工人照看的机器不多于6部的对立事件为有7部机器或8部机器需要工人照看.所以。

独立事件概率公式大全

独立事件概率公式大全

独立事件概率公式大全
在概率论中,独立事件是指两个或多个事件之间的发生不受其他事件的影响的情况。

以下是一些常用的独立事件概率公式:
1. 独立事件的联合概率:P(A ∩ B) = P(A) * P(B),其中A和B
是两个独立事件。

2. 独立事件的边缘概率:P(A ∪ B) = P(A) + P(B) - P(A ∩ B),
其中A和B是两个独立事件。

3. 独立事件的条件概率:P(A | B) = P(A),其中A和B是两个
独立事件。

4. 独立事件的乘法规则:如果事件A独立发生的概率是P(A),事件B独立发生的概率是P(B),那么事件A和事件B同时发
生的概率是P(A ∩ B) = P(A) * P(B)。

5. 独立事件的加法规则:如果事件A和事件B是独立事件,
那么事件A或事件B发生的概率是P(A ∪ B) = P(A) + P(B)。

请注意,以上的公式适用于独立事件,如果事件之间存在依赖关系,则需要使用其他公式来计算概率。

22 高中数学概率的问题

22 高中数学概率的问题

专题22高中数学概率的问题【知识总结】1.古典概型的概率公式P (A )=事件A 包含的样本点数试验的样本点总数. 2.独立重复试验如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k ,k =0,1,2,…,n . 3.相互独立事件同时发生的概率:若A ,B 相互独立,则P (AB )=P (A )·P (B ).4.互斥事件至少有一个发生的概率:若事件A ,B 互斥,则P (A ∪B )=P (A )+P (B ),P (A -)=1-P (A ).5.条件概率公式设A ,B 为随机事件,且P(A)>0,则P (B |A )=P (AB )P (A ). 【高考真题】1.(2022·全国乙理)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 ____________.2.(2022·全国甲理) 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 3.(2022·全国甲文) 从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A .15B .13C .25D .23 4.(2022·新高考Ⅰ) 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16 B .13 C .12 D .235.(2022·全国乙理) 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、 乙、丙比赛获胜的概率分别为123, , p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则( ) A .p 与该棋手和甲、乙、丙的比赛次序无关 B .该棋手在第二盘与甲比赛,p 最大 C .该棋手在第二盘与乙比赛,p 最大 D .该棋手在第二盘与丙比赛,p 最大【题型分类】题型一 古典概型1.(2021·全国甲)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .452.已知多项选择题的四个选项A ,B ,C ,D 中至少有两个选项正确,规定:如果选择了错误选项就不得 分.若某题的正确答案是ABC ,某考生随机选了两个选项,则其得分的概率为( )A .12B .310C .16D .3113.有4个大小、形状相同的小球,装在一个不透明的袋子中,小球上分别标有数字1,2,3,4.现每次有放 回地从中随机取出一个小球,直到标有偶数的球都取到过就停止.小明用随机模拟的方法估计恰好在第4次停止摸球的概率,利用计算机软件产生随机数,每1组中有4个数字,分别表示每次摸球的结果,经随机模拟产生了以下21组随机数:1314 1234 2333 1224 3322 1413 31244321 2341 2413 1224 2143 4312 24121413 4331 2234 4422 3241 4331 4234由此可以估计恰好在第4次停止摸球的概率为( )A .23B .13C .27D .5214.从4双不同尺码的鞋子中随机抽取3只,则这3只鞋子中任意两只都不成双的概率为( )A .114B .37C .47D .345.定义:abcde =10 000a +1 000b +100c +10d +e ,当五位数abcde 满足a <b <c ,且c >d >e 时,称这个 五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( )A .16B .110C .112D .1206.《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的 上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为________.7.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分 为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132C .2132D .11168.“六艺”出自《周礼·地官司徒·保氏》,是指礼、乐、射、御、书、数.已知某人觉得“君子不学礼无 以立”,而其两个孩童对“数”均有浓厚兴趣,该人依据自己能力,只能为每个孩童选择六艺中的四艺进行培养,若要令该人和两个孩童对所选的四艺都满意,那么两个孩童至少有一个选到“御”的概率为( )A .12B .34C .59D .459.甲、乙、丙三人被系统随机地预约到A ,B ,C 三家医院接种新冠疫苗,每家医院恰有1人预约.已知 A 医院接种的是只需要打一针的腺病毒载体新冠疫苗,B 医院接种的是需要打两针的灭活新冠疫苗,C 医院接种的是需要打三针的重组蛋白新冠疫苗,问:甲不接种只打一针的腺病毒载体新冠疫苗且丙不接种需要打三针的重组蛋白新冠疫苗的概率等于( )A .13B .23C .12D .1910.北斗导航系统由55颗卫星组成,于2020年6月23日完成全球组网部署,全面投入使用.