2017年全国统一高考数学试卷(理科)(新课标ⅱ)(含详细答案解析)
【深度解析高考真题】2017年全国统一高考数学试卷(理科)(新课标ⅰ)

6.5. A . 1B .C. D . 8(5 分) 函数f (X )在 则满足-K f (X — 2) (-X, +X )单调递减,且为奇函数.若f ( 1) = - 1, <1的x 的取值范围是(A . [ - 2,2]B . (5分)(1弋I[-1, 1]C. [0, 4])(1+x ) 6展开式中x 2的系数为( D . [1, 3]2017年全国统一高考数学试卷(理科) (新课标I )、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个 选项中,只有一项是符合题目要求的.1. (5 分)已知集合 A={x|x < 1} , B=(x| 3x < 1},贝U()A . A n B={x|x v 0}B . A U B=R C. A U B=(x|x > 1} D . A n B=?2. (5分)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆 中的黑色部分和白色部分关于正方形的中心成中心对称.一点,则此点取自黑色部分的概率是(为( 在正方形内随机取3. (5分)设有下面四个命题Z 满足丄€R ,贝U z €R ;ZZ 满足 2^ R ,则 z € R ;P 1:若复数 P 2:若复数P 3:若复数 Z 1,Z 2满足 Z 1Z 2€ R,贝U 乙=工2'; z € R ,贝U R . P 4:若复数 其中的真命题为(4. A . P 1, (5 分) P 3B . P 1, P 4 记S n 为等差数列{a n }的前n 项C. D .P 2, P 3若 a 4+a 5=24, S 6=48,则{a n }的公差D . P 2,P 47. (5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰 直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的 各个面中有若干个是梯形,这些梯形的面积之和为(A . 15B . 20 C. 30 D .35A . 10B . 12 C. 14 D . 168 (5分)如图程序框图是为了求出满足 3n -2n> 1000 的最小偶数n ,那么在两个空白框中,可以分别填入(A. A > 1000 和 n=n+1B. A > 1000 和 n=n+2C. A < 1000 和 n=n+1D . A < 1000和 n=n+2pjr9. (5分)已知曲线 G : y=cosx C2: y=sin(2x+^ ),则下面结论正确的是( )A .把G 上各点的横坐标伸长到原来的2倍,TT向右平移学个单位长度,得到曲线C2 纵坐标不变,再把得到的曲线B .把G 上各点的横坐标伸长到原来的2 倍,纵坐标不变,再把得到的曲线罡否/输单w ]全国统一高考试卷试题向左平移工个单位长度,得到曲线C 212C. 把C1上各点的横坐标缩短到原来的y 倍,纵坐标不变,再把得到的曲线向 右平移罟个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的 寺倍,纵坐标不变,再把得到的曲线向乙左平移2L 个单位长度,得到曲线C 21 210. (5分)已知F 为抛物线C : y 2=4x 的焦点,过F 作两条互相垂直的直线11, 12, 直线h 与C 交于A 、B 两点,直线12与C 交于D 、 小值为( )填空题:本题共4小题,每小题5分,共20 分.心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于 M 、N 两点.若/ MAN=60,贝U C 的离心率为 ______ .第3页(共36页)E 两点, 贝U | AB+I DE 的最 A . 16B . 14C. 12D . 1011. (5 分)设 X 、y 、 z 为正数,且2X =3y =5z ,贝U ( A . 2x v 3y < 5z12. (5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大 家学习数学的兴趣,他们推出了解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1, 2,1, 2, 4,1, 2,4, B . 5z <2x <3yC. 3y <5z <2xD . 3y v 2x v 5z8,1, 2, 4, 8, 16,…,其中第一项是20,接下来的两项是20, 21, 来的三项是20, 21, 22,依此类推.求满足如下条件的最小整数 N : 且该数列的前N 项和为2的整数幕.那么该款软件的激活码是( 再接下 N > 100 A . 440B . 330 C. 220 D . 11013. (5 分)已知向量已,b 的夹角为60° I 刖=2, |b |=1,则|Q +2b | = 14. (5 分) 设x , y 满足约束条件2x+y>-l ,则z=3x- 2y 的最小值为15. (5 分)已知双曲线C : 2=1 (a >0,b >0)的右顶点为A ,以A 为圆b16. (5分)如图,圆形纸片的圆心为0,半径为5cm,该纸片上的等边三角形ABC的中心为0. D、E、F为圆0上的点,△ DBC, △ ECA △ FAB分别是以BC, CA AB为底边的等腰三角形.沿虚线剪开后,分别以BC, CA, AB为折痕折起△ DBC, △ ECA △ FAB使得D、E、F重合,得到三棱锥.当△ ABC 的边长变化时,所得三棱锥体积(单位:cm3)的最大值为三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17〜21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. (12分)△ ABC的内角A, B, C的对边分别为a, b, c,已知△ ABC的面积2为」一.SsinA(1)求sinBsinC;(2)若6cosBcosC=1 a=3,求^ ABC的周长.18. (12 分)如图,在四棱锥P- ABCD中,AB// CD,且/ BAP=^ CDP=90.(1)证明:平面PABI平面PAD(2)若PA=PD=AB=DC / APD=90,求二面角A- PB- C的余弦值.19. (12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产 线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验, 可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布 N (卩,02).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(卩-3 c, u +3o )之外的零件数,求P (X > 1)及X 的数学期望;(2) —天内抽检零件中,如果出现了尺寸在( 厂3 c ,p+3o )之外的零件,就 需对当天的生产 过程进行检查.(i )试说明上述监控生产过程方法的合理性;(ii )下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.129.969.9610.019.929.98 10.04 10.269.91 10.13 10.02 9.22 10.0410.059.95经计算得-1 W 艾16^右 丄 D 1=1=9.97, s=2-应) "0.212,其中Xi 为抽取的第i 个零件的尺寸,i=1,2,•••,16.用样本平均数工作为卩的估计值(1,用样本标准差s 作为C 的估计值CT ,利用估 计值判断是否需对当天的生产过程进行检查?剔除(— 3巧、口 +3cy )之 外的数据,用剩下的数据估计 卩和6(精确到0.01).附:若随机变量Z 服从正态分布N (卩,C ),则P (卩-3o< Z V 妙3C =0.9974, 0.997416~0.9592, UdOD 8"0.09.卩-3 c认为这条生产线在这一天的生产过程可能出现了异常情况,(2)设直线I 不经过P2点且与C 相交于A , B 两点.若直线P 2A 与直线P 2B 的斜 率的和为-1,证明:I 过定点.21. (12 分)已知函数 f (X )=ae 2x + (a - 2) e x - x . (1)讨论f (X )的单调性;(2)若f (X )有两个零点,求a 的取值范围.20. (12分)已知椭圆 爭),P4(1)求C 的方程;P 3 (- 1,- 2C :耳+冬=1 (a >b >0),四点 P 1 (1 , 1), R (0 , 1), b? (1 ,孕 中恰有三点在椭圆C 上.[选修4-4,坐标系与参数方程]直线I 的参数方程为(沪針牡(1) 若a=- 1,求C 与I 的交点坐标;(2) 若C 上的点到丨距离的最大值为"TV ,求a .[选修4-5:不等式选讲]23.已知函数 f (x ) =-x 2+ax+4, g (x ) =|x+1|+| x - 1| . (1)当a=1时,求不等式f (x )> g (X )的解集;(2)若不等式f (x )> g (X )的解集包含[-1,1],求a 的取值范围.22.( 10分)在直角坐标系xOy 中,曲线C 的参数方程为 K =3COS8V=si nG,(0为参数),,(t 为参数).一点,则此点取自黑色部分的概率是(ADA. 4f 开D.-2017年全国统一高考数学试卷(理科) (新课标I )参考答案与试题解析、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个 选项中,只有一项是符合题目要求的.1. (5 分)已知集合 A={x|x < 1},B=(x| 3x < 1},贝U()A . A n B={x|x v 0}B . A U B=RC. A U B=(x|x > 1} D . A n B=?11:计算题;37:集合思想;40:定义法;5J:集合.B={x| 3x < 1}={x| x < 0},••• A n B={x|x < 0},故 A 正确,D 错误; A U B={x| x < 1},故B 和C 都错误. 故选:A .交集、并集定义的合理运用.2. (5分)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取【考点】 1E:交集及其运算. 