土壤中植物需要元素简介

土壤中植物需要元素简介
土壤中植物需要元素简介

一。必需元素

某一元素是否属于必需,并不能根据生长在土壤上植物的矿质成分来确定。水培养和砂基培养技术对较精确地研究矿质元素的必要性提供了可能,并使人们对它们在植物代谢中的作用有了更深的了解。化学药品的纯化和测定技术的提高也促进了这一领域的发展。确定植物的必需元素(essential element)有三条标准。当某一元素符合这三条标准时,则称为必需元素,这三条标准是:

(1)在完全缺乏该元素时,植物不能进行正常的生长和生殖,不能完成其生活周期。

(2)该元素的功能不能被其他元素所替代。

(3)该元素必需直接参与植物的代谢。如参与植物体某些重要分子或结构的组成,或者作为某种酶促反应的活化剂。

到目前为止,确定下列17种元素是植物生长发育所必需的:C,H,O,N,S,P,K,Ca,Mg,Fe,B,Cu,Zn,Mn,Mo,Cl,Ni

除17种必需元素外,一些对生长有促进作用但不是必需的,或只对某些植物种类,或在特定条件下是必需的矿质元素,通常称为有益元素(beneficial elements)。钠、硅、钴、硒、和铝等被认为属于有益元素。已证明Na为某些沙漠植物和盐碱植物以及某些C4植物和CAM植物所必需,Na属于这些植物的微量元素。硅在玉米和许多禾本科植物中的积累达到干重的1%-4%,水稻则高达16%,而大多数双子叶植物中硅的含量较低。当水稻缺硅时营养生长和谷物产量都严重下降,并发生缺素症,例如成熟叶片枯斑和植株凋萎。土壤溶液中硅以单硅酸(H4SiO4或Si(OH)4)形式存在和被植物吸收,其在植物体内多以无定形硅(SiO4·nH2O)或称蛋石的形式积累。在植物的根茎叶和禾本科植物花序的表皮细胞壁以及其他细胞的初生壁和次生壁含有丰富的硅。硅影响高等植物的稳固性,一方面是由于它能被动沉积在木质化的细胞壁中,另一方面是由于它能调节木质素的生物合成。

钴对许多细菌是必需的。由于根瘤菌及其他固氮微生物需要钴,因而钴对豆科及非豆科植物的根瘤固氮非常重要。不过,钴对高等植物是否具有直接的功能,至今还不清楚。

作物中硒的平均含量在0.01~1.0mg/kg干重之间,硒以硒酸盐(SeO42-)和亚硒酸盐(SeO32-)的形式吸收,硒酸根与硫酸根(SO42-)争夺根细胞质膜的结合位点,形成硒的半胱氨酸和氨基酸类似物,即硒半胱氨酸和硒蛋氨酸,在非积累型植株中形成含硒蛋白质。这些蛋白质充当酶蛋白时,或无功能或比相应的含硫蛋白质的功能弱得多。相反在积累型植株中,含硒氨基酸被转化为非蛋白氨基酸,如硒甲基半胱氨酸,这种阻止含硒氨基酸结合入蛋白质的排斥作用,是积累型植物忍耐硒的最重要的机制之一。

植物所需要的17种必需元素中除硼外均是高等动物所必需。此外动物还需要钠、碘、钴、硒,可能还有硅、铬、锡、钒、氟,有理由设想高等动物所必需的元素也是高等植物的必需元素。

二。必需元素的生理作用及其缺乏病症

根据生理作用不同,可将必需元素分成两类:一类是作为植物体中重要结构物质的构成部分,如N、S、P的主要功能是蛋白质和核酸等的组成物质;另一类则是在调节酶的活性方面起作用,如许多微量元素作为酶的辅基或活化剂等。不过,这两种类型的区分并不是绝对的,例如镁既是叶绿素的结构成分,又是许多酶的活化剂。

所有处于可溶性状态的元素,不论是游离的或结合态的,均起渗透调节剂的作用。钾离子并不参与结构物质的组成,其主要作用在于维持细胞的渗透势。此外,钾离子和氯离子还在酶活性的调节方面起作用。