北斗七星自古是我国人民辨别方向判断季节的重要依据,北斗七星分别为天枢、天璇、天玑、天权、玉衡、开阳、摇光,其中玉衡最亮,天权最暗,一名天文爱好者从七颗星中随机选两颗进行观测,则玉衡和天权至少一颗被选中的概率为( )A .1021B .1121C .1142D .521题型二 相互独立事件与独立重复试验11.(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立12.某国产杀毒软件的比赛规则为每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是56,35,34,13,且各轮考核能否通过互不影响,则( )A .该软件通过考核的概率为18B .该软件在第三轮考核被淘汰的概率为18C .该软件至少能够通过两轮考核的概率为23D .在此次比赛中该软件平均考核了6524轮13.甲、乙两个球队进行篮球决赛,采取五局三胜制(共赢得三场比赛的队伍获胜,最多比赛五局),每场球赛无平局.根据前期比赛成绩,甲队的主场安排为“主客主主客”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以3∶2获胜的概率为________.14.小明在做一个与扔质地均匀的正六面体骰子有关的游戏,规定:若骰子1点或2点向上,则小明前进1步,若骰子3点或4点向上,则小明前进2步,若骰子5点或6点向上,则小明前进3步.小明连续扔了三次骰子,则他一共前进了8步的概率是( )A .127B .227C .19D .2915.在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为p 1和p 2,则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能16.(多选)甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,下列说法正确的 是( )A .目标恰好被命中一次的概率为12+13B .目标恰好被命中两次的概率为12×13C .目标被命中的概率为12×23+12×13D .目标被命中的概率为1-12×2317.甲、乙两人进行象棋比赛,采取五局三胜制(当一人先赢3局时获胜,比赛结束).棋局以红棋与黑棋对阵,两人执色轮流交换,执红棋者先走.假设甲执红棋时取胜的概率为23,执黑棋时取胜的概率为12,各局比赛结果相互独立,且没有和局.若比赛开始,甲执红棋开局,则甲以3∶2获胜的概率为________.18.如图,已知电路中3个开关闭合的概率都是12,且是相互独立的,则灯 亮的概率为( )A .38B .12C .58D .7819.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以2∶0领先,则下列说法中正确的有________(填序号).①甲队获胜的概率为827;②乙队以3∶0获胜的概率为13; ③乙队以3∶1获胜的概率为29;④乙队以3∶2获胜的概率为49. 20.甲、乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球赢球的概率为25,则在比分为10∶10后甲先发球的情况下,甲以13∶11赢下此局的概率为( )A .225B .310C .110D .325题型三 条件概率与全概率21.2020年12月4日是第七个“国家宪法日”.某中学开展主题为“学习宪法知识,弘扬宪法精神”的知识竞赛活动,甲同学答对第一道题的概率为23,连续答对两道题的概率为12.用事件A 表示“甲同学答对第一道题”,事件B 表示“甲同学答对第二道题”,则P (B |A )=( )A .13B .12C .23D .3422.篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出2个球,记事件A 为“取出的2个球颜色不同”,事件B 为“取出1个红球,1个白球”,则P (B |A )等于( )A .16B .313C .59D .2323.某公司为方便员工停车,租了6个停车位,编号如图所示.公司规定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A 为“员工小王的车停在编号为奇数的车位上”,事件B 为“员工小李的车停在编号为偶数的车位上”,则P (A |B )等于( )A .16B .310C .12D .3524.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( )A .310B .13C .38D .2925.某保险公司将其公司的被保险人分为三类:“谨慎的”“一般的”“冒失的”.统计资料表明,这三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则该保险公司的一个被保险人在一年内发生事故的概率是( )A .0.155B .0.175C .0.016D .0.09626.已知某公路上经过的货车与客车的数量之比为2∶1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为( )A .1100B .160C .150D .13027.(多选)为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A 为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是( )A .P (A )=35B .P (AB )=310C .P (B |A )=12D .P (B |A )=1228.甲、乙两个均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .P (A )=P (B )=P (C ) B .P (BC )=P (AC )=P (AB )C .P (ABC )=18D .P (B |A )=1229.有三个箱子,分别编号为1,2,3.1号箱装有1个红球、4个白球,2号箱装有2个红球、3个白球,3号箱装有3个红球.某人从三个箱子中任取一箱,从中任意摸出一球,取得红球的概率为________.30.有3台车床加工同一型号的零件.第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床的零件数分别占总数的25%,30%,45%,则下列选项正确的有( )A .任取一个零件是第1台生产出来的次品概率为0.06B .任取一个零件是次品的概率为0.052 5C .如果取到的零件是次品,且是第2台车床加工的概率为27D .如果取到的零件是次品,且是第3台车床加工的概率为27。