【专题】 【分析】 先分别求出集合A 和B,再求出 A n B 和A U B ,由此能求出结果.【解答】解:•••集合 A={x|x v 1}, 【点评】本题考查交集和并集求法及应用, 是基础题,解题时要认真审题,注意案. 解:若复数Z 满足A€R ,则z € R,故命题P 1为真命题;【考点】CF 几何概型.【专题】35:转化思想;40:定义法;51:概率与统计.【分析】根据图象的对称性求出黑色图形的面积, 结合几何概型的概率公式进行 求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1, 则正方形的边长为2, 则黑色部分的面积S 匹27T则对应概率P= 2二兀,4 8 故选:B.【点评】本题主要考查几何概型的概率计算, 根据对称性求出黑色阴影部分的面 积是解决本题的关键.3. (5分)设有下面四个命题Z 满足丄€R ,贝U z €R ;ZZ 满足 2^ R ,则 z € R ;P 1:若复数 P 2:若复数P 3:若复数 Z 1, Z 2满足 Z 1Z 2€ R,贝U 乙=工2'; z € R ,贝U R . P 4:若复数 其中的真命题为(A . P 1, P 3B . P 1, P 4C. P 2, P 3D. P 2, P 4【考点】 2K :命题的真假判断与应用; A1:虚数单位i 、复数;A5:复数的运算.【专题】 【分析】 2A :探究型;5L :简易逻辑; 根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答5N :数系的扩充和复数.【解答】P 2:复数z=i 满足z 2=- 1 € R ,则z?R,故命题P 2为假命题;P 3:若复数Z 1 = i , z 2=2i 满足z 1z 2€ R ,但Z 1M 石,故命题p 3为假命题; P 4:若复数z € R ,则艺=z € R ,故命题P 4为真命题. 故选:B.【点评】本题以命题的真假判断与应用为载体, 考查了复数的运算,复数的分类, 复数的运算性质,难度不大,属于基础题.4. (5分)记S n 为等差数列{a n }的前n 项和. 为( 若 a 4+a 5=24, S=48,则{a n }的公差A . 1B . 2C.D . 8【考点】 【专题】 84:等差数列的通项公式;85:等差数列的前n 项和.11:计算题;34:方程思想;40:定义法;54:等差数列与等比数列. 【分析】 利用等差数列通项公式及前n 项和公式列出方程组,求出首项和公差, 由此能求出{a n }的公差.【解答】解:••• S n 为等差数列{a n }的前n 项和,a 4+a 5=24,解得 a i =- 2, d=4, 二{a n }的公差为4.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题, 注意等差数列的性质的合理运用.5. (5分)函数f 则满足-K f (X )在(-X, +X )单调递减,且为奇函数.若f ( 1) = - 1,(X- 2)< 1的X 的取值范围是( )A . [ - 2, 2]B . [ - 1, 1]C. [0, 4]D . [1, 3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式-1<f (X- 2)< 1化为-KX-2< 1,解得答案.【解答】解:•••函数f (X)为奇函数.若 f (1) =- 1,则 f (- 1) =1,又•.•函数 f (%)在(-X, +X)单调递减,-1 <f (X- 2)< 1, ••• f (1)< f (X-2)< f (- 1),•••- KX- 2< 1,解得:x€ [1, 3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性, 难度中档.6. (5分)(1鱼)(1+X) 6展开式中X2的系数为(A. 15B. 20C. 30D. 35【考点】DA: 二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1七)(1+X) 6展开式中:(1怕)=(1+X-2)提供常数项1,贝八1+X) 6提供含有X2的项,可得展开式中X2的系数:(1七)提供X-2项,则(1+X) 6提供含有X4的项,可得展开式中X2的系数: 1(1+X)6通项公式可得C討.可知r=2时,可得展开式中X2的系数为二15.可知r=4时,可得展开式中X2的系数为C A15.)(1+X )6展开式中X 2的系数为:15+15=30. 【点评】本题主要考查二项式定理的知识点, 通项公式的灵活运用.属于基础题.7. (5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰 直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的 各个面中有若干个是梯形,这些梯形的面积之和为(【考点】L!:由三视图求面积、体积.【专题】11:计算题;31 :数形结合;44:数形结合法;【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面, 根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图, 该立体图中只有两个相同的梯形的面, S 梯形丄X 2X( 2+4) =6,•••这些梯形的面积之和为6X 2=12, 故选:B.(1+丄 2X故选:C.A . 10B . 12 C. 14 D . 165Q :立体几何.“A【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8 (5分)如图程序框图是为了求出满足 3n -2n > 1000的最小偶数n ,那么在11:计算题;38:对应思想;49:综合法;5K :算法和程序框图.“>1000”,进而通过偶数的特征确定n=n+2.解:因为要求A > 1000时输出,且框图中在 否”时输出,两个空白框中,可以分别填入(B. A > 1000 和 n=n+2D . A < 1000和 n=n+2【考点】 EF:程序框图.【专题】 【分析】通过要求A > 1000时输出且框图中在 否”时输出确定“ ”内不能输入 【解答】 和C. A < 1000 和 n=n+1全国统一高考试卷试题所以““A全国统一高考试卷试题又要求n 为偶数,且n 的初始值为0,故选:D .【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9. (5分)已知曲线Cl : y=cosx C2: y=sin (2x ^5-),则下面结论正确的是()2倍,纵坐标不变,再把得到的曲线左平移召■个单位长度,得到曲线 C -L 厶HJ 函数y=Asin ( wx©)的图象变换.11:计算题;35:转化思想;57:三角函数的图像与性质.利用三角函数的伸缩变换以及平移变换转化求解即可.解:把G 上各点的横坐标缩短到原来的目倍,纵坐标不变,得到函数TTy=cos2x 图象,再把得到的曲线向左平移 時个单位长度,得到函数 y=cos2故选:D .【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10. (5分)已知F 为抛物线C : y 2=4x 的焦点,过F 作两条互相垂直的直线l i, I 2,第14页(共36页)所以所以D 选项满足要求,”中n 依次加2可保证其为偶数,A. 把G 上各点的横坐标伸长到原来的向右平移*■个单位长度,得到曲线C 2B. 把C i 上各点的横坐标伸长到原来的 向左平移工个单位长度,得到曲线C 2122倍,纵坐标不变,再把得到的曲线 C •把C i 上各点的横坐标缩短到原来的 专倍,纵坐标不变,再把得到的曲线向 右平移个单位长度,得到曲线C 2 6D .把C i 上各点的横坐标缩短到原来的 y 倍,纵坐标不变,再把得到的曲线向£【考点】 【专题】【分析】 【解答】 (x ^-) =cos (2x+^)=sin (2x -^)的图象,即曲线C 2,直线11与C 交于A 、B 两点,直线12与C 交于D 、 小值为( )【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法; 质与方程.【分析】方法一:根据题意可判断当 A 与D , B , E 关于x 轴对称,即直线DE 的 斜率为1 , IABI+I DE 最小,根据弦长公式计算即可.方法二:设直线11的倾斜角为0,则12的倾斜角为今+0 ,利用焦点弦的弦长公 式分别表示出I AB , I DE ,整理求得答案【解答】解:如图,h 丄12,直线11与C 交于A 、B 两点, 直线12与C 交于D 、E 两点, 要使I ABI+I DE 最小,则A 与D , B, E 关于x 轴对称,即直线DE 的斜率为1, 又直线12过点(1 , 0), 则直线12的方程为y=x - 1 ,y —°卞,则 y 2— 4y — 4=0, y 1+y 2=4, y 1y 2= — 4, .丨 DE| =J1+ ; y 1 — y 2| ^2=8 ,••• I ABI+I DE 的最小值为 2| DE =16,方法二:设直线11的倾斜角为0,则12的倾斜角为冷-+0, 根据焦点弦长公式可得|AB|—=_与— S1 n f sin 勺]DE ___________ = 4品,(丁+9) cos^ 6 cos^ 04 4 416•••I AB|+| DE =_与一+——二—=——一_-—=—普—S1 n y co s y sin o cos v sin 2灯E 两点,贝U I AB+I DE 的最 A . 16B . 14C. 12D . 105D :圆锥曲线的定义、性联立方程组••• 0< sin 22 1,•••当0 =45°, IAB+I DE 的最小,最小为16,【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系, 弦长公式, 对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题.11. (5 分)设 X 、y 、z 为正数,且 2x =3y =5z ,贝U ( ) A . 2x < 3y < 5z B . 5z <2x < 3yC. 3y < 5z <2xD . 