舵机故障分析

舵机故障分析
舵机故障分析

液压舵机故障分析

[摘要]此文通过一起船舶发生的故障实例分析,对该型舵机系统的液压控制原理进行了介绍,对故障机理进行了详尽的分析。

[关键词] 液压舵机故障分析

1 设备情况介绍

某集装箱船采用HATLAPA厂家的TELERAMR4ST650型四油缸十字头撞杆式舵机,舵机油泵为主油泵和控制油泵一体式装置,选用REXTOTH厂家的A2P250型,工作流量为300L /分,舵机工作力矩为2784kNm。

2 故障现象简述

某日机工在巡回检查中发现舵机间停用的备用NO.2舵机油泵管系中有异常声响,即报告大管轮,大管轮启用NO.2舵机油泵联机工作,声响消除,工况正常,抵锚地对两台舵机进行运转和操舵试验,无异常。后正常航行时发现NO.1舵机油泵单独使用、自动舵方式情况下,发生跑舵现象。

舵机存在的故障立即引起了船舶的重视,轮机长立即组织人员对两台舵机在不同工况下进行了试舵,取得了准确的第一手资料,并将其试验结果报公司安技部门,工况如表1:

表1

运行舵机航速海况转舵情况

NO.1舵机油泵15kn 和风轻浪左舵在15度范围内尚能转动,但

舵效慢;右舵能至30度但回舵在10度卡舵,启用两台舵机恢复正常NO.2舵机油泵15kn 和风轻浪正常

NO.1+NO.2 舵机油泵15kn 和风轻浪正常

该试验结果报安技部门后,安技部门根据故障是在大负荷情况下出现的这一现象,怀疑是NO.1舵机系统防浪阀出现问题,另考虑到两台舵机系统主油路是连通的,为缩小故障范围,安技部门即电告船舶立即做两台舵机系统隔离情况下的试验,船舶根据要求进行了试验,试验结果如表2:

表2

运行舵机航速海况转舵情况

NO.1舵机油泵关闭C3/C4阀15kn 和风轻浪正常

NO.2舵机油泵关闭C1/C2阀15kn 和风轻浪正常

经过这样的试验,可以认为在两套舵机系统隔离情况下NO.1舵机油泵和NO.2舵机油泵单独运行时是正常的,防浪阀也可以认为是正常的,问题集中在非隔离情况下两套舵机系统互相影响的原因是什么?船舶在继续观察NO.1舵机油泵马达和NO.2舵机油泵马达单独使用工况中,发现NO.1舵机油泵使用,NO.2舵机油泵停用情况下马达跟转,而NO.1舵机油泵马达在相同情况无此现象,进一步观察油泵斜轴指示,并作了记录如表3:

表3

运行舵机NO.1舵机油泵倾斜角度指示NO.2舵机油泵倾斜角度指示

NO.1舵机泵左10 偏右5振荡

NO.2舵机泵保持为0 正常来回摆动

NO.1+NO.2 舵机油泵正常来回摆动正常来回摆动

至此疑点可以集中在NO.2舵机油泵在停用时斜轴指示停留在偏右并来回振荡上。

3 故障分析

以上疑点现象反馈到安技部门后,经讨论,该故障的现象理论上可以这样解释,在NO.1舵机油泵运转时,由于停用NO.2舵机油泵斜轴偏离零位,泵缸出现倾斜,偏离中心,在NO.1舵机油泵泵出的高压油作用下油泵逆变为油马达,马达跟转,这样NO.1舵机油泵泵出的部分压力油经NO.2舵机油泵泄漏,也就是说NO.1舵机油泵单独运转时增加了一个负荷,当船舶高速、大舵角时(即大负荷情况)时,NO.1舵机油泵不能承受如此高的负荷,出现反舵现象,至于震荡是因为负荷变化引起NO.1舵机油泵流量变化,主动带动摆缸角度变化。

那么为什么NO.2舵机油泵在停止时会出现泵缸偏离中心的情况,我们先分析一下舵机变量变向泵的控制原理。

3.1 舵机变量变向泵的控制原理

该舵机油泵为摆缸式轴向变向变量柱塞油泵,油泵的变向和变量是通过改变泵缸的倾斜角度来实现的,倾斜角度由伺服油缸控制,无转舵命令时,泵缸居中,控制伺服油泵缸活塞移动的三位三通阀工作位在中位,当有转舵命令时,左(右)比例电磁铁接受自动舵、随动操舵命令

动作,调节压力,压力的调整根据转舵舵角的大小由自动舵输出电流大小来控制,其目的是控制转舵速度,M4、M5两个压力点产生压差,使控制三位三通阀的阀芯移动一个位置,工作在上位,伺服油缸中上下油压相同,弹簧的弹力相等,但由压力油作用在活塞的截面积下部大于上部,在相同压强的情况下,下部油压大于上部油压,因此推动伺服杆向上移动,改变油泵泵缸的倾斜角度,变量变向泵开始向舵机油缸供油,开始转舵,同时伺服杆带动反馈杠杆使三位三通阀的阀套移动,使三位三通阀工作位又回到中位,此时由于油路被封,伺服油缸因为液体不可压缩原理使伺服杆固定不再移动,泵缸的倾斜角度固定在一个角度,此时转舵速度已经恒定,当舵叶将转到命令舵角时,自动操舵机构提前控制比例电磁铁失电,两个压力点无压差且压力相同均为50bar,三位三通阀的阀芯移动复位到原来的位置,此时的工作位已是下位,伺服油缸下部油压被泄放,上部因有节流阀进入的50bar控制油作用,克服下部弹簧的压力使伺服杆向下移动,泵缸的倾斜角度回零,使变向变量泵输出停止,同时伺服杆带动反馈杠杆使三位三通阀的阀套移动,使三位三通阀工作位又回到中位,保持舵角位置不变。反向转舵时则相反,三位三通阀先工作在下位,然后回中,然后工作在上位,最后保持在中位。