高一数学相互独立事件同时发生的概率3

高一数学相互独立事件同时发生的概率3

C
3 5
某事件的概率为P,在n次独立重复试验中, k C 这事件恰好发生k次,有 种不同的情形,每 n nk k 一种情形发生的概率是 写 P 1 P nk k k 出概率公式 Cn P 1 P
三、公式 (二项分布公式)
如果在一次试验中某事件发生的概率是 p,那么在n次独立重复试验中,这个事件恰 好发生k次的概率计算公式:
11.3相互独立事件同时 发生的概率(3)
3. 独立重复试验的概率
2019年3月19日星期二
复习回顾:
1、互斥事件: 不可能同时发生的两个事件
对立事件:必有一个发生的互斥事件 事件A(或B)是否发生对事件B 相互独立事件: (或A)发生的概率没有影响 2、互斥事件有一个发生的概率公式:
P A B P A P B
解:记“射手射击一次击中目标”为事件A
连续射击4次是相互独立的
P( A A A A) P( A) P A P A P( A)

问题 2:某射手射击一次,击中目标的概率 是0.9,求他射击4次恰好击中目标3次的概率.
思考1:设该射手第1、2、3、4次射击击中目标 的事件分别为 A1、A2、A3、A4 ,事件 A1、A2、A3、A4 是否相互独立? 是相互独立 思考2:写出该射手射击4次恰好击中目标3次的 所有可能性? 解:分别记在第1、2、3、4次射击中,射手击中 目标为事件 A1、A2、A3、A4 ,未击中目标为事 件 A1、 A2、 A3、 A4 , 那么,射击4次,击中3次共 有下面四种情形: A1 A2 A3 A4 A1 A2 A3 A4
的概率是(
4
A.
C.
4 1 5 5 4 4 1 5 5

相互独立事件同时发生的概率(1)

相互独立事件同时发生的概率(1)