3y <2x < 5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用. ,z 諾•可,5z 古g .根据砺钢,^^32>阪=隔•即可得出大小关系.另解:x 、y 、z 为正数,令 2x =3y =5z =k > 1. lgk > 0 .可得x 豐,y 書,【分析】X 、y z 为正数,令2x =3y =5z =k > 1. Igk > 0.可得全国统一高考试卷试题21,件的激活码为下面数学问题的答案:已知数列 1,1, 2, 1, 2, 4, 1, 2,4, 8,1, 2, 4, 8, 16,…,其中第一项是2°,接下来的两项是20, 来的三项是2°, 21, 22,依此类推.求满足如下条件的最小整数再接下 N : N > 100•令勿器豐>1可得2x >3y ,同理可得5z >2X.【解答】解:X 、y 、z 为正数, 令 2X =3y =5z =k > 1. Igk >0. 贝y x=l 韭,y=l 営k , z=lgk .Ig2 lg5 ••• 3y ^iU , 2x ^^, 5z ^!^. 1 笆烧 lsV2 lsV5•••丽=畅> 野杆,;迈J 师>|1顷=祈- ;1官需> g 血 > ^ Vs >0- ••• 3y v 2x < 5z.另解:X 、y 、z 为正数, 令 2X =3y =5z =k > 1. Igk >0. 则 x S , y 4, z M lg2 U3• 2這-2 IgS L lgg • 3y 3 lg2| IgS—-厘-1還_ > 1 .可得 5z >2x . 综上可得:5z > 2x > 3y .解法三:对k 取特殊值,也可以比较出大小关系. 故选:D .【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理 能力与计算能力,属于中档题.12. (5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大 家学习数学的兴趣,他们推出了 解数学题获取软件激活码”的活动.这款软且该数列的前N 项和为2的整数幕.那么该款软件的激活码是(lg5> 1,可得 2x > 3y ,全国统一高考试卷试题【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n }的通项公式及前n 项和,可知当N 为口时(n € N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为 2 2n +1- n - 2,容易得到N > 100时,n A 14,分别判断,即可求得该款软件的激由题意求得数列的每一项,及前 n 项和S n =2n +1 - 2- n ,及项数,由题意2n +1为2的整数幕.只需将-2 -n 消去即可,分别即可求得 N 的值. 解:设该数列为{a n },设b n =n (叶])职I 则 E b ,=E i=i 由题意可设数列{a n }的前N 项和为S N ,数列{ b n }的前n 项和为T n ,则T n =21 - 1+22-1+..+2n +1- 1=2n +1 - n - 2,可知当N 为口畸1)时(n € N +),数列{&}的前N 项和为数列{b n }的前n 项和,即为 2n +1 - n - 2,容易得到N > 100时,n A 14,A 项,由四幕0=435, 440=435+5,可知 S 440=T 29+b 5=230 - 29 - 2+25 - 1=230,故 A项符合题意.B 项,仿上可知举2L =325,可知 S 330=T 25+b 5=226 - 25 - 2+25 - 1=226+4,显然不为2的整数幕,故B 项不符合题意.C 项,仿上可知 竺严=210,可知 S 220=120+b 10=221 - 20 - 2+210 - 1=221+210 - 23,显然不为2的整数幕,故C 项不符合题意. D 项,仿上可知=105,可知 Si io =T i4+b 5=215 - 14-2+25 - 1=215+15,显然A . 440B . 330 C. 220 D . 110活码; 方法可知:【解=2n +1- 1,(n € N +), 2nCn+Ga , L=1不为2的整数幕,故D项不符合题意. 故选A.Q 0 Q 1 rj 2 n 0 Q 1 Q 2・■・ 仃 1乙 P 乙 T 必...己, £ t 乙? T 』第三项根据等比数列前n 项和公式,求得每项和分别为:21 - 1, 22 - 1, 23- 1, (2)-1, 每项含有的项数为:1, 2, 3,…,n , 总共的项数为N=1+2+3+"n=(14ng •2所有项数的和为 S n :21 - 1+22- 1+23- 1+-+2n - 1=(21+22+23+-+2n ) - n=(l —旷)1-2100,④ 1+2+4+8+16+ (-2-n ) =0,解得:n=29,总共有([十 X 四 +5=440,满足 N > 100,•••该款软件的激活码440. 故选:A .【点评】本题考查数列的应用,等差数列与等比数列的前n 项和,考查计算能力, 属于难题.、填空题:本题共4小题,每小题5分,共20 分.13. (5分)已知向量已,b 的夹角为60° ||引=2, |b |=1,则|Q +2b |.【考点】90:平面向量数量积的性质及其运算.【专题】31 :数形结合;40:定义法;5A :平面向量及应用.由 题 意 可 知黒一顷第口项-n=2n +1 -2 - n ,由题意可知:2n +1为2的整数幕. 只需将-2 - n 消去即可,〔1+1) XI2 CL+5)X5 2~③ 1+2+4+8+ (- 2-n ) =0,解得:n=13,总共有厲十 13)* 13 +4=95,不满足 N >则① 1+2+ (-2-n ) =0,解得: ② 1+2+4+ (-2-n ) =0,解得: n=1,总共有n=5,总共有+2=3,不满足 N > 100, +3=18,不满足 N > 100,【分析】根据平面向量的数量积求出模长即可.•••需 m 『于+4;?&4^2 =22+4X 2X 1X COS60+4X 12 =12,【解法二】根据题意画出图形,如图所示;结合图形云硕五刁+2*; 在^ OAC 中,由余弦定理得长,是基础题.K-^2y^l14. (5分)设X , y 满足约束条件2x+y>-l ,则z=3x- 2y 的最小值为K-^011:计算题;31:数形结合;35:转化思想;5T :不等式.由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结【解答】解:【解法一】向量a , b 的夹角为60° 且 |7|=2, |肓=1,【点评】本题考查了平面向量的数量积的应用问题, 解题时应利用数量积求出模 【考点】 7C:简单线性规划.【专题】 【分析】 即 | ,l +2b | =2jj •合得答案.【解答】解:由X ,y 满足约束条件-2x-Hy>-l 作出可行域如图,xXO由图可知,目标函数的最优解为 A , 联立j 好,解得A (- 1, 1).,2K+y=-l••• z=3x - 2y 的最小值为-3X 1 - 2X 1 = - 5.2 ^=1(a >0,b >0)的右顶点为A '以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于 M 、N 两点•若/ MAN=60,贝U C 的离心率为【考点】KC 双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D :圆锥曲线的定义、性 质与方程.【分析】利用已知条件,转化求解 A 到渐近线的距离,推出a ,c 的关系,然后 求解双曲线的离心率即可.考查了数形结合的解题思想方法,是中档15. (5分)已知双曲线C :题.故答案为:-5.全国统一高考试卷试题2【解答】解:双曲线C:刍2 a以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若/ MAN=6° ,可得A到渐近线bx+ay=0的距离为:bcos30°=^_b ,2b ,即巨理,可得离心率为:e吕3.C 2 3【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16. (5分)如图,圆形纸片的圆心为0,半径为5cm,该纸片上的等边三角形ABC的中心为O. D、E、F为圆0上的点,△ DBC, △ ECA △ FAB分别是以BC, CA AB为底边的等腰三角形.沿虚线剪开后,分别以BC, CA, AB为折痕折起△ DBC, △ ECA △ FAB使得D、E、F重合,得到三棱锥.当△ ABC 的边长变化时,所得三棱锥体积(单位:cm3)的最大值为旋cm3【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围冋题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD丄BC, OG習BC,设OG=x则BC=*^x , DG=5- x,三棱锥的高h也5-L0工,求出&:V吉仏插Q X25 J -10 J,令 f (x) =25x - 10x5,x€(0,号),f(X)=100x3- 50X4, f (x)<f (2)=80,由此能求出体积最大值.第22页(共36页)-7=1 (a>0, b>0)的右顶点为A (a, 0),可得:1曲迟•3故答案为:法二:设正三角形的边长为x,贝U OG i*迈囂空兀,FG=SG=5■返K,3 2 6 6S O=hf S* 410 2 —省;啡(5爭,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD丄BC, OG亚BC,6即OG的长度与BC的长度成正比,设OG=x 贝U BC二馮,DG=5- X,三棱锥的高h珂BG J G2勺25-10工十X 2 -12引25-1 (k ,电ABC今X乎X(2后产3乐]则V吉%幅匚X hpF X也5-1。
2017年数学真题及解析_2017年全国统一高考数学试卷(理科)(新课标ⅰ)