3.2 故障现象机理分析

从以上的工作原理分析再推断泵缸偏离中心的故障机理应该有二种:

NO.2舵机油泵伺服装置故障——主动引起油泵摆缸,形成油马达作用,由于油泵停止时已无伺服控制油压,无推动伺服油缸活塞移动的

作用力,因此引起这种小角度偏离零位则很有可能是伺服油缸的截面积小的一侧弹簧断,因为从伺服油缸的工作原理我们可以看到,在有操舵指令时,滑阀先工作在上位时,伺服油缸中活塞能移动,在中位时由于液体不可压缩原理,也能保持,工作在下位时,活塞在伺服压力液压油的作用下,一般50bar的压力油能克服弹簧的作用使伺服油缸也能移动,所以单泵使用也能继续正常工作,与现象吻合,如截面积大的一侧弹簧断,如上分析工作在上位时,由于截面积差的压力差能够克服弹簧弹力,伺服活塞也可以正常上移(因为正常工作时摆缸角度变化可以达到20度,而现在故障情况下在偏右5度的情况可以判断出由于面积差造成的油压是可以克服一侧弹簧的弹力),舵机也能正常工作,但在停泵时的故障现象就不同于截面积小的一侧弹簧断,因为伺服油缸下部的液压油被滑阀密封住,根据液体不可压缩原理,活塞不能移动,不可能出现偏离零位的现象。

油泵本身的问题——如配油盘表面有冲蚀或泵缸预紧力有问题,在来自NO.1舵机油泵高压油的作用下使泵缸偏离中心而带动伺服装置出现指示偏离零位,但这种分析仔细推敲又存在很多疑点,如在这种情况下因为NO.1舵机油泵高压油的方向是交替的,因此泵缸偏离的方向应是任意的,这种偏离的力量能否克服伺服油缸的弹簧力量使之出现偏差指示等,而且在这种情况下油泵的工作油压很可能发生变化,直接影响舵机单台工作时的工况。

4 故障原因

尽管有以上分析,但安技部门考虑到舵机油泵属船舶重要设备,船舶对液压设备的知识了解和工作经验有限,所以安排专业厂家在船舶抵港进行拆检,经拆检发现伺服油缸截面积小的一端,弹簧与移动活塞的固定螺杆断落,弹簧失去应有的作用,在主油泵停止后,伺服油缸上部中的液压油从节流阀经滤器在伺服油泵(齿轮泵)中漏出(但对伺服滑阀来说是密封的),因此在一端弹簧预紧力的作用下,伺服油缸中的活塞逐渐移动直至弹簧预紧力所能达到的位移即停留在右5刻度位置。

5 事后的思考

在船舶出现舵机故障后,船舶制定了几项安全措施:

(1)海况正常时,使用NO.2舵机油泵;

(2)在海况复杂时,使用两台舵机油泵;

(3)如需要使用NO.1舵机油泵时,驾驶台必须先通知大管轮,待大管轮完成与NO.2舵机油泵的隔离后,方可开启使用;换泵使用亦然。

对于以上措施,我们认为第三项是比较妥当的,在确定NO.2舵机油泵故障情况下,应避免继续使用NO.2舵机油泵,而且进出港应派人在舵机间值守,以策安全。

从功能分析看伺服油缸两端弹簧的作用应该是阻尼缓冲作用,如果船舶自行拆装该装置,发现一侧弹簧断裂,在无备件更换情况下,可以将另一侧弹簧取下,系统还是能正常工作,如认为两端弹簧取下后工作粗暴(冲舵),可以通过调节节流阀解决,原理自行分析。

从这起故障分析的整个过程看,船舶轮机长和主管人员做了大量的工作,提供了大量的数据和第一手资料,为整个故障的判断起到了关键性的作用,但如果主管人员能更细心观察故障现象的各种细节,就更加容易分析故障,如在舵机工作时应经常观察摆缸的角度指示变化包括速度和角度值,并对两台系统的工况进行比较等。从故障的情况看,我们可以推断出正确的故障理解是:在无操舵指令信号的情况下,NO.1舵机油泵运行,停止NO.2舵机油泵,NO.2舵机油泵初始摆缸位置应在零位,然后随着时间的推移,伺服油缸上部液压油经节流阀、控制油泵逐渐漏泄,活塞在弹簧预紧力(截面积大一侧)的作用下慢慢移动,带动泵缸偏离中心,逐渐停留在右5度。

近年一些新造船彩的舵机伺服控制系统与故障船相似,不同之处是伺服执行机构不同(为电动定位器),伺服油缸两端无弹簧,正是这一点的不同给我们故障的分析以启发,说明该弹簧的作用只是阻尼作用,伺服油缸中活塞的位移是是依靠液压油的动力作用形成的,与弹簧无关。因此,我们认为在故障的分析中在善于从其他相似系统的分析中吸取知识,触类旁通,举一反三。