归纳结论: 若A、B是相互独立事件,则有P(A·B)= P(A)·P(B) 即两个相互独立事件同时发生的概率, 等于每个事件发生的概率的积。
如果事件A1,A2,…,An相源自独立,那么 这n个事件同时发生的概率,等于每个事 件发生的概率的积.即:
P(A1·A2·…·An)= P(A1)·P(A2)·…·P(An)
1、对于某数学问题,甲、乙两人独立解 出该题的概率分别为2/3、4/5,求两人都 解出该题的概率。
2、甲乙2人各进行1次射击,如果2人击中 目标的概率都是0.6,计算: (1) 2人都击中目标的概率; (2) 其中恰有1人击中目标的概率; (3) 至少有一人击中目标的概率.
问题:你认同以上的观点吗? ①事件概率的不可能大于1 ②公式 P ( A B C ) P ( A) P ( B ) P (C ) 运用 的前提:事件A、B、C彼此互斥.
引例2:
甲坛子 乙坛子 甲坛子里有3个红球,2个黑球;乙坛子里 有2个红球,2个黑球.设 事件A:从甲坛子里摸出一个球,得到红 球; 事件B:从乙坛子里摸出一个球,得到红 球. A与B是互斥事件呢?还是对立事件?
老大
老二
老三
设事件A:老大解出问题; 事件B:老二解出问题; 事件C:老三解出问题;
事件D:诸葛亮解出问题
P ( A B C ) P ( A) P ( B ) P (C ) 0.5 0.45 0.4 1.35 P( A B C ) P( D)
因此,合三个臭皮匠之力,把握就大过诸 葛亮了!
相互独立事件:如果事件A(或B)是否 发生对事件B(或A)发生的概率没有影 响,这样的两个事件叫做相互独立事件. 相互独立事件的性质:
如果事件A、B是相互独立事件,那么, _ _ _ _ A与 B 、 与B、A与 B 都是相互独立事件 A

相互独立事件同时发生概率

③ A 与 B.
注 称此为二事件的独立性 关于逆运算封闭.
证 ① A A A(B B) AB AB P( A) P( AB) P( AB) P( AB) P( A) P( AB)
又∵ A与B相互独立 P( AB) P( A) P( AB) P( A) P( A)P(B) P( A)[1 P(B)] P( A)P(B)
解:分别记这段时间内开关 J A、J B、J C 能够闭合为事 件A,B,C. 由题意,这段时间内3个开关是否能够闭合相 互之间没有影响。根据相互独立事件的概率乘法式这
段时间内3个开关都不能闭合的概率是
P( A • B • C) P( A) • P(B) • P(C)
[1 P( A)][1 P(B)][1 P(C)]
2
2
A
则 P( AB) P( A)P(B).
1
由两此事可件见相两互事独件立相互独立两但事两件事互件斥不. 互斥.
又如:
若 P( A) 1 , P(B) 1 (如图)
2
2
则 P( AB) 0,
B
P( A)P(B) 1 ,
A
4
故 P( AB) P( A)P(B)
由此可见两事件互斥但不独立.
P( AB) P( A)P(B), P(BC ) P(B)P(C ), P( AC ) P( A)P(C ), P( ABC ) P( A)P(B)P(C ), 则称事件 A, B,C 相互独立 .
A,B,C两两相互独立
A,B,C相互独立
附1:用数学符号语言表示下列关系:
若A、B、C为相互独立事件,则 ① A、B、C同时发生; ①A·B·C ② A、B、C都不发生; ② A·B·C
说明 事件 A 与 B 相互独立,是指事件 A 的 发生与事件 B 发生的概率无关.

