基因组学的内容

合集下载

功能基因组学课件

功能基因组学课件
《功能基因组学》PPT课件
SAGE 步骤
1. 将5μg含有oligo dT(引物)的磁珠与 RNA混合。
2. 合成双链cDNA。
3. 用NlaⅢ酶消化形成一条链末端有标签 的产物。
4. 将样品分成两份,连接成含有识别序 列的产物,以备用BsmF1消化。
5. 用Mme I切割每一个样品形成约60bp 的标签。
➢ 科学研究已开始进入“后基因组时代”。主要是开展 功能基因组学和蛋白质组学的研究。
➢ 有科学家形象地说道:即使基因测序全部完成,也只 好像是一本没有姓名,只有号码的电话簿。“后基因 组时代”的最终目标,是要把深奥的DNA语言变成一 本大基因百科全书。
《功能基因组学》PPT课件
功能基因组学
功能基因组学,后基因组学(Post genomics): 利用结构基因组学提供的信息和产物 通过在基因组或系统水平上全面分析基因的 功能 生物学研究从对单一基因或蛋白质的研究转 向对多个基因或蛋白质同时进行系统的研究。
特定基因检测 突变检测 多态性分析 基因表达谱
• 生物信息学的工具 • 基因相关性研究 • 基因功能 • 药物设计和开发 • 潜在反义试剂开发 • 个体化医疗 • 身份识别 • 基因诊断 • 其他与生物有关的领域
《功能基因组学》PPT课件
例:肿瘤诊断
国外有一临床病人表现出典型的白血病症状,但形态 学检测不典型,根据相关检查,诊断为AML(acute myeloid leukaemia, 急性骨髓白血病),治疗几个月后未见 好转。后来用DNA芯片与病人骨髓的mRNA杂交,结果显示 AML和ALL(acute lymphoblastic leukaemia 急性成淋巴细胞白 血病)基因都表达较低,而在数据分析中发现,编码原肌球 蛋白的基因表达极高,从而确诊为肺泡弹状肌肉瘤,改变 治疗方案,病情出现缓解。

基因组学

基因组学

名词解释:第一章基因组遗传图(连锁图):指基因或DNA标记在染色体上的相对位置与遗传距离。

单位是厘摩cM (基因或DNA片段在染色体交换过程中分离的频率)。

物理图:以已知核苷酸序列的DNA片段(序列标签位点,sequence-tagged site, STS)为“路标”,以碱基对作为基本测量单位(图距)的基因组图。

转录图:以EST(expressed sequence tag ,表达序列标签)为标记,根据转录顺序的位置和距离绘制的图谱。

EST:通过从cDNA文库中随机挑选的克隆进行测序所获得的部分cDNA的5'或3'端序列称为表达序列标签(EST),一般长300-500 bp左右。

序列图(分子水平的物理图):序列图是指整个人类基因组的核苷酸序列图,也是最详尽的物理图。

既包括可转录序列,也包括非转录序列,是转录序列、调节序列和功能未知序列的总和。

基因:合成有功能的蛋白质或RNA所必需的全部DNA序列,即一个基因不仅包括编码蛋白质或RNA的核酸序列,还应包括为保证转录所必需的调控序列。

基因组(genome):生物所具有的携带遗传信息的遗传物质的总和。

基因组学(genomics):涉及基因组作图、测序和整个基因组功能分析的一门学科。

C值:单倍体基因组的DNA总量,一个特定种属具有特征C值C值矛盾(C value paradox):指一个有机体的C值和其编码能力缺乏相关性。

单一序列:基因组中单拷贝的DNA序列。

重复序列:基因组中多拷贝的DNA序列。

复杂性(complexity):基因组中不同序列的DNA总长。

高度重复序列(highly repetitive sequence):重复片段的长度单位在几个到几百个碱基对(base pair,bp)之间(一般不超过200 bp),串联重复频率很高(可达106以上),高度重复后形成的这类重复顺序称为高度重复顺序。