详细的舵机控制原理资料

目录 一.舵机PWM信号介绍 (1) 1.PWM信号的定义 (1) 2.PWM信号控制精度制定 (2) 二.单舵机拖动及调速算法 (3) 1.舵机为随动机构 (3) (1)HG14-M舵机的位置控制方法 (3) (2)HG14-M舵机的运动协议 (4) 2.目标规划系统的特征 (5) (1)舵机的追随特性 (5) (2)舵机ω值测定 (6) (3)舵机ω值计算 (6) (4)采用双摆试验验证 (6) 3.DA V的定义 (7) 4.DIV的定义 (7) 5.单舵机调速算法 (8) (1)舵机转动时的极限下降沿PWM脉宽 (8) 三.8舵机联动单周期PWM指令算法 (10) 1.控制要求 (10) 2.注意事项 (10) 3.8路PWM信号发生算法解析 (11) 4.N排序子程序RAM的制定 (12) 5.N差子程序解析 (13) 6.关于扫尾问题 (14) (1)提出扫尾的概念 (14) (2)扫尾值的计算 (14)

一.舵机PWM 信号介绍 1.PWM 信号的定义 PWM 信号为脉宽调制信号,其特点在于他的上升沿与下降沿之间的时间宽度。具体的时间宽窄协议参考下列讲述。我们目前使用的舵机主要依赖于模型行业的标准协议,随着机器人行业的渐渐独立,有些厂商已经推出全新的舵机协议,这些舵机只能应用于机器人行业,已经不能够应用于传统的模型上面了。 目前,北京汉库的HG14-M 舵机可能是这个过渡时期的产物,它采用传统的PWM 协议,优缺点一目了然。优点是已经产业化,成本低,旋转角度大(目前所生产的都可达到185度);缺点是控制比较复杂,毕竟采用PWM 格式。 但是它是一款数字型的舵机,其对PWM 信号的要求较低: (1) 不用随时接收指令,减少CPU 的疲劳程度; (2) 可以位置自锁、位置跟踪,这方面超越了普通的步进电机; 其PWM 格式注意的几个要点: (1 ) 上升沿最少为0.5mS ,为0.5mS---2.5mS 之间; (2) HG14-M 数字舵机下降沿时间没要求,目前采用0.5Ms 就行;也就是说PWM 波形 可以是一个周期1mS 的标准方波; (3) HG0680为塑料齿轮模拟舵机,其要求连续供给PWM 信号;它也可以输入一个周 期为1mS 的标准方波,这时表现出来的跟随性能很好、很紧密。

51单片机超高精度6路舵机控制程序

51单片机超高精度6路舵机控制程序 #include //包含单片机寄存器的头文件 #define uchar unsigned char #define uint unsigned int P0M1=0X00; P0M0=0XFF;//设置P0 为强推挽输出 sbit servo0=P0^0; sbit servo1=P0^1; sbit servo2=P0^2; sbit servo3=P0^3; sbit servo4=P0^4; sbit servo5=P0^5; sbit servo6=P0^6; sbit servo7=P0^7; uchar serVal[2]; uint pwm[]={1382,1382,1382,1382,1382,1382,1382,1382}; //初始90度,(实际是1382.4,取整得1382) uchar pwm_flag=0; uint code ms0_5Con=461; //0.5ms计数(实际是460.8,取整得461) uint code ms2_5Con=2304; //2.5ms计数 /******************************************************************** * 功能: 串口初始化,晶振11.0592,波特率9600,使能了串口中断 ***********************************************************************/ void Com_Init() { TMOD |= 0x20; //用定时器设置串口波特率 TH1=0xFD; //256-11059200/(32*12*9600)=253 (FD) TL1=0xFD;//同上 TR1=1;//定时器1开关打开 REN=1; //开启允许串行接收位 SM0=0;//串口方式,8位数据 SM1=1;//同上 EA=1; //开启总中断 ES=1; //串行口中断允许位 } /******************************************************************** * 功能: 舵机PWM中断初始化 ***********************************************************************/ void Timer0Init()

舵机抖动原因分析

抖舵,是指比例遥控设备在控制模型过程中发生的一种失控状态。抖舵时,舵机不能跟随发射机的指令,来回颤抖不止。抖舵的危害是很大的,尤其在空模中,有可能造成摔机事故。许多航模爱好者在碰到抖舵情况时,往往是一筹莫展,不知所措。其实如果知道了产生抖舵的具体原因,许多抖舵现象对于爱好者在业余条件下都是可以消除的。本文所指的抖舵不包括在特定的无线电干扰环境中,遥控距离已接近设备极限而产生的抖舵。因为这在许多场合都是正常的。分析抖舵的原因主要有以下几点。 一、因电源电压不足或电源容量过小造成的。特别是在接收机与动力电机共用同一组电源的场合更易发生。虽然大多数情况下接收机电路中都有稳压措施,但在电源电压不足或电源容量过小,动力电机又有较大的启动电流时,稳压电路也会无能为力;由此造成电源电压严重波动,接收机输出波形失常,引起舵机抖动。就是在接收机单独供电时,如果电源容量过小,又同时配接了多只舵机(特别是功耗较大的强力舵机时)也会产生这种情况、因电源电压不足或因电源容量小而引起的抖舵,只要将电源充足电,或更换大容量的电源即可解决。当然有时也可以用减小动