下面将植物必需的矿质元素的生理作用及缺乏病症逐一介绍。

1.氮

多数土壤容易缺氮。植物所吸收的氮素主要是硝酸盐(NO3-)和铵(NH4+),也可以利用某些可溶性的含氮有机物,如尿素等。氮是构成蛋白质的主要成分。此外,氮存在于核酸、磷脂、叶绿素、辅酶、植物激素(如吲哚乙酸、激动素等)和多种维生素(如B1,B2,B6,PP等)中。由于氮作为组成植物体中许多基本结构物质的组分,对植物的生命活动有举足轻重的作用,故氮又称为生命元素。

氮素在植物体内可以自由移动。缺氮时幼叶向老叶吸收氮素,老叶出现缺绿病。严重的情况下老叶完全变黄枯死,但幼叶可较长时间保持绿色。

植物缺氮时植株矮小,叶小色淡或发红,分枝少,花少,籽实不饱和,产量低。

2.磷

土壤中缺磷的现象非常普遍,其缺乏的可能性仅次于缺氮。磷主要以一价磷酸根

(H2PO4-)或二价磷酸根(HPO42-)的形式被植物吸收,土壤pH控制着这些磷酸根的比例。pH小于7时,H2PO4-状态的离子较多;pH大于7时,HPO42-状态较多。

磷进入根系或由木质部运输到地上部后,大部分很快转化成有机物质。与氮和硫不同,植物体中一部分磷并不经过还原而仍然保持磷酸盐的形式。

磷与光合作用、呼吸作用和其他代谢过程有关,磷是核苷酸和膜脂的组成成分。磷存在于ATP,ADP,AMP和焦磷酸(PPi)中,在能量代谢中起重要作用。此外,植物细胞中的磷酸盐起到酸碱缓冲作用,可以说,没有磷,植物的全部代谢活动都不能进行。

磷在植物体内能从一个器官转移到另一个器官,进行重新分配。磷在老叶较少,而在幼叶、花和种子中较多。缺磷时首先表现在成熟的老叶。

植株缺磷时,蛋白质合成受阻,植株生长缓慢,植株短而粗,叶色深绿,有时呈红色(因为缺磷有利于花色素的积累)。

3.钾

钾是土壤中第三种容易缺乏的元素。由于氮、磷、钾对植物生长发育的重要性,被称为肥料三要素。土壤中的KCl和K2SO4解离后,以钾离子的形式被植物吸收。钾在植物体中几乎全部呈离子状态。

钾不参与植物体内重要有机物的组成。钾是光合作用、呼吸作用中许多重要酶的活化剂,钾也是淀粉和蛋白质合成所需要的酶的活化剂。目前已知道有50多种酶完全依赖于钾或被钾激活。

钾在不同的水平上影响着光合作用。如钾离子作为主要的平衡离子在光诱导的跨类囊体膜的质子流动以及光合磷酸化中ATP合成所必需的膜pH梯度等方面起作用。此外,K+能促进CO2的固定。

K+是植物中最主要的无机溶质,因此对细胞渗透势的调节起着关键的作用。例如,细胞的伸展就是由于K+在细胞中积累的结果。钾从叶片表皮细胞进入保卫细胞的液泡,降低其水势,促进气孔的开放。

钾和氮、磷一样,在植物体内的移动性很强。在所有新生组织和新生的部分,都含有很多钾。缺钾时,植株变弱易倒伏,叶色变黄,叶子卷曲,逐渐坏死。

4.硫

硫以硫酸根(SO42-)的形式被植物吸收。硫是蛋白质的组成成分。硫酸盐在植物体内大部分被还原成巯基(SH)和联巯基(S—S)而形成含硫有机物如胱氨酸、半胱氨酸和甲硫氨酸。硫还是辅酶A、硫胺素、生物素等重要物质的结构成分。已知氨基酸、脂肪、碳水化合物等的合成都与辅酶A有密切关系,可见硫的生理作用十分广泛。