相互独立事件的概念

相互独立事件的概念相互独立事件是概率论中一个重要的概念,它描述了两个或多个事件之间的统计独立性。

在概率论中,事件的相互独立性是指事件A和事件B的发生与否互不影响或者说彼此独立,即事件A发生的概率与事件B发生的概率无关。

相互独立事件的概念可以通过以下性质进行说明:1. 乘法规则:两个独立事件同时发生的概率等于它们各自发生的概率的乘积。

设A和B是两个独立事件,则有P(A ∩ B) = P(A) × P(B)。

2. 加法规则:两个独立事件至少有一个发生的概率等于它们各自发生概率之和减去它们同时发生的概率。

设A和B是两个独立事件,则有P(A ∪ B) = P(A) + P(B) - P(A ∩ B)。

3. 依概率的性质:对于相互独立的事件A和B,事件A的发生概率与事件B的发生概率的比值等于事件A的发生概率与全样本空间的概率之比。

即P(A|B) = P(A) × P(B)。

4. 独立事件的补事件也是独立事件:如果事件A和事件B是独立事件,则事件A的补事件和事件B的补事件也是独立事件。

相互独立事件的概念在实际问题的解决中有着广泛的应用,例如:1. 投硬币的实验:投掷一枚硬币是一个相互独立的事件,每次投掷硬币都不会受前一次的投掷结果的影响。

2. 掷骰子的实验:掷一个骰子是一个相互独立的事件,每次掷骰子都不会受前一次的掷骰子结果的影响。

3. 独立抽样:在统计学中,独立抽样是指在一次抽样中,每次抽取的样本独立且与之前的抽样无关。

4. 检验流程的相互独立性:在某些工业生产过程中,不同的检验过程可能是相互独立的,即前一道工序的检验结果不会对后一道工序的检验结果产生影响。

相互独立事件的概念是概率论中的一个基础概念,它使得我们能够对复杂的概率问题进行简化和计算。

通过理解相互独立事件的性质和应用,我们可以更好地应用概率论解决各种实际问题。

相互独立事件同时发生的概率4

课 题: l1.3相互独立事件同时发生的概率 (四) 教学目的: 1巩固相互独立事件以及独立重复试验的概念;2.能应用相互独立事件的概率的乘法公式和n 次独立重复试验中某事件恰好发生k 次的概率公式解决一些应用问题教学重点:事件的概率的简单综合应用教学难点:事件的概率的综合应用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n =8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++ =12()()()n P A P A P A +++13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立14.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅事件12,,,n A A A 相互独立, 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ 15 独立重复试验的定义:在同样条件下进行的各次之间相互独立的一种试验16.独立重复试验的概率公式:k n k k n n P P C k P --=)1()(二、讲解范例:例1.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大? 解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次∴从低层到顶层停不少于3次的概率3364455549999991111111()()()()()()()2222222P C C C C =++++ 3459990129999999911()()2()()22C C C C C C C ⎡⎤=+++=-++⎣⎦+ 991233(246)()2256=-= 设从低层到顶层停k 次,则其概率为k 9999111C ()()()222k k k C -=, ∴当4k =或5k =时,9k C 最大,即991()2k C 最大, 答:从低层到顶层停不少于3次的概率为233256,停4次或5次概率最大.例2.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”, 记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜 ∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++,又因为事件A 、B 、C 彼此互斥, 故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 答:按比赛规则甲获胜的概率为12. 例3.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=)解:记事件A =“种一粒种子,发芽”,则()0.8P A =,()10.80.2P A =-=,(1)设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%. ∵每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则00()(0)0.8(10.8)0.2n n n n P B P C ==-=. ∴()1()10.2n P B P B =-=-.由题意,令()98%P B >,所以0.20.02n<,两边取常用对数得,lg0.2lg0.02n <.即(lg 21)lg 22n -<-, ∴lg 22 1.6990 2.43lg 210.6990n ->=≈-,且n N ∈,所以取3n ≥. 答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为2230.80.20.384P C =⨯⨯==,答:每穴种3粒,恰好两粒发芽的概率为0.384 三、课堂练习:1.每次试验的成功率为(01)p p <<,重复进行试验直至第n 次才取得(0)r r n ≤≤次成功的概率为( )A.(1)r r n r n C p p --B. 11(1)r r n r n C p p ----C. (1)r n r p p --D. 111(1)r r n r n C p p ----- 2.在数学选择题给出的4个答案中,恰有1个是正确的,某同学在做3道数学选择题时,随意地选定其中的正确答案,那么3道题都答对的概率是( ) A.18 B.314 C.164 D.12 3.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是( ) A.[)0.4,1 B.(]0,0.4 C.(]0,0.6 D.[)0.6,14.一次测量中出现正误差和负误差的概率都是12,在3次测量中,恰好出现2次正误差的概率是 ;恰好出现2次负误差的概率是 .5.有五条线段,长度分别为1,3,5,7,9(cm ),从中任取三条,它们能构成一个三角形的概率是 .6.某人每天早晨乘坐的某一班次公共汽车的准时到站率为90%,他在5天乘车中,此班次公共汽车恰好有4天准时到站的概率是 .7.某城市的发电厂有5台发电机组,每台发电机组在一个季度里停机维修率为14.已知两台以上机组停机维修,将造成城市缺电.计算: ⑴该城市在一个季度里停电的概率;⑵该城市在一个季度里缺电的概率.8.将一枚均匀硬币抛掷5次.⑴求第一次、第四次出现正面,而另外三次都出现反面的概率;⑵求两次出现正面,三次出现反面的概率9.某公司聘请6名信息员,假定每个信息员提供的正确信息的概率均为0.6,并按超过一半信息员提供的信息作为正确的决策,求公司能作出正确决策的概率10.(1)从次品率为0.05的一批产品中任取4件,恰好2件次品的概率为 .(2)设3次独立重复试验中,事件A 发生的概率相等若A 至少发生一次的概率为1927,则事件A 发生的概率为 . (3)将一枚硬币连掷5次,如果出现k 次正面的概率等于出现1k +次正面的概率,那么k 的值为 .(4)在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围为答案:1. B 2. C 3. A 4. 223113228C ⎛⎫⋅= ⎪⎝⎭ ,38 5. 0.3 6. 0.32805 7.⑴()5511541024P ⎛⎫== ⎪⎝⎭; ⑵()()()55513345512P P P ++= 8. ⑴2311112232P ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭; ⑵23225112216P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 9. ()()()6664560.54432P P P ++=10.⑴22240.05(10.05)C ⨯⨯-⑵13⑶2 ⑷0.41p ≤< 四、小结 :(1)求事件和的概率的方法是首先判断事件和中的每个事件之间是否两两互斥,如果互斥,求出每个事件的概率,最后利用互斥事件有一个发生的概率公式即可如果不互斥必须通过其他途径变形求解(2)求事件积的概率的方法是首先判断积中的每个事件之间是否相互独立,如果它们是相互独立事件,求出每个事件的概率,最后利用相互独立事件同时发生的概率公式即可,特别是独立重复试验恰好发生k 次的概率可用k n k k n k P P C k P --=)1()(求解如果不是相互独立事件,则将它们转化为相互独立事件的积与互斥事件的和的混合形式求解五、课后作业:六、板书设计(略)七、课后记:。