力消耗的办法来解决,比如更换一只工作电流较小的动力电机。这里提醒爱好者:为模型选配合适的电源是模型安全工作的前提。在运行模型前一定要检查一下电源电压是否充足。对模型的工作电流,以及电源容量充足的情况下模型安全运行的时间都应做到心中有数,以免造成不应有的事故。那么怎样才算选配的电源合适呢?可以简单地这样衡量。在电池电压充足的情况下,启动驱动电路,测量电源电压其波动值应不超过10%,波动越小越好。当然这只是起码的要求,还要满足一定的安全工作时间。这可从模型工作电流和电源的安时容量估算出来。采用动力电机与接收机、舵机分开供电的方法能有效地消除因动力电源波动带来的抖舵。 二、因干扰造成的舵机抖动。这里所说的干扰包括动力电机或发动机产生火花干扰,以及其它空中的无线电干扰。火花干扰来自直流电机的换向电刷或发动机的打火栓,因其离接收机都比较近。随着发射机与接收机距离拉大,火花干扰会变得越加严重。因此它也是影响控制距离的重要因素。由于外界干扰的影响,接收机送给舵机的信号质量变差,产生抖舵。对于空中的无线电于扰,爱好者在业余条件下很难采取有效的措施。只能尽量选用抗干扰能力比较强的遥控

舵机液压系统产生故障原因分析

舵机液压系统产生故障原因分析 摘要:舵机是船舶上的一种大甲板机械。舵机的大小由外舾装按照船级社的规范决定,选型时主要考虑扭矩大小。船用舵机目前多用电液式,即液压设备由电动设备进行遥控操作。本文中就针对相对常见的泵控型液压舵机为例,对液压系统失效原因,进行分析并对可能出现的故障点进行故障排除。 关键词:舵机;大甲板机械;故障排除 引言 舵机是船舶上的一种大甲板机械。舵机的大小由外舾装按照船级社的规范决定,选型时主要考虑扭矩大小。船用舵机目前多用电液式,即液压设备由电动设备进行遥控操作。有两种类型:一种是往复柱塞式舵机,其原理是通过高低压油的转换而做功产生直线运动,并通过舵柄转换成旋转运动。另一种是转叶式舵机,其原理是高低压油直接作用于转子,体积小而高效,但成本较高。 1.舵机液压系统产生故障原因分析 1.1液压系统常见故障类型 根据液压油流向变换方法的不同,液压舵机分为泵控型液压舵机和阀控型液压舵机。其液压系统都是由动力元件液压泵、控制元件、执行元件、辅助元件、工作介质液压油等五部分组成。液压舵机是在海上进行使用,由于受到使用环境的限制,舵机液压系统故障不容易进行检测,也比较难以发现,同时出现故障的类型又呈现多样化。因此要对舵机在使用过程中液压系统容易出现的故障进行统计和分析,找出产生各种故障之间内在的共同因素,总结出容易出现以下比较常见的几种故障类型。 1.1.1异常振动和响声当液压系统出现故障时,往往表现为产生异常的振动和响声。当舵机运行过程中出现异常的振动和响声,很大可能是液压系统中某一个环节出现了故障。 图1 舵机液压系统示意图 1.1.2液压系统液压油压力不足或压力波动较大液压系统中液压油的压力决定了执行元件液压缸输出的推力的大小。液压油压力不足或没有压力都将难以驱动舵叶转动,从而不足以产生足够的转船 图2 舵机液压系统压力不足或压力波动较大系统原因示意图 1.1.3液压油流量不稳定液压系统中液压油的流量决定了执行元件液压缸移动的速度。流量不足或流量波动较大都会对舵叶转动的时间及转动稳定性产生影

舵机控制程序

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,

获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占

空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 图1 舵机的控制要求 单片机实现舵机转角控制可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放 器件的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV 以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波

电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定时中断。这样既节省了硬件电路,也减少了软件开销,控制系统工作效率和控制精度都很高。 具体的设计过程: 例如想让舵机转向左极限的角度,它的正脉冲为2ms,则负脉冲为 20ms-2ms=18ms,所以开始时在控制口发送高电平,然后设置定时器在

液压舵机的故障分析及处理措施

论文题目:液压舵机的故障分析及处理措施二级学院:轮机工程学院 专业:轮机工程技术 目录 1 引言 2 液压舵机概述 2.1 液压舵机的基本工作原理 2.2 船舶建造规范对舵机的基本要求 3 液压舵机的故障分析 3.1 液压舵机无舵 3.2 液压舵机跑舵——稳舵时偏离所停舵角 3.3 液压舵机舵速太慢 3.4 液压舵机滞舵 3.5 实际舵角与操舵角不符 4 液压舵机故障的解决措施 4.1 检查应急舵的有效性 ------------------------------------------------7 4.2 检查舵角指示的准确性 ----------------------------------------------8 4.3 检查舵角限位器的有效性 --------------------------------------------8 4.4 检查舵的液压系统的密封性能 ----------------------------------------8 4.5 检查液压油的品质 --------------------------------------------------8

4.5.1 液压油性能指标一般应符合以下要求 ------------------------------8 4.5.2 液压油污染的主要原因 ------------------------------------------9 4.6 舵机检查的其他注意事项 -------------------------------------------11 结论 ---------------------------------------------------------------------11 致谢 -------------------------------------------------------------------12 参考文献 -----------------------------------------------------------------13 1 引言 据资料介绍:船舶能够在水中按照驾驶员的意图航行,使船舶改变航向或维持指定航向,使依靠改变安装在船舶尾部的船舵的位置来实现的。舵对于船舶的重要性是不言而喻的,当船舶航行时船舵发生故障对船舶安全的影响是巨大的。对于舵机日常比较容易出现故障的情况,主要分为两大部分。一是属于硬件类故障,二是属于软件类故障。舵机的硬件类的故障是指与舵机相关的机器,设备发生了功能性的障碍,使得舵机不能正常工作发挥作用,常见故障有:1 通信类故障,2 电力系统故障,3 液压系统故障。软件类的故障是指与舵机运行有关的管理制度,船员对舵机的操作存在问题。通常主要是船员对应急舵的操作不熟悉,在需要的时候无法启动应急舵。因此加强对舵机的日常维护与保养对工作的可靠性和延长舵机的