2017年全国统一高考数学试卷(理科)(新课标I)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)巳知集合A=(x∣x<l},B=(x∣3×<l},则()A.A∩B={x∣x<0}B.AUB=RC.AUB={x∣x>l}D.AEB=02.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()BCA.ɪB.ɪC.ɪD.—48243.(5分)设有下面四个命题Pi:若复数Z满足1∈R,则z∈R;ZP2:若复数Z满足z2∈R,则z∈R;P3:若复数Zl,Z2满足Z1Z2任R,则ZI=&P4:若复数z∈R,则三WR.其中的真命题为()A.Pl,p3B.Pl,p4C.P2,P3D.P2,P44.(5分)记Sn为等差数列{a tl}的前n项和.若a4+a5=24,S6=48,则{a∏}的公差为()A.1B.2C.4D.85.(5分)函数f(x)在(-8,+8)单调递减,且为奇函数.若f(I)=-1,则满足-l≤f(X-2)≤1的X的取值范围是()A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]6.(5分)(1+工)(l+x)6展开式中χ2的系数为()2XA.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在A.A>1000和n=n+lB.A>1000和n=n+2C.A≤1000和n=n+lD.A≤1000和n=n+29.(5分)已知曲线Ci:y=cosx,C2:y=sin(2x+22L),则下面结论正确的是()3A.把Cl上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移2L个单位长度,得到曲线C26B.把Cl上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移2L个单位长度,得到曲线C212C.把Cl上各点的横坐标缩短到原来的【倍,纵坐标不变,再把得到的曲线向右2平移2L个单位长度,得到曲线C26D.把Cl上各点的横坐标缩短到原来的【倍,纵坐标不变,再把得到的曲线向左2平移2L个单位长度,得到曲线C21210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线∣ι,I2,直线Ii与C交于A、B两点,直线∣2与C交于D、E两点,则AB∣+∣DE∣的最小值为()A.16B.14C.12D.1011.(5分)设x、y、Z为正数,且2x=3y=5z,贝U()A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1, 2,4,8,16,其中第一项是2。
2017年全国统一高考数学 理科 新课标1 (解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017?新课标Ⅰ)已知集合A={x|x <1},B={x|3x <1},则( ) A .A ∩B={x|x <0} B .A ∪B=R C .A ∪B={x|x >1} D .A ∩B=?2.(5分)(2017?新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D .3.(5分)(2017?新课标Ⅰ)设有下面四个命题 p 1:若复数z 满足∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;p 4:若复数z ∈R ,则∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 44.(5分)(2017?新课标Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2C .4D .85.(5分)(2017?新课标Ⅰ)函数f (x )在(﹣∞,+∞)单调递减,且为奇函数.若f (1)=﹣1,则满足﹣1≤f (x ﹣2)≤1的x 的取值范围是( ) A .[﹣2,2]B .[﹣1,1]C .[0,4]D .[1,3]6.(5分)(2017?新课标Ⅰ)(1+)(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .357.(5分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.168.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)(2017?新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)(2017?新课标Ⅰ)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017?新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)(2017?新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)(2017?新课标Ⅰ)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)(2017?新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程](2017?新课标Ⅰ)在直角坐标系xOy中,曲线C的参数方程为,22.(10分)(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.(2017?新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017?新课标Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=?【考点】1E:交集及其运算.【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)(2017?新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D .【考点】CF :几何概型.【专题】35 :转化思想;4O :定义法;5I :概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2, 则黑色部分的面积S=,则对应概率P==,故选:B .【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)(2017?新课标Ⅰ)设有下面四个命题 p 1:若复数z 满足∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;p 4:若复数z ∈R ,则∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4【考点】2K :命题的真假判断与应用;A1:虚数单位i 、复数;A5:复数的运算. 【专题】2A :探究型;5L :简易逻辑;5N :数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案. 【解答】解:若复数z 满足∈R ,则z ∈R ,故命题p 1为真命题;p 2:复数z=i满足z2=﹣1∈R,则z?R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)(2017?新课标Ⅰ)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1 B.2 C.4 D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{an}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)(2017?新课标Ⅰ)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【考点】3P:抽象函数及其应用.【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x ﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(2017?新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【考点】DA:二项式定理.【专题】35 :转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【考点】L!:由三视图求面积、体积.【专题】11 :计算题;31 :数形结合;44 :数形结合法;5Q :立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S=×2×(2+4)=6,梯形∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11 :计算题;38 :对应思想;49 :综合法;5K :算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11 :计算题;35 :转化思想;57 :三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)(2017?新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【考点】K8:抛物线的性质.【专题】11 :计算题;34 :方程思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A 与D ,B ,E 关于x 轴对称,即直线DE 的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l 1⊥l 2,直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D ,B ,E 关于x 轴对称,即直线DE 的斜率为1, 又直线l 2过点(1,0), 则直线l 2的方程为y=x ﹣1, 联立方程组,则y 2﹣4y ﹣4=0,∴y 1+y 2=4,y 1y 2=﹣4,∴|DE|=?|y 1﹣y 2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin 22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16, 故选:A .