核磁共振成像仪
磁共振成像仪使用指南

磁共振成像仪使用指南磁共振成像(Magnetic Resonance Imaging,MRI)技术是一种通过利用核磁共振原理,对人体或物体进行非侵入性的三维成像的医学检查方法。
它在临床诊断、科学研究以及生物医学领域起着重要作用。
本篇文章将为您介绍磁共振成像仪的使用指南。
一、准备在进行磁共振成像之前,有一系列的准备工作需要完成:1. 安全事项:在进入磁共振室前,请确保身上没有任何金属物品,如首饰、手表、手机等。
这是因为磁共振成像仪使用强磁场,金属物品可能会受到吸引力或产生危险的磁场。
2. 环境要求:磁共振室内需要维持安静,因此,请保持安静,避免不必要的声音干扰。
3. 服装要求:您需要穿上提供的磁共振室专用服装,这些服装通常由无金属材料制成,以避免对磁共振成像的影响。
二、进行磁共振成像在完成准备工作后,可以进行磁共振成像。
以下是具体步骤:1. 入室:在进入磁共振室前,请确保没有手表、钥匙、手机等金属物品。
如果您有身体上的金属假体,例如心脏起搏器或人工骨髓等,请告知医务人员。
2. 体位安排:在进入磁共振仪器前,医务人员会根据您所需成像的部位安排您的体位。
请按照医生的指示准备好,并保持不动。
3. 安全检查:在进行磁共振成像前,医务人员会进行安全检查,确保您身上没有任何金属物品。
他们还会询问您是否有金属植入物或假体,以确保成像过程的安全。
4. 成像过程:成像过程中,您需要进入磁共振设备内。
磁共振仪会发出一系列的噪音,这是正常现象,请放松自己,遵循医生和技术人员的指示,保持不动。
整个成像过程可能需要几分钟到半小时不等,具体时间取决于您需要成像的部位。
5. 结束:成像完成后,医务人员会通知您可以离开磁共振室。
您可以回到更衣室更换衣物,并恢复正常活动。
三、注意事项在进行磁共振成像时,还需要注意以下事项:1. 安全性:磁共振成像是一项安全的检查方法,但对于一些人群来说可能有限制。
如孕妇、有心脏起搏器或金属植入物的人,应在医生的指导下进行成像。
医用核磁共振成像仪的故障分析及维护保养

医用核磁共振成像仪的故障分析及维护保养摘要:核磁共振系统从20世纪80年代开始,逐渐成为医学影像学诊断的重要仪器,主要用于腹部、软组织、四肢关节、脊柱、头颅的检查,也常用于全身大血管、面颈部、直肠癌的术前分期、盆腔以及乳腺的检查中。
核磁共振系统主要包括两个组成部分,其一为软件系统,其二为硬件设备。
软件系统主要有操作系统(当前常用的为WindowsXP计算机操作系统)、应用模块(含有仪器控制、成像系统与数据采集等)、故障检查与维修系统。
硬件设备则包括数据处理系统、恒场磁体、射频场线圈、梯度场线圈、计算机与图像重建系统等。
为了充分发挥MRI的工作性能,降低使用成本,对其进行及时的故障排查与维修就显得尤为重要。
只有确保该系统正常有效运行,可促使患者能得到及时而准确的诊断,从而实施科学化的治疗[1]。
笔者近些年对典型核磁共振系统故障维修进行了总结,现分析如下。
关键词:核磁共振成像仪(MRI);故障分析;维护保养核磁共振成像设备使用超导磁体,在日常的使用和运行过程中需要时刻注意磁体的制冷系统,尤其是对氦压机、冷头以及水冷机组的运行情况进行查看。
在日常运行的查看过程中需要注意氦压机运转是否正常、压力是否充足以及设备的历史报错记录信息。
要查看冷头设备是否发出不正常噪音。
还要查看水冷机组中的水泵是否正常运行。
为了保证核磁共振成像设备的运行正常首先要保证设备运行机房的环境是恒定的。
这其中包括保证温度、湿度的恒定。
同时,为了保证设备在运行过程中不受到外界磁场的干扰,一般需要通过安装屏蔽门的方式降低外界干扰。
对核磁共振设备运行中,保证人员安全最为重要。
操作人员应熟知MRI设备原理,熟记MRI的潜在风险,加强磁场安全,强电辐射安全方面的相关教育。