中国液压舵机行业发展概述

中国液压舵机行业发展概述 液压舵机是近代船舶工业的科技进步的体现,我们可以从八十年代开始追溯舵机以及液压舵机更新换代的十年发展过程。 引起这种更新的原因主要有二方面。最直接的原因是:1978年装有22万吨轻厥油的美国油轮阿莫戈.卡迪兹号在途经法国西北海面对因舵机失灵而触礁,造成严重污染和重大经济损失。为此,舵机在紧急情况下的可靠性引起了国际上的普遍关注。经煞一段时间酝酿,1981年国际海事会议正式通过了对1974年SOLAS公约的修正案,其中对舵机的要求提出了重要的新条款。修正案明确规定:1万总吨及以上的油轮(包括化学品船、液化气运输船)的舵机动力执行系统应符合“单项故障原则”,即除了舵柄(或舵扇)或舵执行器卡住外,任何其它部分发生单项故障,应能在45秒内恢复操舵能力。这就要求舵机有二个独立的液压系统,或者能各自单独工作满足要求,或者平时共同工作,而任一系统液体流失时能自动检铡和自动隔离,使另一系统仍能保持工作,以保持50%的扭矩。而1万总吨以上、十万载重吨以下的油轮采用单一的舵执行器时(倒如一般单缸体的转叶式油缸),如设计、材料和密封。试验检查等符合严格的专门规定,可不对舵执行嚣提出单项故障的要求。 舵机更新的另一原因,是液压传动技术从七十年代以来一直在迅速发展,产品的高压化和集成化不断取得进展,逻辑阀、比例阀等新型液压元件开始应用于舵机和其它船用液压装置中,另外,舵机电气遥控系统的技术也更趋成熟,不仅淘汰了液压遥控系统,而且使传

统的浮动杆机械追随机构也显得陈旧。进入八十年代以来,世界舵机主要制造厂家都开始认真检查其产品,并按1981年修正案的要求重新设计各自的舵机,力争在市场上保持较大的竞争优势。 新一代的液压舵机的性能和可靠性更趋完善。归纳起来目前液压舵机变化动向如下: 1.普遍设置了油箱液位报警开关,并设置了两套液压系统的人工和自动隔离装置。 这种自动隔离装置具有代表性的是采用电液换向阀的装置。生产转叶舵机相当长历史的挪威富利登渡公司认为上述方案使设备复杂化,产品价格较贵,而且某些阀正常工作时长期不动,紧急情况能否正常动怍使难于保证,因而又提出了一种仅采用二个主油路自动锁闭阁来隔离损坏的油路系统的方案。这种方案仅适台于转叶式油缸,它在缸体内部设有油路连通相应油腔,但如果一对油腔密封损坏时,并不能使之与工作油路隔离。显然,单缸体的转叶式油缸如发生故障(如密封损坏、动叶断裂等),是不能接单项故障原则迅速恢复工作的,因此它不能用于10万载重吨以上的油轮。为此,日本三井一AEG公司提出了双油缸体转叶舵机的设计,它将二个转叶油缸迭置在同一舵杆上方,其二套油路系统之一可以被隔离和旁通,以适应10万载重吨以上油轮的要求 2.阀控型舵机的应用功率范围在扩大,性能也在改善。 阀控型舵机因稳舵时主油泵仍需全流量工作,虽然排出压力小,但仍要消耗一定的功率,故经济性较差,而且换向时液压冲击大,故

舵机及转向控制原理

舵机及转向控制原理 令狐采学 1、概述 2、舵机的组成 3、舵机工作原理 4、舵机选购 5、舵机使用中应注意的事项 6、辉盛S90舵机简介 7、如何利用程序实现转向 8、51单片机舵机测试程序 1、概述 舵机也叫伺服电机,最早用于船舶上实现其转向功能,由于可以通过程序连续控制其转角,因而被广泛应用智能小车以

实现转向以及机器人各类关节运动中,如图1、图2所示。 令狐采学创作 图1舵机用于机器人 图2舵机用于智能小车中 舵机是小车转向的控制机构,具有体积小、力矩大、外部机械设计简单、稳定性高等特点,无论是在硬件设计还是软件设计,舵机设计是小车控制部分重要的组成部分,图3为舵机的外形图。 图3舵机外形图 2、舵机的组成 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿 轮组、位置反馈电位计、直流电机、控制电路等,如图4、图5所示。 图4舵机的组成示意图 图5舵机组成

舵机的输入线共有三条,如图6所示,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。电源有两种规格,一是4.8V, —令狐采学创作是6.0V,分别对应不同的转矩标准,即输出力矩不 同,6.0V对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。另外要注意一点,SANWA的某些型号的舵机引线电源线在边上而不是中间,需要辨认。但记住红色为电源,黑色为地线,一般不会搞错。 图6舵机的输出线 3、舵机工作原理 控制电路板接受来自信号线的控制信号,控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机转动的方向和速度,从而达到目标停止。其工作流程为:控制信号一控制电路板―电机转动-齿轮组减速-舵盘转动?位置反馈电位计-控制电路板反馈。

