核磁共振成像的图像重建
磁共振成像(MRI)

附:名词解释
晶格: MRI中原子核周围的 环境称为晶格。
平衡态:质子在温度 与磁场强度不变的情 况下充分磁化后,磁 化矢量保持衡定,这 种稳定状态为平衡态。 激发态:质子吸收能 量(RF)后的不稳定状 态为激发态。
四、病人(质子)进入外加磁场时 会发生什么情况
1、质子在正常情况下是 随意排列的 (杂乱无章),宏观磁化 矢量和为零. “自由态” 2、质子进入外加磁场时 会发生二种情况:顺、 逆外加磁场的方向。(磁
七、自旋质子弛豫
90ºRF停止时,M垂 直于B0, Mz=0,平行于xy平面, Mxy最大。 180ºRF停止时,M平 行于B0, 但方向相反,横向磁化 矢量Mxy=0, Mz最 大。
小结
①质子带有正电荷,并不停地作旋转运动。 ②旋转着的质子产生磁场犹如一个小磁棒。 ③病人入磁场后,体内的质子(小磁场)以二 种方式排列(顺低能态,逆高能态)。 ④RF激励质子进动,如陀螺在重力下旋转 ⑤进动频率可依Larmor公式计算;外加磁场愈 强,进动频率愈高。 ⑥磁共振现象:指某些特定的原子核置于静磁 场内,并受到一个适当的RF磁场的激励时, 所出现的吸收和放出RF磁场的电磁能的现象。
自旋回波脉冲序列
900脉冲一等待TE/2—1800脉冲一等待TE /2一记录信号,这是一个自旋回波脉冲
[spinecho(SE)pulsesequence]序列
MRI
设
备
MRI设备包括主磁体、梯度线圈、射频 发射器及MR信号接收器,这些部分负责MR信 号产生、探测与编码;模拟转换器、计算机、 磁盘与磁带机等,则负责数据处理、图像重 建、显示与存储
2、梯度系统
一个绝对均匀的磁场不能提供 任何空间信息。因为所有的质子 都具有相同的共振频率,发射 出不能区分的MR信号。要确定 共振的质子相应空间位置必须 改变磁场的空间结构。 它由梯度放大器及 X、Y、Z三组梯度线圈组成。
脑部MRI图像头皮三维提取及重建

脑部MRI图像头皮三维提取及重建马阿敏;杨荣骞;宁海;白红民;黎丽华;吴效明【摘要】A new scalp extraction method for Magnetic Resonance Imaging (MRI) brain images in 3D was proposed for the requirements of image guided surgery on fast and accurate positioning in craniotomy. Firstly, anisotropic diffusion filtering was used to reduce noises, and the brain parenchyma image was got by the medical software of BrainSuite3. Afterwards, the brain parenchyma was removed and the threshold of scalp from non-brain-image was calculated. Thirdly, outside surface was extracted by mathematical morphology. Finally, combined with the gray value of scalp, the scalp was reconstructed by Marching Cube (MC) algorithm. The experiments show that this method can extract scalp effectively and the precision reaches sub-pixel's level by connecting threshold, mathematical morphology and MC algorithm.%开颅手术中,为了满足手术导航系统进行快速、准确定位的要求,提出一种脑部核磁共振成像(MRI)图像三维头皮轮廓提取方法.首先采用各向异性扩散滤波方法对图像滤波,借助BrainSuite3医学软件获取脑标记图像;然后将图像中脑实质部分剔除,根据非脑组织图像计算头皮组织的分割阈值;再利用数学形态学处理二值图像获取头皮轮廓;最后结合目标灰度信息,用移动立方体(MC)算法进行三维重建.实验结果表明,该方法结合阈值、数学形态学和MC算法,能连续、光滑地提取出头皮外轮廓,并使精度达到亚像素级别.【期刊名称】《计算机应用》【年(卷),期】2013(033)005【总页数】4页(P1439-1442)【关键词】核磁共振成像图像分割;各向异性扩散滤波;数学形态学;三维头皮提取;亚像素;移动立方体算法【作者】马阿敏;杨荣骞;宁海;白红民;黎丽华;吴效明【作者单位】华南理工大学生物科学与工程学院,广州510006;华南理工大学生物科学与工程学院,广州510006;华南理工大学生物科学与工程学院,广州510006;广州军区广州总医院神经外科,广州510010;华南理工大学生物科学与工程学院,广州510006;华南理工大学生物科学与工程学院,广州510006【正文语种】中文【中图分类】TP391.410 引言在手术导航系统中,让医生简单、准确、快速地判定出肿瘤和手术器械的位置,是一个技术难点,而患者头部的标记点和一些器官(如耳朵、鼻子等)在定位过程中有着重要的参考价值。
核磁共振工作原理和成像过程