与此同时,受检者也应该做好防范工作,受检者提前询问是否做过人工心瓣膜术等;受检前植入物的检查,如磁场对受检者体内起搏器、心脏除颤器、耳蜗植入物、止血夹等。
1.医用核磁共振成像系统的故障分析1.1设备电路故障排障:核磁共振成像设备需要借助稳定的电力才可以顺利运行,当出现保险丝与额定电流相互不匹配时,容易出现电流不稳定的情况。
核磁共振成像技术的使用教程

核磁共振成像技术的使用教程核磁共振成像(MRI)是一种基于核磁共振现象原理的医学影像技术,通过对人体组织中的氢核进行扫描,得出高分辨率的图像,从而帮助医生诊断疾病。
本文将详细介绍核磁共振成像技术的使用教程,包括准备工作、操作步骤、注意事项等。
一、准备工作1. 确定扫描对象:在进行核磁共振成像之前,需要明确扫描的是哪一部位的人体组织,如头部、脊柱、关节等。
2. 了解禁忌症:核磁共振成像对某些人有禁忌症,如植入金属物、心脏起搏器等,应在进行之前咨询医生,并告知相关信息。
二、操作步骤1. 穿着:医生会要求扫描对象脱去身上的全部金属物品,并穿上医院提供的无金属制品。
2. 定位:扫描对象需要躺着,将要扫描的部位与扫描仪对齐。
医生可能会使用定位标记或固定装置来确保扫描的精准性。
3. 导入参数:医生会根据扫描对象的需要设置相关参数,如扫描层数、扫描时间、分辨率等。
4. 进行扫描:扫描对象需要尽量保持静止,不可以移动或改变体位。
在扫描时,会听到一些嗡嗡声和轻微的震动,属于正常现象。
5. 等待结果:完成扫描后,医生会对获取的数据进行处理,生成详细的图像。
通常需要等待一段时间,才能得到最终的结果。
三、注意事项1. 寒暖适宜:由于核磁共振室温度较低,扫描对象可能会感到寒冷。
建议患者在前往核磁共振室之前穿着厚一些的衣物。
2. 保持安静:在扫描过程中,扫描对象需要保持安静,以免影响成像质量。
需要在扫描仪内保持不动,并听从医生或技师的指示。
3. 咨询医生:如果扫描对象感到不适或有任何疑问,可以随时咨询医生或技师。
4. 孕妇慎用:核磁共振成像对于孕妇来说有一定的风险,特别是在妊娠早期。
如果怀孕或有可能怀孕,应事先咨询医生并告知情况。
5. 术前禁食:某些核磁共振扫描需要术前禁食,如腹部扫描。
在进行这类扫描之前,需要遵循医生的指示,避免进食特定的食物和饮料。
四、技术进展随着科技的发展,核磁共振成像技术也在不断改进和创新。
例如:1. 高场强:现代核磁共振仪中使用的磁场强度越来越高,可以提供更清晰的图像。
核磁共振成像仪原理

核磁共振成像仪原理嘿,朋友们!今天咱来聊聊核磁共振成像仪原理这玩意儿,可神奇啦!你说这核磁共振成像仪啊,就像是一个超级厉害的魔法师!它能看穿我们的身体,把里面的情况看得清清楚楚。
就好比我们在黑夜里走路,啥也看不见,突然有了一盏明灯,一下子就把路给照亮了。
想象一下,我们身体里的各种组织和器官,就像是一群小朋友在玩游戏。
有的跑得快,有的跑得慢,有的安静待着,有的调皮捣蛋。
核磁共振成像仪呢,就能把这些小朋友的状态都给记录下来。
它是怎么做到的呢?这可就有意思了。
它利用了一种叫磁场和无线电波的东西。
磁场就像是一个大磁铁,能把我们身体里的氢原子给吸引住。
然后呢,再通过无线电波去“逗逗”这些氢原子,让它们发出信号。
这些信号就像是小朋友们喊出的声音,告诉我们它们在哪里,在干什么。
哎呀,这是不是很神奇?你说我们的身体里居然有这么多小秘密,而核磁共振成像仪就能把这些秘密都给挖出来。
而且啊,这核磁共振成像仪还特别精细呢!它能分辨出非常非常小的差别。
就像我们看东西,普通的眼睛可能看不太清楚细微的差别,但核磁共振成像仪的“眼睛”可厉害啦,一点点小变化都逃不过它的法眼。
你想想,如果医生没有这个神奇的工具,那得多难诊断病情啊!就好像是闭着眼睛在黑暗中摸索,不知道前面是什么。
有了它,医生就能像有了千里眼一样,一下子就知道问题出在哪里了。