中度重复序列(intermediate repetitive sequence ):重复长度300~7000 bp不等,重复次数在102~105左右。

基因组学PPT课件

基因组学PPT课件
9
人类基因组计划的背景-----基因组计划最早始于美国
初衷1945年原子弹事件
1984年12月犹他大学魏特受美国能源部的委托,美国能源部
的广岛之争:突变率调查
资助召开的环境诱变物和致癌物的防护的会议上,
讨论DNA重组技术的发展及测定人类整个基因组
1985年6月,美国加州的会议上, DNA序列的意义,第一次提出测定人体基因和全部DNA序列,
1990年10月1日正式启动实施
目标:完成对人的基因组的30亿个核苷酸对的 全部序列测定工作,阐明人体中全部基因的位置、 功能、结构、表达调控方、德、日、中六国科学家的共同努力下, 2000年6月26日, 国际人类基因组计划与塞莱拉公司联合发布“人类基因组工作草图”。 2001年2月12日 两大科研小组联合发布人类基因组图谱及“基本信息”。宣告人类基因组计划基本完成。10
人类基因组计划是与曼哈顿原子计划、阿波罗登月计划一样伟大宏伟。
人类基因组计划的研究内容
美国的人类基因组计划总体规划是: 拟在15年内至少投入30亿美元,进行对人类全基因组的
分析。 1993年作了修订,其主要内容包括: 人类基因组的基因图构建与序列分析; 人类基因的鉴定; 基因组研究技术的建立; 人类基因组研究的模式生物; 信息系统的建立。 人类基因组研究的社会、法律与伦理问题, 交叉学科的技术训练, 技术的转让, 研究计划的外延等共9方面的内容。
美国能源部正式提出了展开人类
并检测所有的突变,计算真实的突变率。
基因组测序工作,形成了能源部 的“人类基因组计划”初步草案。
1986年6月,新墨西哥州冷泉港吉尔伯特及伯格主持的讨论会上, 进行了可行性讨论。美能源部宣布实施草案。意裔美肿瘤分子生
1987年,美国国家医学研究 院和能源部联合提出了这一 宏伟计划,即HGP),先期

功能基因组学的四大研究内容

功能基因组学的四大研究内容

功能基因组学的四大研究内容功能基因组学,这个名字听上去有点高深,但其实它就像是给生命的“使用说明书”打上的注释。

想象一下,咱们身体里的每个细胞都是一个小工厂,而基因就是工厂里的机器,这些机器在不停地运转,干着各种各样的工作。

有些机器专门负责生产蛋白质,有些则负责修复受损的部分,真的是忙得不可开交。

可能有的小伙伴会问了,功能基因组学到底研究啥呢?好吧,今天就让我们轻松聊聊它的四大研究内容,保证让你听了之后大开眼界。

咱们得聊聊基因的表达调控。

基因就像是一本食谱,里面写着做饭的步骤。

而表达调控就好比是个厨师,懂得什么时候该做什么菜。

在不同的情况下,基因的表达会有所不同,比如你运动时和休息时身体的需求就不一样。

研究这块的科学家们,真是像侦探一样,挖掘出各种因素是怎么影响基因开关的。

想象一下,夏天你突然想吃冰淇淋,那基因的开关就得快点调整,生产能让你享受美味的蛋白质。

真是个忙碌的过程,哪有时间停下来喝茶?功能基因组学的第二大研究内容就是基因与表型的关系。

这可有意思了,基因就像是小秘密,决定了你是什么样的人,能不能跑得快、唱得好、甚至吃得香。

科学家们通过研究发现,某些基因和特定的性状紧密相关。

就好比你爱吃辣椒,可能和你体内的某个基因有关系。

搞清楚这些基因是怎么影响表型的,就像找到了解码人生的密码,特别让人激动。

而且这些发现不仅可以帮助咱们更好地理解自己,还能在医学上应用,比如定制个性化的治疗方案,真是让人心动不已。

然后就是基因组的功能注释。

这部分就像是在给书里的每个字加注释,告诉你这个字的意思。

科学家们通过各种手段来确定基因的功能,找出它们在生物体内的角色。

想象一下,一本书里每个角色都在各自的章节中活蹦乱跳,大家都忙着推动剧情的发展。

通过这些功能注释,科学家们不仅可以搞清楚各个基因的作用,还能帮助咱们理解各种复杂的生物过程。

比如,某个基因可能与癌症有关,了解了它的功能后,咱们就能更好地找到预防和治疗的方法,真是一举两得。

功能基因组学

功能基因组学

功能基因组学功能基因组学是研究基因组的功能和表达的科学领域。

它从整体的基因组角度出发,综合运用系统生物学、计算生物学、遗传学等学科的理论和方法,研究基因组中参与生物体发育、生长、繁殖等功能的基因及其调控网络,并解析这些基因的表达模式和调控机制。