51单片机控制舵机程序精度,数量,占用时间优化方案及程序

#include #include //本程序经软仿真调试在机器周期为1us时理论误差为0,不需要占用太多的cpu运行时间就可以控制8路舵机,精度为1ms-2ms 平均分成100份,在时间消耗和舵机数量上 //明显优于网上常见的舵机控制程序,keil3使用9(最高)编译器优化时达到理论误差为0,编译器优化级别过低时无法使用unsigned char gai; unsigned char nt[8]; unsigned char nw[8]; unsigned char pwmbuffer[8] = {50,50,50,50,50,50,50,50}; void set(unsigned char m,unsigned char n){ if((m<8)&&(n<101)){ //如果输入合法则记录新数据并将状态改变标志置位pwmbuffer[m] = n; gai = 1; } } void tim(void){ unsigned char a1,a2,tempt,tempw; //a1,a2作为循环变量,tempt,tempw作为排序交换用临时变量 for(a1 = 0; a1 < 8; a1++){ //由舵机控制数据设置用于排序的表(两行八列)nt[a1] = pwmbuffer[a1]; //第几个舵机所需的高电平时长 nw[a1] = 1 << a1; //用第几位置一来表示第几个舵机 } for(a1 = 0; a1 < 7; a1++){ //简单排序算法,找出最小的与第一个交换,在从剩余的中找出最小的与第二个交换,以此类推 unsigned char min = a1; //用于记录哪一个是最小的 for(a2 = a1 + 1; a2 < 8; a2++){ //从剩余项中找出最小的 if(nt[a2] < nt[min]){ min = a2; } } tempt = nt[a1]; //交换 tempw = nw[a1]; nt[a1] = nt[min]; nw[a1] = nw[min]; nt[min] = tempt; nw[min] = tempw; } for(a1 = 1; a1 < 8; a1++){ //之前记录应该变成低电平的输出口,之后记录应该是低电平的输出口nw[a1] |= nw[a1-1]; } a2 = 0; for(a1 = 0; a1 < 7; a1++){ //去掉重复 if(nt[a1] != nt[a1 + 1]){ nt[a2] = nt[a1]; nw[a2] = nw[a1]; a2++; } } nt[a2] = nt[7]; nw[a2] = nw[7]; for(a2++; a2 < 8; a2++){ nt[a2] = 0; nw[a2] = 0xFF;

电动液压舵机的工作原理及使用管理

毕业专题论文 电动液压舵机的工作原理及运行管理 The working principle and management of the electro-hydraulic steering gear 学生姓名张学印 所在专业轮机工程 所在班级轮机1062 申请学位学士学位 指导教师陈波职称讲师副指导教师职称

目录 摘要 ......................................................................................................................................... I ABSTRACT ................................................................................................................................... II 引言 .. (1) 1 舵机的工作要求及工作原理 (1) 1.1对舵机的工作要求 (1) 1.2阀控型液压舵机工作原理 (2) 1.2.1 工作原理 (2) 1.2.2 压力控制 (3) 1.2.3 补油、放气和舵角指示 (4) 1.3泵控型液压舵机工作原理 (5) 1.3.1 工作原理 (5) 1.3.2 主油路的锁闭 (6) 1.3.3 工况选择 (6) 1.3.4 压力保护、补油、放气和舵角指示 (7) 2 潜在故障分析 (7) 2.1液压系统故障 (8) 2.1.1 可能引起的故障及分析 (8) 2.1.2 预防措施 (8) 2.2电子系统故障 (9) 2.2.1 通信故障 (9) 2.2.2 遥控故障 (9) 2.2.3 预防措施 (9) 2.3电力系统故障 (9) 2.3.1 主要故障及危害 (9) 2.3.2 预防措施 (10) 3 舵机的工作要求及日常管理 (10) 3.1舵机的日常管理 (10) 3.1.1 系统的清洗和充油 (10) 3.1.2 舵机的试验和调整 (10) 3.2舵机日常管理注意事项 (11) 结束语 (11) 鸣谢 (12) 参考文献 (13)

液压舵机的故障分析及处理措施 (2)

论文题目:液压舵机的故障分析及处理措施 二级学院:轮机工程学院 专业:轮机工程技术 目录 1引言 2液压舵机概述 2。1 液压舵机的基本工作原理 2。2船舶建造规范对舵机的基本要求 3 液压舵机的故障分析 3。1液压舵机无舵 3.2 液压舵机跑舵——稳舵时偏离所停舵角 3。3 液压舵机舵速太慢 3。4 液压舵机滞舵 3。5 实际舵角与操舵角不符 4 液压舵机故障的解决措施

4.1 检查应急舵的有效性-——-—-————-------——---—---——-—--—-——-----———--—-7 4.2 检查舵角指示的准确性—-—--—-—-——-——--—-——---—---—-———-——---—-—————-8 4。3检查舵角限位器的有效性-—-—-----———————-—----——--————-————-———————-8 4.4 检查舵的液压系统的密封性能————-———---————-——————-—-——---——--———-——8 4。5检查液压油的品质——-—-——-———--—--——---—-—--———----—--—---———-----—-8 4.5。1 液压油性能指标一般应符合以下要求-——-—---—-—-————-—--—----——-——8 4。5.2 液压油污染的主要原因-—————-——--—--————--——-— --—-—-———————--—-—9 4.6舵机检查的其他注意事项--——--——---------——-—--—--—-—--———----—————11 结论-——-—--—-——---——————--—---——--———-----—————--——-———————--—————-——---—11 致谢——-——-—-—--—---—----—--—-——----———-———————-——-—-—-———-——-———-------12 参考文献-—-—------————-—-——-—----——--———--—-——-———-——-——---—---—----—-———13 1 引言