咱再打个比方,这核磁共振成像仪就像是一个超级侦探,在我们身体这个大“案发现场”里,仔细寻找线索,不放过任何一个蛛丝马迹。
它能找到那些隐藏起来的小毛病,让我们及时治疗,免得以后酿成大祸。
说真的,科技的发展真是太了不起了!让我们能有这么厉害的东西来帮助我们保持健康。
每次想到这里,我都忍不住感叹,人类的智慧真是无穷无尽啊!所以啊,核磁共振成像仪原理可真是个值得我们好好了解的东西。
它就像是我们身体的守护者,默默地为我们的健康服务。
让我们为这个神奇的发明点赞吧!希望它能不断进步,为我们的健康带来更多的保障!。
核磁共振成像分析仪安全操作及保养规程

核磁共振成像分析仪安全操作及保养规程核磁共振成像分析仪是一种主要用于医学诊断和科学研究的高端医疗设备。
为了确保设备的安全运行并延长设备使用寿命,必须遵守一些操作规程和保养程序。
本文将介绍核磁共振成像分析仪的安全操作规程及保养规程,以确保设备获得最佳的工作效果。
安全操作规程操作前注意事项在操作核磁共振成像分析仪前,必须先读取设备的使用说明书,了解设备的基本原理和正确的使用方法。
同时,还需要注意以下事项:1.确保戴上合格的耳塞或耳机,以避免噪音带来的影响;2.禁止手握金属物进入磁场,以免产生危险;3.携带电子设备需要将其关闭或从室内带出。
操作中的安全措施在进行核磁共振成像分析仪的操作时,需要注意以下几点:1.避免使用有磁性材质的物品进入设备,如合金、金属制品等;2.任何电气设备都不能放置在近距离;3.操作人员不得带有铁制饰品等带磁材质的物品;4.在操作过程中,保持机房整洁,防止设备受到不必要的危害。
紧急处理事项如果核磁共振成像分析仪出现故障或异常,必须采取相应的紧急处理措施。
在此过程中,需要掌握以下技能:1.熟知设备的求助程序和联系方式;2.知道如何关闭设备的电源控制开关;3.会使用灭火器或喊出紧急求助的口号;4.知道在紧急情况下携带物品的放置方法。
保养规程日常保养为了确保设备的正常工作,需要进行日常的保养工作。
具体的要求是:1.定期检查设备的电源线、接口和各个电缆接口;2.定期检查设备的内部空气温度和湿度,并进行必要的调节;3.磁共振设备不得与振荡器处于同一区域内,以免干扰;4.定期检查并清洁设备的高压部件,检查冷却设备的能力是否正常等。
周期性保养除日常保养外,还应进行周期性的保养。
具体要求如下:1.定期对设备进行维护和保养,以确保设备的正常工作;2.定期更换设备的冷却剂,以防止设备温度过高;3.定期检查设备的外观构造,以防止设备出现损坏或老化;4.每年进行校验和检查,以确保设备工作的准确性和稳定性。
核磁共振成像仪信号处理方案优化

核磁共振成像仪信号处理方案优化核磁共振成像(MRI)已成为医学诊断领域的重要工具,它能够提供人体内部的详细结构图像。
然而,MRI信号处理方案的优化是一个复杂的任务,涉及到多个方面,包括信号获取、噪声抑制、图像重建等。
本文将讨论一些核磁共振成像仪信号处理方案的优化方法。
首先,信号获取是MRI成像的关键步骤之一。
在传统的MRI成像中,采用横向磁场梯度来生成图像。
然而,这种方法存在一些问题,如局部敏感度不均匀和图像畸变。
为了解决这些问题,可以采用并行成像技术。
并行成像技术通过使用多个相位编码线圈,将图像重构分解为多个子问题,进而提高成像速度和图像质量。
另外,噪声是MRI成像中的一个重要因素,它会影响到图像的质量和对比度。
为了抑制噪声,可以采用噪声预处理和图像平滑技术。
噪声预处理可以通过对原始数据进行滤波来减少噪声的影响。
而图像平滑技术可以通过应用低通滤波器来平滑图像,从而减少噪声的出现。
此外,还可以使用局部图像统计方法来进一步提高图像质量。
除了信号获取和噪声抑制,图像重建也是MRI信号处理中的一个关键环节。