【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)(2017?新课标Ⅰ)设x 、y 、z 为正数,且2x =3y =5z ,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35 :转化思想;51 :函数的性质及应用;59 :不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440 B .330 C .220 D .110 【考点】8E :数列的求和.【专题】35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n }的通项公式及前n 项和,可知当N 为时(n ∈N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为2n+1﹣n ﹣2,容易得到N >100时,n ≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n 项和S n =2n+1﹣2﹣n ,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n 消去即可,分别即可求得N 的值. 【解答】解:设该数列为{an },设b n =+…+=2n+1﹣1,(n ∈N +),则=a i ,由题意可设数列{a n }的前N 项和为S N ,数列{b n }的前n 项和为T n ,则T n =21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n ﹣2, 可知当N 为时(n ∈N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为2n+1﹣n ﹣2,容易得到N >100时,n ≥14, A 项,由=435,440=435+5,可知S 440=T 29+b 5=230﹣29﹣2+25﹣1=230,故A 项符合题意. B 项,仿上可知=325,可知S 330=T 25+b 5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017?新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2.【考点】9P:平面向量数量积的坐标表示、模、夹角.【专题】31 :数形结合;4O:定义法;5A :平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4?+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5 .【考点】7C:简单线性规划.【专题】11 :计算题;31 :数形结合;35 :转化思想;5T :不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【考点】KC:双曲线的性质.【专题】11 :计算题;35 :转化思想;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)(2017?新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则=3,BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABCV==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11 :计算题;33 :函数思想;4R:转化法;56 :三角函数的求值;58 :解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=?===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】MJ:二面角的平面角及求法;LY:平面与平面垂直.【专题】15 :综合题;31 :数形结合;41 :向量法;5G :空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA?平面PAD,PD?平面PAD,∴AB⊥平面PAD,又AB?平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B (),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD?平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos <>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C 的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x为抽取的第i个零件的尺寸,i=1,2, (16)i用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11 :计算题;35 :转化思想;4A :数学模型法;5I :概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的. (ⅱ)由=9.97,s ≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个 零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02, 因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008, 因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题. 20.(12分)(2017?新课标Ⅰ)已知椭圆C :+=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,),P 4(1,)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.【考点】KI :圆锥曲线的综合;K3:椭圆的标准方程.【专题】14 :证明题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P 2(0,1),P 3(﹣1,),P 4(1,)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,)代入椭圆C ,求出a 2=4,b 2=1,由此能求出椭圆C 的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l :y=kx+t ,(t ≠1),联立,得(1+4k 2)x 2+8ktx+4t 2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l 过定点(2,﹣1). 【解答】解:(1)根据椭圆的对称性,P 3(﹣1,),P 4(1,)两点必在椭圆C上,又P 4的横坐标为1,∴椭圆必不过P 1(1,1), ∴P 2(0,1),P 3(﹣1,),P 4(1,)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,)代入椭圆C ,得:,解得a 2=4,b 2=1,∴椭圆C 的方程为=1.证明:(2)①当斜率不存在时,设l :x=m ,A (m ,y A ),B (m ,﹣y A ), ∵直线P 2A 与直线P 2B 的斜率的和为﹣1, ∴===﹣1,解得m=2,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设l :y=kx+t ,(t ≠1),A (x 1,y 1),B (x 2,y 2), 联立,整理,得(1+4k 2)x 2+8ktx+4t 2﹣4=0,,x 1x 2=,则==。
2017年全国统一高考新课标版Ⅰ卷全国1卷理科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅰ卷全国1卷理科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R. 其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x-2y的最小值为.15.(5分)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为. 16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可. 【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R. 其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p 2:复数z=i满足z2=-1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )A.1B.2C.4D.8【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=-2,d=4,∴{an}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]【分析】由已知中函数的单调性及奇偶性,可将不等式-1≤f(x-2)≤1化为-1≤x-2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=-1,则f(-1)=1,又∵函数f(x)在(-∞,+∞)单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x-2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x-2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,=×2×(2+4)=6,S梯形∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C 1:y =cosx,C 2:y =sin(2x +),则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y =cos2x 图象,再把得到的曲线向左平移个单位长度,得到函数y =cos2(x +)=cos(2x +)=sin(2x+)的图象,即曲线C 2, 故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10【分析】方法一:根据题意可判断当A 与D,B,E 关于x 轴对称,即直线DE 的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l 1⊥l 2,直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D,B,E 关于x 轴对称,即直线DE 的斜率为1, 又直线l 2过点(1,0),则直线l 2的方程为y =x -1,联立方程组,则y 2-4y -4=0,∴y 1+y 2=4,y 1y 2=-4, ∴|DE|=•|y 1-y 2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin 22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16, 故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题.11.