核磁共振工作原理和成像过程核磁共振(Nuclear Magnetic Resonance,NMR)是一种基于原子核的物理现象,用于研究物质的结构和性质。
核磁共振成像(Magnetic Resonance Imaging,MRI)则是利用核磁共振原理进行医学影像学上的成像技术。
下面将详细介绍核磁共振的工作原理和成像过程。
核磁共振是基于原子核磁矩与外部磁场的相互作用来实现的。
原子核具有自旋,相当于一个微小的磁偶极子,具有磁矩。
当外部磁场作用于物质中的原子核时,原子核的自旋会在磁场的作用下发生预cession(进动),类似于陀螺仪的运动。
核磁共振成像的过程主要包括磁场生成、激射、信号接收和图像重建等步骤。
首先是磁场生成。
核磁共振成像需要一个强大且稳定的磁场,通常使用超导磁体来产生强磁场。
这个磁场可以使原子核自旋的能级发生分裂,以便进行后续的操作。
接着是激射过程。
在磁场的作用下,原子核的能级发生分裂,会有一部分原子核处于较高能级。
通过向物体中注入一定的能量(通常是无线电波能量),可以使这些原子核从高能级跃迁到低能级,产生共振现象。
然后是信号接收。
当原子核跃迁到低能级时,会释放出一定的能量,这部分能量会以无线电信号的形式被接收到。
接收到的信号包含了物质的信息,如原子核的类型、数量和分布等。
最后是图像重建。
通过对接收到的信号进行处理和分析,可以得到物体内部的信息,并将其转化为图像。
这个过程涉及到信号处理、空间编码和成像算法等多个步骤,最终可以得到高分辨率的图像,用于医学诊断和研究等领域。
核磁共振成像具有非侵入性、无辐射、无副作用等优势,已经成为医学影像学中广泛应用的一种技术。
它可以清晰地显示人体内部的软组织结构,对于检测肿瘤、脑部疾病、骨骼疾病等具有重要的临床价值。
核磁共振工作原理是基于原子核的自旋与外部磁场的相互作用,通过磁场生成、激射、信号接收和图像重建等步骤,实现对物质结构和性质的研究。
核磁共振成像则是利用核磁共振原理进行医学影像学上的成像技术,具有重要的临床应用价值。
磁共振成像技术误差来源分析

磁共振成像技术误差来源分析磁共振成像(Magnetic Resonance Imaging,MRI)是一种医学影像诊断技术,通过利用原子核磁共振现象,对人体组织进行高分辨率成像。
然而,磁共振成像技术并非完美无缺,误差是其不可避免的特点之一。
本文将对磁共振成像技术中的误差来源进行详细分析。
I. 主磁场不均匀性误差主磁场是磁共振成像的基础,其均匀性对成像质量至关重要。
主磁场不均匀性误差来源于以下几个方面:1. 外部磁场扰动:周围环境的磁场变化会导致主磁场的不均匀性。
例如,建筑结构、电气设备和金属物品都可能产生磁场扰动。
2. 主磁体设计和制造:磁体的设计和制造工艺对主磁场的均匀性有着直接影响。
不完美的磁体制造可能导致主磁场的不均匀性增加。
3. 温度变化:主磁体的温度变化会影响磁场的稳定性和均匀性。
温度变化可能导致磁体局部收缩或膨胀,进而影响主磁场的均匀性。
II. 梯度磁场误差梯度磁场是磁共振成像中用于空间编码的重要组成部分。
梯度磁场误差会导致成像空间定位的不准确性。
以下是几种常见的梯度磁场误差来源:1. 梯度线圈不均匀性:梯度线圈的制造和安装质量会影响梯度磁场的均匀性。
线圈内部导线的尺寸、位置及连接方式都会对梯度场造成影响。
2. 梯度电流漂移:梯度电流的漂移会导致梯度磁场的变化,从而造成成像定位误差。
梯度电流漂移可能是由电源不稳定、导线阻抗变化等因素导致的。
3. 磁铁非线性:梯度磁场与主磁场之间有耦合作用,主磁场的不均匀性会影响梯度磁场的均匀性。
非线性磁铁可以导致梯度磁场的扭曲,从而影响成像空间定位的准确性。
III. 射频场和接收链路误差射频场是磁共振成像中用于激发和接收信号的重要部分。
射频场和接收链路误差可能产生以下误差来源:1. 射频梯度线圈误差:射频梯度线圈的设计和制造质量会影响激发和接收的射频场的均匀性。
线圈内部的导线尺寸、位置和连接方式也会对射频场产生影响。
2. 射频场不均匀性:射频场的不均匀性会导致成像信号的强度和分布出现误差,从而影响成像质量。
磁共振成像设备的工作原理