单片机控制舵机

舵机如下所示: 有三根线,一般依次是地,电源(5V左右),信号(信号的幅值>=3.3V),不清楚各个脚打开舵机一测量就知道了。 2.其工作原理是: 控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏 置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。 3.舵机的控制: 舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为 0.5ms~2.5ms范围内的角度控制脉冲部分。以180度角度伺服为例,那么对应的控制 关系是这样的: 0.5ms--------------0度; 1.0ms------------45度; 1.5ms------------90度; 2.0ms-----------135度;

2.5ms-----------180度; 重要说明: 1:上面部分还是成线形关系的,Y=90X-45(X单位是ms,Y单位是度数:) 2:上面所说的0度45度等是指度45度位置(什么意思呢:我说明一下就知道了,就拿45度位置来说,若舵机停在0度位置,下载45度位置程序后则舵机停在45度,即顺时针走了45度,若当时舵机在135度位置,则反转90度到45度位置。所以舵机不存在正转反转问题。这点非常重要。 3:若想转动到45度位置,要一直产生1.0ms的高电平(即PA0=1; Delay(1ms);PA0=0;Delay(20ms);要不停的产生这个高低电平,产生PWM脉冲 请看下形象描述吧: 下面是我在ATMEGA32上的测试程序,开发软件:ICC AVR #include typedef struct BYTE_BIT { unsigned BIT0:1; unsigned BIT1:1; unsigned BIT2:1; unsigned BIT3:1; unsigned BIT4:1; unsigned BIT5:1;

液压舵机

第六节液压舵机 1056 平衡舵是指舵叶相对于舵杆轴线。 A.实现了静平衡 B.实现了动平衡 C.前后面积相等 D.前面有一小部分面积 1057 平衡舵有利于。 A.减小舵叶面积 B.减少舵机负荷 C.增大转船力矩 D.增快转舵速度1058 舵叶上的水作用力大小与无关。 A.舵角 B.舵叶浸水面积 C.舵叶处流速 D.舵杆位置 1059 舵机转舵扭矩的大小与有关。 A.水动力矩 B.转船力矩C.舵杆摩擦扭矩 D.A与C 1060 舵叶的平衡系数过大会造成。 A.回舵扭矩增大 B.转舵速度变慢 C.船速下降 D.转舵扭矩增大 1061 船舶倒航时的水动力矩不会超过正航时的水动力矩,因为倒航时。 A.最大航速低 B.水压力中心距舵杆距离近 C.倒航使用舵角小 D.A+ B 1062 采用平衡系数恰当的平衡舵主要好处是。 A.舵杆轴承径向负荷降低 B.转舵速度提高 C.常用舵角和最大航角时转航为拒皆降低 D.常用舵角时转舵扭矩不降低,最大舵角时降低 1063 舵的转船力矩。 A.与航速无关 B.与舵叶浸水面积成正比 C.只要舵角向90度接近,则随之不断增大 D.与舵叶处水的流速成正比 1064 关于舵的下列说法错的是。 A.船主机停车,顺水漂流前进,转航不会产生舵效。 B.转舵会增加船前进阻力。 C.转舵可能使船横倾和纵倾。 D.舵效与船途无关 1065 船正航时下列情况中舵的水动力矩帮助舵叶离开中位。 A. 平衡舵小舵角时 B.平衡舵大舵角时 C.不平衡舵小舵角时 D.不平衡舵大舵角时 1066 正航船舶平衡舵的转舵力矩会出现较大负扭矩的是。 A.小舵角回中 B.小舵角转离中位 C.大舵角回中 D.大舵角转离中位1067 限定最大舵角的原因主要是。 A.避免舵机过载 B.避免工作油压太高 C.避免舵机尺度太大 D.转船力矩随着舵角变化存在最大值 1068 某船若吃水和航速相同,在最大舵角范围内操舵,正航与倒航所需转舵力矩。 A.相同 B.前者大 C.后者大 D.因船而异 1069 舵机公称转舵扭矩是按正航时确定,因为。 A.大多数情况船正航 B.正航最大舵角比倒航大 C.同样情况下正航转舵扭矩比倒航大D.正航最大航速比倒航大得多 1070 舵机在正航时的转舵扭矩一般比倒航大,因为。 A.倒航舵上水压力的力臂较短 B.同样航速倒航时舵上水压力较小 C.A十B D.倒航最大航速比正航小得多 1071 下列关于舵的水动力矩和转船力矩的说法对的是。 A.与船速成正比 B.与船速平方成正比 C.与舵叶处水流速度成正比 D.与舵叶处水流速度平方成正比 1072 舵机公称转舵扭矩是指转舵扭矩。 A.平均 B.工作油压达到安全阀开启时 C. 船最深航海吃水、最大营运航速前进,最大舵角时的 D.船最深航海吃水、经济航速前进,最大舵角时的

舵机原理及其使用详解

舵机的原理,以及数码舵机VS模拟舵机 一、舵机的原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。 3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。 有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的:

收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF 判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵 电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20ms(即频率为50Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。

舵机的相关原理与控制原理

1.什么是舵机: 在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。 2.其工作原理是: 控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。 3.舵机的控制: 舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为 0.5ms~2.5ms范围内的角度控制脉冲部分。以180度角度伺服为例,那么对应的控制关 系是这样的: 0.5ms--------------0度; 1.0ms------------45度; 1.5ms------------90度; 2.0ms-----------135度; 2.5ms-----------180度; 请看下形象描述吧:

这只是一种参考数值,具体的参数,请参见舵机的技术参数。 小型舵机的工作电压一般为4.8V或6V,转速也不是很快,一般为0.22/60度或0.18/60度,所以假如你更改角度控制脉冲的宽度太快时,舵机可能反应不过来。如果需要更快速的反应,就需要更高的转速了。 要精确的控制舵机,其实没有那么容易,很多舵机的位置等级有1024个,那么,如果舵机的有效角度范围为180度的话,其控制的角度精度是可以达到180/1024度约0.18度了,从时间上看其实要求的脉宽控制精度为2000/1024us约2us。如果你拿了个舵机,连控制精度为1度都达不到的话,而且还看到舵机在发抖。在这种情况下,只要舵机的电压没有抖动,那抖动的就是你的控制脉冲了。而这个脉冲为什么会抖动呢?当然和你选用的脉冲发生器有关了。一些前辈喜欢用555来调舵机的驱动脉冲,如果只是控制几个点位置伺服好像是可以这么做的,可以多用几个开关引些电阻出来调占空比,这么做简单吗,应该不会啦,调试应该是非常麻烦而且运行也不一定可靠的。其实主要还是他那个年代,单片机这东西不流行呀,哪里会哟! 使用传统单片机控制舵机的方案也有很多,多是利用定时器和中断的方式来完成控制的,这样的方式控制1个舵机还是相当有效的,但是随着舵机数量的增加,也许控制起来就没有那么方便而且可以达到约2微秒的脉宽控制精度了。听说AVR也有控制32个舵机的试验板,不过精度能不能达到2微秒可能还是要泰克才知道了。其实测试起来很简单,你只需要将其控制信号与示波器连接,然后让试验板输出的舵机控制信号以2微秒的宽度递增。 为什么FPPA就可以很方便地将脉宽的精度精确地控制在2微秒甚至2微秒一下呢。主要还是 delay memory这样的具有创造性的指令发挥了功效。该指令的延时时间为数据单元中的立即数的值加1个指令周期(数据0出外,详情请参见delay指令使用注意事项)因为是8位的数据存储单元,所以memory中的数据为(0~255),记得前面有提过,舵机的角度级数一般为1024级,所以只

液压舵机的故障分析.

液压舵机的故障分析 [摘要]众所周知,船舵的作用是用来改变船舶方向和保持航向的,它的好坏直接影响着整个船舶的航行,所以对船舶舵机的安全检查是轮机人员的经常性进行的最重要的工作之一。本文希望通过对船舶舵机技术规范的介绍以及船舶舵机容易出现的故障分析和对船舶舵机进行安全检查的重点的论述,以及对一些典型案例的介绍分析,使大家对舵机的故障分析和检修提供一些借鉴的经验,使轮机人员在进行舵机安检工作时能够有目标,有针对性的检查。这样既可以节省检查的时间,又可以全面的对舵机进行检查,提高工作效率。这样可以有效的减少甚至避免海事事故的发生,船舶故障大部分原因是认为造成的,只有提高轮机人员的技术水平,才能有效的避免因船舶故障引起的海事事故。 [关键词] 船舶;液压舵机;故障分析

Trouble Shooting of Hydraulic Steering Gear [Abstract]As we all know, steering gear is used to change direction and maintain the course, it will have a direct impact on the entire ship's voyage, the ship's steering gear is a safety inspection of the turbines for the regular staff of the most important work . This article hope that the steering gear through the technical specifications of the ship and the ship's steering gear easy on the failure of the ship steering gear and carry out safety inspection of the focus of the exposition, and some typical cases on the analysis so that everyone on the steering gear failure analysis Maintenance and provide some useful experience and make turbines security personnel working in the steering gear to have goals, targeted inspections. This can save time for inspections, but also a comprehensive inspection of the steering gear, raise work efficiency. This can effectively reduce or even avoid the occurrence of maritime accidents, ship most of the reasons for failure is that the only improve the technological level of turbines, can effectively prevent the failure of the ship caused by maritime accidents. [Key words] Ship;Hydraulic steering;Failure analysis

浅谈舵机电路及其控制原理

舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机的工作原理:一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计、直流电机、控制电路板等。舵机的控制信号为周期是20ms的脉宽调制(PWM)信号,其中脉冲宽度从0.5ms-2.5ms,相对应舵盘的位置为0-180度,呈线性变化。也就是说,给它提供一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。转动范围不能超过180度。适合于需要不断角度变化并可以保持的驱动电路中。 控制电路板中的信号调制芯片接收来自信号线的信号,获得偏置电压,芯片内部本身带有一个基准电路,产生周期为20毫秒,宽度为1.5MS的基准信号,获得的偏置电压信号会与基准电压进行比较,电压差的正负值输出到电机驱动芯片将决定电机的正反转,因为舵机的输出轴与位置反馈电位计是相连的,电机的转动通过级联减速齿轮带动反馈电位计(电位器)旋转,电位计将输出一个电压信号到控制电路板,进行负反馈,当电压差为零时,电机停止转动,并达到预期的转动角度位置。 舵机的控制: 舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms~2.5ms范围内的角度控制脉 冲部分。以180度角度伺服为例,那么对应的控制关系是这样的: 0.5ms-----------负90度; 1.0ms-----------负45度; 1.5ms------------0度; 2.0ms-----------正45度; 2.5ms-----------正90度; 请看下形象描述吧: 这只是一种参考数值,具体的参数,请参见舵机的技术参数。 第八届的B车模采用的舵机是SD_5参数如下:

相关文档
最新文档