功能基因组学的研究对象往往是不同类型的细胞、组织或生物体,在这些不同状态下基因的表达和调控。

研究者通常会运用高通量测序技术,如RNA测序、染色质免疫共沉淀测序(ChIP-seq)等,获取大规模的基因表达数据和基因调控信息。

通过对这些数据的分析和挖掘,研究者可以揭示基因的表达规律、转录因子的结合位点、RNA修饰的分布等信息,进而明确基因在不同生物过程中的功能和调控。

基于功能基因组学的研究,可以帮助科学家更全面地理解基因组的功能体系,并探究基因在生物体中的具体作用。

其中一项重要应用就是基因组范畴中寻找与特定疾病相关的基因。

研究者通过对与疾病相关的细胞或组织进行基因组学分析,发现这些组织中与疾病相关的基因表达异常以及调控途径的变化。

这种研究方法对于疾病的早期筛查、病理机制的解析以及新药研发等方面具有重大意义。

此外,功能基因组学还可以帮助揭示基因与表型之间的关系。

通过对同一物种的不同个体进行功能基因组学研究,可以发现有可能对表型产生影响的基因变异,从而识别出相关基因和调控网络。

这对于解析表型的遗传基础以及潜在的遗传疾病风险等方面具有重要意义。

需要指出的是,功能基因组学的研究不仅限于人类基因组,也包括其他物种的基因组。

通过对不同物种的功能基因组学研究,可以比较不同物种之间的基因功能和调控机制的差异,从而更好地理解生物的进化历程和适应环境的机理。

总之,功能基因组学的快速发展为生物学、医学等领域的研究提供了强有力的工具和理论基础,凭借其独特的科学视角和研究手段,必将在未来的科研领域中发挥重要作用。

基因组学的研究内容

基因组学的研究内容

基因组学的研究内容结构基因组学:基因定位;基因组作图;测定核苷酸序列功能基因组学:又称后基因组学〔postgenomics基因的识别、鉴定、克隆;基因结构、功能及其相互关系;基因表达调控的研究蛋白质组学:鉴定蛋白质的产生过程、结构、功能和相互作用方式遗传图谱〔genetic map〕采用遗传分析的方法将基因或其它dNA序列标定在染色体上构建连锁图。

遗传标记:有可以识别的标记,才能确定目标的方位及彼此之间的相对位置。

构建遗传图谱就是寻找基因组不同位置上的特征标记。

包括:形态标记;细胞学标记;生化标记;DNA 分子标记所有的标记都必须具有多态性!所有多态性都是基因突变的结果!形态标记:形态性状:株高、颜色、白化症等,又称表型标记。

数量少,很多突变是致死的,受环境、生育期等因素的影响控制性状的其实是基因,所以形态标记实质上就是基因标记。

细胞学标记明确显示遗传多态性的染色体结构特征和数量特征:染色体的核型、染色体的带型、染色体的结构变异、染色体的数目变异。

优点:不受环境影响。

缺点:数量少、费力、费时、对生物体的生长发育不利生化标记又称蛋白质标记就是利用蛋白质的多态性作为遗传标记。

如:同工酶、贮藏蛋白优点:数量较多,受环境影响小❖缺点:受发育时间的影响、有组织特异性、只反映基因编码区的信息DNA分子标记:简称分子标记以DNA序列的多态性作为遗传标记优点:❖不受时间和环境的限制❖遍布整个基因组,数量无限❖不影响性状表达❖自然存在的变异丰富,多态性好❖共显性,能鉴别纯合体和杂合体限制性片段长度多态性〔restriction fragment length polymorphism ,RFLP〕DNA序列能或不能被某一酶酶切,相当于一对等位基因的差异。