传统的MRI图像重建方法是使用傅立叶变换,它可以将原始的k-空间数据转换为图像域数据。
然而,傅立叶变换方法在一些场景下可能会引入伪影。
为了解决这个问题,可以采用压缩感知重建方法。
压缩感知重建方法通过利用信号的稀疏性,从部分采样数据中重建出高质量的图像。
此外,还可以使用深度学习方法来进行图像重建,该方法通过训练神经网络来学习高质量图像的特征,从而提高图像质量和对比度。
在优化核磁共振成像仪信号处理方案的过程中,还需要考虑到硬件和软件的因素。
对于硬件方面来说,合理选择磁场强度、线圈数量和功率等参数,可以提高信号质量和成像速度。
而对于软件方面来说,优化算法的选择和参数设置都会影响到图像的质量和对比度。
总之,核磁共振成像仪信号处理方案的优化是一个复杂而关键的任务。
通过优化信号获取、噪声抑制和图像重建等方面的方法,可以提高MRI成像的质量和对比度。
核磁共振成像仪维护管理制度

核磁共振成像仪维护管理制度一、引言核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMR)在临床上广泛应用于疾病的诊断与治疗。
为了保证核磁共振成像仪的正常运行和准确性,制定一套科学、规范的维护管理制度是非常必要的。
二、仪器维护管理责任1. 仪器管理员核磁共振仪器管理员是仪器维护管理的主要责任人,负责核磁共振成像仪的日常维护、保养和故障排除。
2. 维护人员由经过专业培训并具备相关资质的维护人员负责定期对核磁共振成像仪的维护和检修工作。
三、仪器维护管理制度1. 维护计划根据核磁共振成像仪的使用情况和要求,制定维护计划,明确维护的时间、内容和频率。
2. 定期巡检按照维护计划,定期对核磁共振成像仪进行巡检,包括外观、仪器通风、电源、冷却系统等方面,确保设备的正常运行。
3. 清洁保养定期对核磁共振成像仪进行清洁保养,特别是对灵敏部位、磁体和探头的清洁工作要做到细致入微,以确保成像的准确性和稳定性。
4. 故障排除当核磁共振成像仪出现故障时,维护人员应立即进行故障排除,并制定相应的修复方案,确保设备能够及时恢复正常工作。
四、质量管理和质量控制1. 质量管理体系建立完善的核磁共振成像仪质量管理体系,包括质量控制标准、操作规范等,确保成像结果的准确性和可靠性。
2. 质量控制定期进行质量控制测试,对核磁共振成像仪的成像质量进行监控和评估,及时发现并处理可能存在的问题,确保成像结果符合相关要求。
五、安全管理1. 设备安全核磁共振成像仪的使用和维护人员必须经过专业培训和资质认证,严格按照操作规范进行操作,确保设备的安全运行。
2. 环境安全核磁共振成像仪使用场所要符合相关的环境安全要求,特别是对防火、防爆等方面要严格把控,确保使用环境的安全性。
3. 辐射安全核磁共振成像仪产生的磁场和辐射对人体有一定的影响,使用和维护人员必须保持警惕,防止辐射对身体健康造成危害。
六、备品备件管理核磁共振成像仪的备品备件是保证设备正常维护的重要保障。
核磁共振成像测井仪(MRIL

核磁共振成像测井仪(MRIL-P)超声波-微电阻率成像组合测井仪(STAR-Ⅱ)正交偶极子阵列声波测井仪(XMACII)1680DAL数字声波高分辨率感应测井数字能谱测井仪(DSL)能谱式岩性密度测井(ZDL)补偿中子测井仪(CN)1236薄层电阻率测井仪俄罗斯阵列感应测井技术双感应―八侧向微球形聚焦测井仪井眼补偿声波自然伽马三臂井径地层倾角长源距声波重复式地层测试器微电极连续测斜仪双频介电井温流体套管接箍磁定位器水泥胶结/变密度测井水平井测井系统(PCL)MSC-36多臂井径测井仪中子寿命测井技术1-7/16″生产测井组合仪1″生产测井组合仪40臂井径仪X-Y 井径仪脉冲回声仪噪声井温仪射孔作业核磁共振成像测井仪(MRIL-P)核磁共振成像测井仪可以给用户提供与岩性无关的孔隙度数据。
而常规的孔隙度仪(中子、密度、声波时差)都对岩石的岩性非常敏感。