(5分)设x 、y 、z 为正数,且2x =3y =5z ,则( )A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z 【分析】x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x =,y =,z =.可得3y =,2x =,5z =.根据==,>=.即可得出大小关系.另解:x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x =,y =,z =.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【分析】方法一:由数列的性质,求得数列{bn}的通项公式及前n项和,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别即可求得N的值.【解答】解:设该数列为{an },设bn=+…+=2n+1-1,(n∈N+),则=ai ,由题意可设数列{an }的前N项和为SN,数列{bn}的前n项和为Tn,则Tn=21-1+22-1+…+2n+1-1=2n+1-n-2,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230-29-2+25-1=230,故A项符合题意.B项,仿上可知=325,可知S330=T25+b5=226-25-2+25-1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221-20-2+210-1=221+210-23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215-14-2+25-1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21-1,22-1,23-1,…,2n-1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21-1+22-1+23-1+…+2n-1=(21+22+23+…+2n)-n=-n=2n+1-2-n,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,则①1+2+(-2-n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(-2-n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(-2-n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(-2-n)=0,解得:n=29,总共有+5=440,满足N>100, ∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x-2y的最小值为-5 .【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(-1,1).∴z=3x-2y的最小值为-3×1-2×1=-5.故答案为:-5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:-=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=3,V==,令=5-x,三棱锥的高h=,求出S△ABCf(x)=25x4-10x5,x∈(0,),f′(x)=100x3-50x4,f(x)≤f(2)=80,由此能求出体积最大值.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5-x,三棱锥的高h===,=3,则V===,令f(x)=25x4-10x5,x∈(0,),f′(x)=100x3-50x4,令f′(x)≥0,即x4-2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC-sinBsinC=-=-,∴cos(B+C)=-,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2-2bccosA,∴b2+c2-bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB ⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD 为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A-PB-C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A-PB-C为钝角,∴二面角A-PB-C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;经计算得==9.97,s==≈0.212,其中x为i抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【分析】(1)通过P(X=0)可求出P(X≥1)=1-P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ-3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(-3+3)=(9.334,10.606),进而需剔除(-3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ-3σ,μ+3σ)之内的概率为0.9974,则落在(μ-3σ,μ+3σ)之外的概率为1-0.9974=0.0026,因为P(X=0)=×(1-0.9974)0×0.997416≈0.9592,所以P(X≥1)=1-P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(-3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(-3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(-3+3)之外,因此需对当天的生产过程进行检查.剔除(-3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97-9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(-3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(-1,),P4(1,)三点在椭圆C上.把P 2(0,1),P3(-1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2-4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,-1).【解答】解:(1)根据椭圆的对称性,P3(-1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(-1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(-1,)代入椭圆C,得:,解得a2=4,b2=1, ∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,yA ),B(m,-yA),∵直线P2A与直线P2B的斜率的和为-1,∴===-1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2-4=0,,x1x2=,则=====-1,又t≠1,∴t=-2k-1,此时△=-64k,存在k,使得△>0成立,∴直线l的方程为y=kx-2k-1,当x=2时,y=-1,∴l过定点(2,-1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;<(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min=g(e-2)=e-2lne-2+e-2-1=--1,g(1)=0, 0,g(a)=alna+a-1,a>0,求导,由g(a)min即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a-2)e x-x,求导f′(x)=2ae2x+(a-2)e x-1,当a=0时,f′(x)=-2e x-1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x-1)=2a(e x+)(e