磁共振成像设备的工作原理磁共振成像(Magnetic Resonance Imaging, MRI)是一种通过利用核磁共振现象来获得人体组织图像的医学检查技术。
它可以提供高分辨率、无创伤的全身解剖图像,对病理性变化早期的发现和定量分析具有重要意义。
那么,磁共振成像设备是如何工作的呢?下面将详细介绍MRI设备的工作原理。
首先,磁共振成像设备包括主磁场系统、梯度磁场系统和射频系统。
主磁场系统是整个设备的核心,产生一个极强的定向磁场,通常为1到3特斯拉。
这个磁场可以将人体内的核磁共振信号分离出来。
在主磁场的作用下,人体内的水分子和其他核自旋(比如氢原子核)会产生一个差异很小的能级分裂。
然后,梯度磁场系统起到定位的作用,通过改变磁场的强度和方向,可以选择性地激发和感应特定区域的核磁共振信号。
接下来,利用射频系统,通过传送一系列射频脉冲激发患者体内的核自旋。
这些射频脉冲将导致核自旋从基态向激发态跃迁,并在脉冲结束后,核自旋会回到基态并释放出能量。
这些释放的能量即为核磁共振信号。
为了获得高质量的MRI图像,必须对核磁共振信号进行针对性的频率分析和空间编码。
频率分析是指将复杂的核磁共振信号转换为频率分量,以获得不同的核磁共振频率信息。
而空间编码则是指通过改变梯度磁场的强度和方向,对核磁共振信号在空间上进行编码。
最后,通过一系列计算和图像重建算法,将获得的核磁共振信号转换为高质量的图像。
这些算法包括傅里叶变换、滤波、插值和二维重建等步骤,以达到优化图像质量的目的。
综上所述,磁共振成像设备的工作原理主要包括主磁场系统、梯度磁场系统和射频系统的协同作用。
通过产生一个高强度的定向磁场、改变梯度磁场的强度和方向、利用射频脉冲激发和感应核磁共振信号,并通过频率分析和空间编码,最终获得高质量的MRI图像。
这种非侵入性的成像技术在临床上的广泛应用将进一步提高医学诊断的精确性和准确性。
磁共振成像(Magnetic Resonance Imaging, MRI)是一种通过核磁共振现象来获得人体组织图像的非侵入性检查技术。
第六章 磁共振成像(第一节至第二节)