虽然如此,MRIL-P的回波幅度衰减仍与岩石的构造有关(如孔隙系统的面积/体积比等)。
这样一来,如果通过与常规孔隙度测井仪进行组合测井,那麽我们就可以在得到岩性指示的同时得到与束缚水饱和度、可动流体饱和度以及与渗透率息息相关的孔隙度孔径和颗粒尺寸分布数据。
此外,MRIL-P孔隙度数据还可以直接用于粘土束缚水的体积、有效孔隙度和总孔隙度的计算。
MRIL的梯度磁场可以允许同时进行不同模式的核磁共振测量。
例如烃有着比水更长的T2,这样,我们可以用两种不同的恢复时间测量数据对油、气和水进行有效的区分。
另外,在梯度磁场中,T2衰减时间取决于回波串间隔时间TE,所以,用不同的TE时间同时进行核磁共振测量,我们就可以区分出重油、轻油、气和水。
MRIL-P已经在世界范围内得到了广泛的应用,它在砂泥岩地层中可以提供与矿物成分无关的有效孔隙度。
这些数据与电阻率数据一起使用就可以极大的提高饱和度的计算精度。
即使砂岩厚度小于仪器的磁体长度,其数据也可以得到完全的测量。
这样一来,由MRIL数据提供的储量估算值也比常规仪器所提供的估算值更加准确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核磁共振成像仪核磁共振成像仪概述核磁共振(MRI)又叫核磁共振成像技术。
核磁共振成像仪就是因这项技术而产生的仪器。
它是继CT后医学影像学的又一重大进步。
自80年代应用以来,它以极快的速度得到发展。
核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学、生物等领域,到1973年才将它用于医学临床检测。
为了避免与核医学中放射成像混淆,把它称为核磁共振成像技术发展历史1930年代,物理学家伊西多•;拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。
这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。
由于这项研究,拉比于1944年获得了诺贝尔物理学奖。
1946年,美国哈佛大学的珀塞尔和斯坦福大学的布洛赫发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。
为此他们两人获得了1952年度诺贝尔物理学奖。
人们在发现核磁共振现象之后很快就产生了实际用途,早期核磁共振主要用于对核结构和性质的研究,如测量核磁矩、电四极距、及核自旋等,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到碳谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。
后来核磁共振广泛应用于分子组成和结构分析,生物组织与活体组织分析,病理分析、医疗诊断、产品无损监测等方面。
20世纪70年代,脉冲傅里叶变换核磁共振仪出现了,它使13C谱的应用也日益增多。
用核磁共振法进行材料成分和结构分析有精度高、对样品限制少、不破坏样品等优点。
基本原理核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的运动。
根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:质量数和质子数均为偶数的原子核,自旋量子数为0;质量数为奇数的原子核,自旋量子数为半整数;质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。
迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有:1H、11B、13C、17O、19F、31P。