x-),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(-∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x-)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(-∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a-2)e x-x,当x→-∞时,e2x→0,e x→0,∴当x→-∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(-∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)=f(ln)=a×()+(a-2)×-ln<0,min∴1--ln<0,即ln+-1>0,设t=,则g(t)=lnt+t-1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a-2)e x-x,求导f′(x)=2ae2x+(a-2)e x-1,当a=0时,f′(x)=-2e x-1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x-1)=2a(e x+)(e x-),令f′(x)=0,解得:x=-lna,当f′(x)>0,解得:x>-lna,当f′(x)<0,解得:x<-lna,∴x∈(-∞,-lna)时,f(x)单调递减,x∈(-lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x-)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(-∞,-lna)是减函数,在(-lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,=f(-lna)=1--ln, ②当a>0时,由(1)可知:当x=-lna时,f(x)取得最小值,f(x)min当a=1,时,f(-lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1--ln>0,即f(-lna)>0,故f(x)没有零点,当a∈(0,1)时,1--ln<0,f(-lna)<0,由f(-2)=ae-4+(a-2)e-2+2>-2e-2+2>0, 故f(x)在(-∞,-lna)有一个零点,假设存在正整数n0,满足n>ln(-1),则f(n)=(a+a-2)-n>-n>-n>0,由ln(-1)>-lna,因此在(-lna,+∞)有一个零点.∴a的取值范围(0,1).【点评】本题考查导数的综合应用,考查利用导数求函数单调性及最值,考查函数零点的判断,考查计算能力,考查分类讨论思想,属于中档题.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【分析】(1)将曲线C的参数方程化为标准方程,直线l的参数方程化为一般方程,联立两方程可以求得焦点坐标;(2)曲线C上的点可以表示成P(3cosθ,sinθ),θ∈[0,2π),运用点到直线距离公式可以表示出P到直线l的距离,再结合距离最大值为进行分析,可以求出a的值.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=-1时,直线l的参数方程化为一般方程是:x+4y-3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(-,).(2)l的参数方程(t为参数)化为一般方程是:x+4y-a-4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:。
2017年高考全国1卷理科数学和答案详解(word版本)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1 •答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2 •作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4 •考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
X1.已知集合A={x|x<1} , B={x|3 1},则A. AI B {x|x 0}B. AUB RC. AUB {x|x 1}D. AI B2 .如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是3.设有下面四个命题P1 :若复数z满足丄 R,则z R ;zP2:若复数z满足z2R,则z R ;P3:若复数N,Z2满足Z1Z2 R,则zi Z2 ;3P 4:若复数z R ,则z R .其中的真命题为1 6 2—)(1 x)6展开式中X 2的系数为X7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A . A>1 000 和 n=n+1B . A>1 000 和 n=n+2C . A 1 000 和 n=n+1D . A 1 000 和 n=n+2A . P l , P 3B . P l , P 4C . P 2,P 3D . P 2, P 44 •记S n 为等差数列 {a n }的前n 项和.若 a 4a524,Ss 48,则{a n }的公差为C . 45.函数f (X )在()单调递减,且为奇函数.若 f(1) 1,则满足 1 f(x 2) 1的X 的取值范围[2,2] B . [ 1,1]C • [0,4]D . [1,3]6 . (1 A . 15B . 20C . 30D . 352,俯视图为等腰直角三角形 A . 10 B . 12 8 .右面程序框图是为了求出满足C . 14D . 163n -2n >1000的最小偶数n ,那么在號「詞和=两个空白框中,可以分别填入9.已知曲线 C 1: y=cos x , C 2: 2 ny=s in (2x+),则下面结论正确的是到曲线C 2到曲线C 2到曲线C 2得到曲线C 2x y z11.设xyz 为正数,且23 5,则二、填空题:本题共 4小题,每小题5分,共20分。
2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2017 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z 满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5 分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳4.(5 分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5 分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆+ =1 有公共焦点,则C 的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5 分)已知圆柱的高为1,它的两个底面的圆周在直径为2 的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5 分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6 成等比数列,则{a n}前6 项的和为()A.﹣24 B.﹣3 C.3 D.810.(5 分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2 为直径的圆与直线bx﹣ay+2ab=0 相切,则C 的离心率为()A.B.C.D.11.(5 分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5 分)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ 的最大值为()A.3 B.2C.D.2二、填空题:本题共4 小题,每小题5 分,共20 分。
2017年全国统一高考数学试卷及参考答案(理科)(全国新课标III)
2017年全国统一高考数学试卷(理科)(全国新课标III)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A. B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。
2017年(文科数学)(新课标Ⅱ)试卷真题+参考答案+详细解析
2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合{1,2,3}A =,{2,3,4}B =,则(A B = )A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4}2.(5分)(1)(2)(i i ++= ) A .1i -B .13i +C .3i +D .33i +3.(5分)函数()sin(2)3f x x π=+的最小正周期为( )A .4πB .2πC .πD .2π 4.(5分)设非零向量a ,b 满足||||a b a b +=-,则( ) A .a b ⊥B .||||a b =C .//a bD .||||a b >5.(5分)若1a >,则双曲线2221x y a-=的离心率的取值范围是( )A.)+∞B.C.D .(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π7.(5分)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .98.(5分)函数2()(28)f x ln x x =--的单调递增区间是( ) A .(,2)-∞-B .(,1)-∞-C .(1,)+∞D .(4,)+∞9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的1a =-,则输出的(S = )A .2B .3C .4D .511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .2512.