硫在植物体内不易重新分布,缺乏症一般表现在幼叶中。土壤中一般不会缺硫。缺硫时蛋白质合成和叶绿素合成受阻,植株叶片呈黄绿色。

5.镁

镁以Mg2+的形式被植物吸收。镁是叶绿素分子的中心原子。Mg2+与K+一样,对调节叶绿体和细胞质内的pH起重要作用。镁为蛋白质合成所必需的核糖体亚单位联合作用提供桥接元素。此外,镁还是许多与光合作用、呼吸作用、核酸合成等有关酶的活化剂,在磷酸转移(如磷酸酶、ATP酶)和CO2固定(RuBP羧化酶)等反应中需要镁的参与。

镁在植物体内可以流动,主要存在于幼嫩组织和器官中,种子成熟时则集中于种子中。土壤一般很少缺镁。缺镁时,叶绿素不能合成,由此产生的缺绿病表现为叶脉之间变黄,有时呈红紫色,严重缺镁时,则形成褐斑坏死。

6.钙

钙以Ca2+的形式被植物吸收,大多数土壤含有足够的钙以满足植物生长的需要。钙在植物体内以离子形式存在,一部分则以结合态(如草酸钙、植酸钙、果胶酸钙)而存在。钙是一个不易移动的元素,它从细胞到细胞及在韧皮部中的移动性都非常低。植株中总钙量的大部分存在于细胞壁中,所以说钙是一种主要在细胞质外部起作用的矿质元素。存在于液泡中的钙多以草酸钙结晶沉淀,细胞质中游离钙的水平是非常低的,很可能只有lμmol/L或更少。这说明高等植物对于钙的需要量不高。

钙在植物体内有多种作用,例如果胶酸钙能稳定细胞壁的结构,钙参与原生质膜的组成而保持其稳定性。Ca2+只能提高几种酶的活性,其中包括α-淀粉酶、磷酯酶和ATP酶。而对一些酶,如己糖二磷酸酶和PEP羧化酶,Ca2+则表现为抑制作用。近年来,发现钙对许多代谢活动有调节作用,它是影响细胞活动的第二信使。植物体内也和动物体内一样,存在着与钙结合的蛋白质,其中研究得最多的是钙调蛋白(calmo-dulin)。钙调蛋白是一种低分子量化合物(约20kD),它与钙可逆地结合并具有强亲和力和选择性。每一分子钙调蛋白(CaM)能与四个Ca2+结合而成Ca2+/钙调蛋白(CaM·Ca2+)。CaM通常是一种钝化的状态,CaM·Ca2+则为活化状态,可以活化许多关键性的酶。因此,Ca2+成为许多重要代谢的调节者。缺钙症首先表现在幼嫩组织,严重时引起幼叶尖端弯曲坏死,最后顶芽死亡。

7.铁

植物从土壤中主要吸收氧化态的铁。土壤中有三价铁也有二价铁,一般认为二价铁是植物吸收的主要形式。因此,三价铁必须在输入细胞质之前在根的表面还原成二价铁。但对禾本科植物来说,三价铁的吸收是十分重要的。铁有二个重要功能:一是某些酶和许多传递电子蛋白的重要组成,二是调节叶绿体蛋白和叶绿素的合成。铁是氧化还原体系中的血红蛋白(细胞色素和细胞色素氧化酶)和铁硫蛋白的组分。还是许多重要氧化酶如过氧化物酶和过氧化氢酶的组分。铁又是固氮酶中铁蛋白和钼铁蛋白的金属成分,在生物固氮中起作用。铁虽然不是叶绿素的组成成分,但叶绿素生物合成中的一些酶需要Fe2+的参与。铁对叶绿体蛋白如基粒中的结构蛋白的合成起重要作用。缺铁条件下,叶绿素合成受阻,至少部分是由于蛋白质合成削弱所致。