如有两个DNA分子〔一对染色体〕,一个具有某一种酶的酶切位点,而另一个没有这个位点,酶切后形成的DNA片段长度就有差异,即多态性。

可将RFLP作为标记,定位在基因组中某一位置上。

生物科学中的基因组学和转录组学

生物科学中的基因组学和转录组学生物科学的发展已经有了跨越式的进步,其中基因组学和转录组学的发展对于生物科学的进步起到了至关重要的作用。

基因组学和转录组学的出现使生物科学研究的深度和广度有了更加迅速的发展,因此,基因组学和转录组学已经成为了生物学家们最为关注的研究方向之一。

一、基因组学基因组学指的是研究某个生物所有基因的总体结构、功能、调控和演化的一门学科。

这个领域的研究涉及到从DNA序列到蛋白质功能的所有基本过程。

而作为这一领域的重要研究工具,高通量测序技术能够更加快速和精确的分析所有基因组,进而发现所有基因间的互相关联,以及这些基因与表型的关系。

基因编码着生物体内所有的功能性蛋白质,是生命的基石。

基因组学的重要性在于它能够更加全面地了解基因组在生物体内的特定位置,以及在基因组序列中的确切顺序。

有了这些信息,生物学家们就可以更好地了解疾病的起源和发展机制,进而寻找到治疗和预防疾病的更有效的方法。

基因组学的快速发展和广泛应用已经广泛地应用在了基因治疗、基因工程、农业、动物育种和环境科学等领域中。

二、转录组学转录组学是一种分析生物体内基因组转录产物的研究方法。

它通过全基因组上的RNA测序,用全介导的方法获取所有转录本,以此全面了解特定生物体的生物成分。

转录组学研究中的关键措施是测序和分析RNA的表达谱,以了解RNA的分布、结构、功能和数量等特征,并通过功能和调节之间的关联来推断转录本的调节和功能。

转录组学应用领域非常广泛,如研究常见疾病、特殊环境和生态系统等。

转录组学关注的是RNA的类型、数量和表达。

与基因组学不同,转录组学主要研究RNA的表达水平以及转录过程中的反应,可以更加深入地了解生物的调节机制、细胞分化和发育、失调状态以及防范、寻找和改变这些状况的方法。

与基因组学一样,转录组学已经产生了许多领域的应用,如研究疾病的起源和进展、生命科学和药物研究、基础生态学和环境科学等。

三、基因组学和转录组学的联系因为基因编码的蛋白质实际上是通过RNA转录而来的,因此,基因组学和转录组学之间是存在联系的,两者都在实际上研究和了解基因的不同侧面。

生命科学前沿进展基因组学、比较基因组学和宏基因组学


原核生物:一般只有一个环状DNA分子,其上所有的基因为一个基因组; 真核生物:指一个物种的单倍体染色体所含有的全部DNA分子; 真核生物通常含有2~3个基因组 -核基因组(Nuclear genome) -线粒体基因组(Mitochondrial genome) -质体基因组(Plastid genome) 真核细胞中的细胞器(如叶绿体、线粒体等)中的DNA也为环状,构成叶绿 体基因组、线粒体基因组 If not specified, “genome” usually refers to the nuclear genome.
生命科学前沿进展(一)
基因组学、元基因组学和功能 基因组学
§1 基因组学概述
基因组(genome),又称染色体组,是 某个特定物种细胞内全部DNA分子的总和 (细胞内细胞器的DNA属于该细胞器的基 因组)。物种全部遗传信息的总和。
物种遗传信息的“总词典” 控制发育的“总程序” 生物进化历史的“总档案”
E. coli:4000多个基因,人:~30000个
4、原核生物的基因绝大多数是连续基因,不 含间隔的内含子;基因组结构紧密,重复序列 远少于真核生物的基因组。
例子:E. coli K-12
双链环状DNA分子,全基因组长为4,600kb; 目前已经定位的基因有4,2因组(mitochondrion genome):长为16,569bp的环状DNA分子, 位于产生能量的细胞器——线粒体中
基因组学(genomics)
• 以分子生物学技术、计算机技术和信息网络技术为研 究手段,以生物体内全部基因为研究对象,在全基因 背景下和整体水平上分析生命体(包括人类)全部基 因组结构及功能,探索生命活动的内在规律及其内外 环境影响机制的科学。 对物种的所有基因进行定位、作图、测序和功能分析 由美国人T· H· Rodehck在1986年提出。基因组学完全改 变一次只能研究单个基因的状况,它着眼于研究并解 析生物体整个基因组的所有遗传信息。