由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。
将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。
进动具有能量也具有一定的频率。
原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。
原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。
当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。
这种能级跃迁是获取核磁共振信号的基础。
为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。
根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。
因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。
主要参数1.化学位移同一种核在分子中因所处的化学环境不同,使共振频率发生位移的现象。
化学位移产生的原因是分子中运动的电子在外磁场下对核产生的磁屏蔽。
屏蔽作用的大小可用屏蔽因子σ来表示。
一般来说屏蔽因子σ是一个二阶张量,只有在液体中由于分子的快速翻滚,化学位移的各向异性被平均,屏蔽因子才表现为一常量。
核磁共振的共振频率:实际测定中化学位移是以某一参考物的谱线为标准,其他谱线都与它比较,即以一无因次的量δ表示化学位移的大小。
常用参考物是四甲基硅(TMS)。
H参考,H样品分别是使参考物和被测样品共振的磁场强度,Ho是仪器工作的磁场强度。
v参考,v样品分别是参考物和被测样品的共振频率Vo是仪器的工作频率,化学位移的单位是(ppm百万分之一)。
化学位移的大小受邻近基团的电负性、磁各向异性、芳环环流、溶剂、pH值、氢键等许多因素的影响。
其中有3种效应常被用于生物学研究。
①环流效应:生物分子中常有含大π共轭电子云的芳环或芳杂环,如Phe、His、Tyr、Trp、嘌呤、嘧啶以及卟啉环。
原子核相对于这些环的距离,方位不同,受大π电子云产生的附加磁场的影响不同,对各核化学位移的影响亦不同。
环流效应常用于生物分子的溶液构象研究。
②顺磁效应:Fe2(高自旋态)、CO2、Mn2等顺磁离子及有机自由基(自旋标记化合物)中的不成对电子对周围核的化学位移及弛豫过程会有很大的影响,利用这个效应可研究顺磁离子周围基团的状况。
③pH滴定效应:在不同pH条件下,各解离基团的解离状况不一,造成附近基团有不同的化学环境,从而使得化学位移随pH变化。
2.耦合常数核与核之间以价电子为媒介相互耦合引起谱线分裂的现象称为自旋裂分。
由于自旋裂分形成的多重峰中相邻两峰之间的距离被称为自旋--自旋耦合常数,用J表示。
耦合常数用来表征两核之间耦合作用的大小,具有频率的因次,单位是赫兹。
一般来说由于自旋耦合使高分辨核磁共振波谱变得十分复杂,但是当化学位移之差Δγ远大于耦合常数时,一个含有n个自旋量子数为1I2的核的基团将会使其邻近基团中核的吸收峰分裂为2n 1重峰,并且这2n 1重峰的强度分布服从二项式系数分配公式(1 x)n。
此为一级分裂波谱。
图1中各峰由于自旋耦合而产生谱线裂分。
耦合常数的大小与外加磁场的大小无关,与分子结构有关即与两核之间键的数目及电子云的分布有关。
一般来说,两核之间相隔3个以上的化学键之间的耦合被称为远程耦合,J值很小。
如果两核之间相隔四个或四个以上的单键,J值基本上等于零。
3.谱峰强度信号强度是核磁共振谱的第三个重要信息,处于相同化学环境的原子核在核磁共振谱中会显示为同一个信号峰,通过解析信号峰的强度可以获知这些原子核的数量,从而为分子结构的解析提供重要信息。