主编:南京医科大学 编者 海 南 医学院 华北理工大学 吴小玲 许建梅 侯淑莲
第六章 磁共振成像
2003年诺贝尔医学或生理学奖获得者
美国科学家保罗·劳特伯
英国科学家彼德·曼斯菲尔德
第六章 磁共振成像
核磁共振成像是利用原子核在强磁场内发生共振产生 的信号经图像重建的成像技术。
M x ' y ' M0eTE /T2
T2弛豫及T2*弛豫
三、自旋回波序列与加权图像
3.自旋回波信号的幅值 除第一个周期外,其它周期开始时的纵向磁化矢量均为 Mz,TE时刻的横向磁化矢量为 M x ' y ' M zeT /T Mz是在前一个脉冲周期结束时恢复的纵向磁化矢量。 当 TR>>TE时,可以证明纵向磁化矢量
T1WI
T2WI 加权图像
PDWI
第一节 磁共振信号与加权图像
一、FID信号加权与图像对比度形成 二、自由感应衰减类序列
三、自旋回波序列与加权图像
四、反转恢复序列与加权图像
一、FID信号加权与图像对比度形成 静磁场均匀时,自由感应衰减信号(FID)的衰减 速度反应了样品自旋-自旋相互作用的时间常数T2 ;但通常静磁场是不均匀的,自旋-自旋相互作用 与磁场的不均匀性共同作用,使FID信号的衰减更 快,用时间常数T2*来描述。
TE长
TE合适
合适的TE保证合适的对比度
TE短
三、自旋回波序列与加Hale Waihona Puke 图像4. SE序列的加权图像
(3)质子密度加权图像(PDWI) : 抑制T1差异对信
B0 1T 时约2000~2500ms );抑 号的影响,选择长 TR ( T1 ,
核磁共振影像成像原理

核磁共振影像成像原理
核磁共振影像(MRI)是一种医学成像技术,其成像原理主要基于磁共振现象和核磁共振现象。
MRI利用强大的磁场和特定频率的无线电波来获取对人体组织的高分辨率影像。
MRI成像的原理是利用磁共振现象。
当被测物质处于外部磁场中时,其原子核会发生预cession运动。
当通过外加的RF场瞬时打断了这种预cession运动,该原子核会向外辐射出一个电磁波,即核磁共振现象。
接收机会接收这个信号,并把它转换为可视化的图像。
MRI成像的过程包括成像前的准备,成像中的数据采集,以及成像后的图像重建。
在成像前,患者需要进入能产生高强度磁场的MRI 设备中,从而对人体产生环境影响,包括电磁波和声音等。
在成像过程中,磁场和RF频率会不断变化,从而采集数据。
在成像后,通过数学算法处理采集到的数据,形成最终的图像。
MRI成像可以提供高分辨率、多层次的人体组织影像,对于诊断和治疗各种疾病都有很大的帮助。
同时,MRI成像无辐射、无创伤,是一种安全的医疗成像技术。
核磁数据处理步骤

核磁数据处理步骤引言核磁共振成像(Nuclear Magnetic Resonance Imaging,简称MRI)是一种非侵入性的医学影像技术,通过检测人体组织中的氢原子核的信号来生成图像。
在进行MRI之前,需要对采集到的核磁共振数据进行一系列的处理步骤,以提高图像质量和准确度。
本文将介绍核磁数据处理的基本步骤和常用方法。
1. 数据预处理1.1 数据格式转换在进行核磁共振成像时,原始数据通常以DICOM(Digital Imaging and Communications in Medicine)格式保存。
需要将DICOM格式的数据转换为常见的图像格式(如NIfTI、Analyze等),以便后续处理。
1.2 去除噪声由于采集过程中存在各种噪声源,例如机械振动、呼吸等,需要对原始数据进行噪声去除。
常用的方法包括高斯滤波、小波去噪等。
1.3 空间校正由于人体组织中存在局部不均匀性,可能导致图像失真。
在进行后续处理之前,需要对图像进行空间校正。
常用的方法包括使用配准算法将图像与标准模板对齐。
2. 数据重建在核磁共振成像中,数据是通过采集一系列的k空间数据点得到的。
为了生成图像,需要将k空间数据进行重建。
常用的方法有以下几种:2.1 快速傅里叶变换(FFT)FFT是一种常用的k空间数据重建方法,可以将时域数据转换为频域数据。
通过对采集到的k空间数据进行FFT变换,可以得到图像。
2.2 滤波重建滤波重建是一种基于频域滤波的重建方法。
通过选择适当的滤波函数,可以对k空间数据进行滤波处理,以去除伪影和噪声,并提高图像质量。
2.3 压缩感知(Compressed Sensing)压缩感知是一种新兴的数据重建方法,在核磁共振成像中得到了广泛应用。
该方法利用信号稀疏性的特点,通过稀疏表示和优化算法,可以从非完全采样的k空间数据中恢复出高质量的图像。
3. 图像增强为了提高图像质量和对比度,需要对重建后的图像进行增强处理。