基因组学基本知识

代谢组学关注的是各种代谢路径底物和产物的小分子代谢 物,反映细胞或组织在外界刺激或是遗传修饰下代谢应答 的变化,包括糖、脂质、氨基酸、维生素等。
.
.
比较基因组学
1988年,发现番茄和马铃薯的遗传图谱很相似。 基于结构基因组学,对基因和基因组进行比较,以了解基
因的表达、功能和进化。 对同一物种不同个体以及不同物种的基因组进行比较,分
❖ 借助这些标记利用比较作图可以将遗传图和物 理图整合起来
.
(三)基因组测序
利用现有DNA测序方法,每个测序反应通常 只能得到800个核苷酸的序列。
小基因组物种常用鸟枪法。
.
鸟枪射击法
.
大基因组测序存在两个问题: 片段数庞大,片段间连接和装配非常复杂 基因组中相同或相似的重复序列在连接和装 配时容易出错
.
(3)研究目的 找出所有人类基因,破译出人类全部遗传信息, 使得人类在分子水平上全面认识自我 将基因用于改善人类的生活质量 解决人类疾病、健康的问题
.
(4)研究意义
➢ 确定人类基因的序列、物理位置、产物及功能 ➢ 理解基因转录与转录后调节 ➢ 研究空间结构对基因调节的作用 ➢ 发现与DNA复制、重组等有关的序列 ➢ 研究DNA突变、重排和染色体断裂等,了解疾病的分
.
五、基因组学的研究方法
(一)遗传图谱的构建 (二)物理图谱的构建 (三)基因组测序 (四)基因鉴定 (五)基因功能研究
.
(二)物理图谱的构建
为什么要构建基因组图谱? ➢ 基因组计划的主要任务是获得全基因组序列 ➢ 但是,现在的测序方法每次只能测800~1000bp ➢ 大量的测序片段要拼接 ➢ 要知道序列在染色体上的位置才能正确拼接 ➢ 基因组计划的第一个环节:构建基因组图谱

基因组学基本知识


克隆连续序列法:DNA切割成长度为0.1-1Mb的 大片段→克隆到YAC或BAC载体上→分别测定单 个克隆序列→再装配连接成连续的DNA分子。
定向鸟枪射击法:以基因组图谱中标记为依据→ 测序装配和构建不同DNA片段的序列。
(四)基因鉴定
根据序列分析搜寻基因 查找开放阅读框(open reading frame, ORF)
功能基因组学就是对基因组序列进行诠释。
功能基因组学的衍生学科 转录组学、蛋白质组学、代谢组学 比较基因组学
糖组学、药物基因组学、疾病基因组学、环境基因组 学、营养基因组学、表基因组学
转录组学 比较不同组织和不同发育阶段、正常状态与疾病
状态,以及体外培养的细胞中等基因表达模式的 差异, 通过如RT-PCR、EST、SAGE、DNA芯片 等分析方法,描绘特定细胞或组织在特定状态下 的基因表达的种类和丰度的信息,编制成基因表 达的数据。
研究各活性蛋白之间的相互作用,蛋白质与DNA、RNA 之间的相互作用等,揭示蛋白质表面相互作用特征的能力, 构建全细胞的蛋白网络。
代谢组学
代谢组指的是“一个细胞、组织或器官中,所有代谢组分 的集合,尤其指小分子物质”
代谢组学是 “在新陈代谢的动态进程中,系统研究代谢 产物的变化规律,揭示机体生命活动代谢本质”的科学。
被3整除 ❖ 每一条链都有3种可能的阅读框,2条连共计有6
种可能的阅读框. ❖ 计算机可以很快给出结果。
同源查询的依据
有亲缘关系的物种,基因组可能存在某 种程度的相似性: ❖ 存在某些完全相同的序列; ❖ ORF的排列相似,如等长的外显子; ❖ ORF指令的氨基酸序列相似; ❖ 模拟的多肽链的高级结构相似,等。
几个代表物种的基因组大小
物种 T4噬菌体 大肠杆菌 酵母 拟南芥 果蝇 桃 水稻 小白鼠 人类 玉米 普通小麦
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因组学的内容
基因组学是研究生物体的基因组结构、功能和演化的学科。

其内容包括以下方面:
1.基因组结构:研究生物体的基因组大小、组成和排列方式。

2.基因组测序:通过提取DNA并测序,掌握一个生物的基因组完整信息。

有两种方法:全长测序和快速测序。

3.基因组注释:把测序得到的DNA序列解析成基因序列、编码序列、非编码序列等,再预测它们的一系列功能。

4.基因组比较:比较两个或多个基因组间的差异,探讨生物的演化、群体分布等问题。

5.基因组进化:研究基因组在演化过程中的多样性、关系和分化。

6.基因组生物学:基于基因组数据研究生物的分子进化、形态演化、生理代谢、表观遗传、蛋白质结构与功能等问题。

7.基因组医学:利用基因组技术研究疾病的遗传基础,为个性化医疗提供基础数据。

8.基因组学应用:基于基因组学的理论和技术,开发应用于生物多样性调查、作物育种、动物繁殖、基础科学研究等的一系列技术和方法。

相关文档
最新文档