表征信号峰强度的是信号峰的曲线下面积积分,即吸收峰积分曲线的高度与产生该吸收峰基团的粒子数成正比。
图1中苯环间位质子峰,苯环邻位质子峰,α-CH质子峰,β-CH质子峰的积分强度之比为2∶2∶1∶2。
这一信息对于1H-NMR谱尤为重要,而对于13C-NMR谱而言,由于峰强度和原子核数量的对应关系并不显著,因而峰强度并不非常重要。
4.弛豫参数从微观机制上说,弛豫是由局部涨落磁场所引起的。
偶极-偶极相互作用、分子转动、化学位移各向异性、邻近存在电四极核等等,都可以产生局部磁场。
而固体中的晶格震动,液体中的Brown运动等,使得局部磁场将随时间涨落。
弛豫过程的特性取决于分子运动的性质。
由于分子运动是无规则的,局部涨落磁场也是一个随机过程。
此外,弛豫速率(即弛豫时间的倒数),具有可加和性。
当存在多种弛豫机制时,总的弛豫速率是各种机制弛豫速率的总和。
①自旋-晶格弛豫时间(纵向弛豫时间)T1,核系统与周围晶格相互作用,交换能量,使核系统恢复平衡,这一过程被称为自旋-晶格弛豫过程,自旋-晶格弛豫过程的快慢可用自旋-晶格弛豫时间T1来表征。
T1的单位是秒。
②自旋-自旋弛豫时间(横向弛豫时间)T2,等同核之间的磁相作用被称为自旋-自旋相互作用。
等同核之间相互交换自旋态并不改变系统的总能量,却缩短了系统在激发态的能级寿命。
自旋-自旋弛豫时间T2是核处于激发态的能级寿命,以秒为单位,它与谱线宽度有关。
核磁共振成像仪MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。
MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。
它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。
MRI对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
MRI也存在不足之处。
它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格比较昂贵。
核磁共振成像仪技术成就保罗·劳特布尔(Paul Lauterbur),美国科学家。
他致力于核磁共振光谱学及其应用的研究。
劳特布尔还把核磁共振成像技术推广应用到生物化学和生物物理学领域。
1985年至今,他担任美国伊利诺伊大学生物医学核磁共振实验室主任。
因在核磁共振成像技术领域的突破性成就,而和英国科学家彼得·曼斯菲尔德(Peter Mansfield)共同获得2003年度诺贝尔生理学或医学奖。
于2007年3月27日在美国伊利诺伊州乌尔班纳市逝世,享年77岁。
劳特布尔1929年生于美国俄亥俄州小城悉尼,1951年获凯斯理工学院理学士,1962年获费城匹兹堡大学化学博士。
1963年至1984年间,劳特布尔作为化学和放射学系教授执教于纽约州立大学石溪分校。
在此期间,他致力于核磁共振光谱学及其应用的研究。
劳特布尔还把核磁共振成像技术推广应用到生物化学和生物物理学领域。
彼得·曼斯菲尔德1933年出生于英国伦敦,1959年获伦敦大学玛丽女王学院理学士,1962年获伦敦大学物理学博士学位。
1962年到1964年担任美国伊利诺伊大学物理系助理研究员,1964年到英国诺丁汉大学物理系担任讲师,现为该大学物理系教授。
除物理学之外,曼斯菲尔德还对语言学、阅读和飞行感兴趣,并拥有飞机和直升机两用的飞行员执照。
他进一步发展了有关在稳定磁场中使用附加的梯度磁场的理论,为核磁共振成像技术从理论到应用奠定了基础。
瑞典卡罗林斯卡医学院6日宣布,2003年诺贝尔生理学或医学奖授予美国科学家保罗·劳特布尔和英国科学家彼得·曼斯菲尔德,以表彰他们在核磁共振成像技术领域的突破性成就。