(5分)过抛物线2:4C y x =的焦点F ,3C 于点(M M 在x 轴上方),l 为C 的准线,点N 在l 上,且MN l ⊥,则M 到直线NF 的距离为( ) A 5B .22C .23D .33二、填空题,本题共4小题,每小题5分,共20分 13.(5分)函数()2cos sin f x x x =+的最大值为 .14.(5分)已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = . 15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 16.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B = .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=. (1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .18.(12分)如图,四棱锥P ABCD-中,侧面PAD为等边三角形且垂直于底面ABCD,12AB BC AD==,90BAD ABC∠=∠=︒.(1)证明:直线//BC平面PAD;(2)若PCD∆面积为27,求四棱锥P ABCD-的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50kg <箱产量50kg旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较. 附:2()P K K0.050 0.010 0.001 K3.8416.63510.8282()()()()K a b c d a c b d =++++.20.(12分)设O为坐标原点,动点M在椭圆22:12xC y+=上,过M作x轴的垂线,垂足为N,点P满足2NP NM=.(1)求点P的轨迹方程;(2)设点Q在直线3x=-上,且1OP PQ=.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;(2)当0x 时,()1f x ax +,求实数a 的取值范围.(二)选考题:共10分。
2017年高考全国卷I-数学试题(含答案)
2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n−2n>1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件。
(完整word)2017年高考理科数学全国1卷(附答案)
学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2017年普通高等学校招生全国统一考试理科数学 全国I 卷(全卷共10页)(适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3] 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A .10 B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入 A .A >1 000和n =n +1 B .A >1 000和n =n +2 C .A ≤1 000和n =n +1 D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}3.(5分)在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔(古称浮屠),本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出的结果是()A.6 B.5 C.4 D.34.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=.14.(5分)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.15.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.16.(5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y 轴于点N.若M为FN的中点,则|FN|=.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分。
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:K2=.19.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB ﹣D的余弦值.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.21.(12分)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分)22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.[选修4-5:不等式选讲](10分)23.已知a>0,b>0,a3+b3=2.证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.【解答】解:===2﹣i,故选:D.【点评】本题考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,两个复数相除,分子和分母同时乘以分母的共轭复数.2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【分析】由交集的定义可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.【点评】本题考查集合的运算,主要是交集的求法,同时考查二次方程的解法,运用定义法是解题的关键,属于基础题.3.(5分)在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔(古称浮屠),本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出的结果是()A.6 B.5 C.4 D.3【分析】设塔顶的a1盏灯,由题意{a n}是公比为2的等比数列,利用等比数列前n项和公式列出方程,能求出结果.【解答】解:设塔顶的a1盏灯,由题意{a n}是公比为2的等比数列,∴S7==381,解得a1=3.故选:D.【点评】本题考查等比数列的首项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可.【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.【点评】本题考查线性规划的简单应用,考查数形结合以及计算能力.6.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【分析】把工作分成3组,然后安排工作方式即可.【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.【点评】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力.7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了故选:D.【点评】本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题.8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【分析】执行程序框图,依次写出每次循环得到的S,K值,当K=7时,程序终止即可得到结论.【解答】解:执行程序框图,有S=0,K=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,K=2;满足条件,第二次满足循环,S=1,a=﹣1,K=3;满足条件,第三次满足循环,S=﹣2,a=1,K=4;满足条件,第四次满足循环,S=2,a=﹣1,K=5;满足条件,第五次满足循环,S=﹣3,a=1,K=6;满足条件,第六次满足循环,S=3,a=﹣1,K=7;K≤6不成立,退出循环输出S的值为3.故选:B.【点评】本题主要考查了程序框图和算法,属于基本知识的考查,比较基础.9.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【分析】通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.【点评】本题考查双曲线的简单性质的应用,圆的方程的应用,考查计算能力.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【分析】【解法一】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.【解法二】通过补形的办法,把原来的直三棱柱变成直四棱柱,解法更简洁.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1=,BD==,C1D=,∴+BD2=,∴∠DBC1=90°,∴cos∠BC1D==.故选:C.【点评】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.1【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:f′(﹣2)=(﹣4+a)e﹣3+(4﹣2a﹣1)e﹣3=0,即﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.【点评】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查计算能力.12.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B.【点评】本题主要考查平面向量数量积的应用,根据条件建立坐标系,利用坐标法是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。