2.2.2相互独立事件同时发生的概率

高二数学 选修2-3
问题 : 甲坛子里有3个白球,2个黑球,乙坛子里 有2个白球,2个黑球,从这两个坛子里分别摸出 1个球,它们都是白球的概率是多少?


•“从甲盒子里摸出1个球,得到红球”叫事件A;
•“从乙盒子里摸出1个球,得到红球”叫事件B.
• (1)求事件A发生的概率? • (2)求事件B发生的概率?
④ A、B、C中至少有一个发生; A B C
⑤ A、B、C中至多有一个发生.
ABC ABC ABC ABC
相互独立事件同时发生的概率(一)
( 互斥事件)
求 较
分类 P(A+B)=P(A)+ P(B)

正向
分步 P(A·B)= P(A)·P(B)


(独立事件)
件 概
反向 对立事件的概率

独立事件一定不互斥. 互斥事件一定不独立.
② 篮球比赛的“一加一罚球”中: 事件A:第一次罚球,球进了。 事件B:第二次罚球,球进了。
下列事件哪些是相互独立的:
③ 袋中有三个红球,两个白球,采取 不 放 回 的 取球: 事件A:从中任取一个球是白球。 事件B:第二次从中任取一个球是白球。
④ 袋中有三个红球,两个白球,采取 有 放 回 的取球: 事件A:从中任取一个球是白球。 事件B:第二次从中任取一个球是白球。
P=1-0.56=0.44
相互独立事件同时发生的概率(一)
4.加工某产品须经两道工序, 这两道工序的次品率分
别为a, b. 且这两道工序互相独立.产品的合格的概率
是__.
(1-a)(1-b)
5.某系统由A,B,C三个元件组成,
AB
每个元件正常工作概率为P.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档