铁进入植物体后即处于固定状态,不易转移。所以缺铁植物的幼叶表现出明显的叶脉间缺绿。

8.氯

氯是一种奇妙的矿质养分。氯以Cl-的形式被植物吸收并大部分以此形式存在于植物体内。在植物界已发现有130多种含痕量氯的化合物,大多数植物吸收氯的量比实际需要多10~100倍。氯的生理作用首先是在光合作用中促进水的裂解方面。根需要氯,叶片的细胞分裂也需要氯。氯还是渗透调节的活跃溶质,通过调节气孔的开闭来间接影响光合作用和植物生长。氯在植物体内的移动性很高。

9.锰

土壤中的锰以三种氧化态存在(Mn2+、Mn3+、Mn4+),此外还以螯合状态存在。但主要以Mn2+的状态被植物吸收。缺锰菠菜叶的电子显微镜照片表明类囊体膜的结构被破坏,这一研究与其他生化研究均表明锰是叶绿体膜系统的结构成分。此外,与氯一样,锰促进光合作用中水的裂解。锰也是许多酶的活化剂,如激活三羧酸循环中脱氢酶。双子叶植物最明显的缺锰症是叶脉间失绿,而禾本科植物则是在基部的叶片上出现灰绿色斑点。

10.硼

土壤的硼主要以硼酸(H3BO3或B(OH)3)的形式被植物吸收。植物缺硼可造成多种病症,因植物不同而异。但最早的病症之一是根尖不能正常地延长,同时DNA和RNA的合成受抑制。茎尖中的细胞分裂也被抑制,硼在花粉管的萌发和生长中起着重要作用。硼在植物体内的存在状态迄今不明,它能与甘露糖等有顺式二醇(cis-diol)的分子形成硼酸酯。对硼的生理作用目前也不清楚,从促进顶端分生组织的细胞分裂推测,它可能与核酸的合成有关。

11.锌

锌以Zn2+的形式被植物吸收。锌是生长素生物合成所必需的,色氨酸合成需要锌,而色氨酸是合成生长素(IAA)的前体。锌参与叶绿素的合成或防止叶绿素的降解。现在已经知道锌是80种以上酶的成分,例如乙醇脱氢酶、Cu-Zn超氧物歧化酶、碳酸酐酶和RNA 聚合酶。锌也是某些酶(如谷氨酸脱氢酶、乙醇脱氢酶)的活化剂,双子叶植物(如苹果、桃)缺锌的病症是由于节间和叶片生长下降而出现丛叶病。禾本科植物如玉米缺锌,叶片出现沿中脉的失绿带与红色斑状褪色现象。

12.铜

铜以Cu2+和Cu+的形式被植物吸收,在植物体内也可以以两种价态而存在。由于需铜量很微,植物一般不会缺铜。铜是几种与氧化还原有关的酶或蛋白的组分,如线粒体的细胞色素氧化酶和叶绿体的质体蓝素是非常重要的铜蛋白。缺铜时植株生长矮化,幼叶变形黄化,顶端分生组织坏死。

13.钼

土壤中钼以钼酸盐(MoO42-)和硫化钼(MoS2)的形式存在。植物对钼的需要量低于其他任何矿质元素,至今仍未明了植物吸收钼的形式以及钼在植物细胞内的变化方式。高等植物的硝酸还原酶和生物固氮作用的固氮酶都是含钼的蛋白。可见钼的生理功能突出表现在氮代谢方面。当固氮的豆科植物缺钼时,明显地表现出缺氮症状。许多植物种的最典型缺钼症状是新叶片明显缩小并呈不规则形状,即所谓鞭毛状,成熟叶片沿主脉局部失绿和坏死。

14.镍

已有很好的证据表明镍属于必需元素。首先镍是脲酶的金属成分。脲酶催化脲水解成CO2和NH4+。根据必需元素的三条标准,如果脲酶是植物必需的,则镍也将是必需的,不

过,过去我们不知道脲酶是否是必需的,因为未清楚是否大多数或全部植物都产生脲并需要脲酶水解脲。很明显,植物产生脲并需要脲酶。尽管哺乳动物能通过肾排除过剩的脲,它们也同样需要镍和脲酶。

豆科植物,包括豇豆和大豆,在固氮时根瘤中形成酞脲,然后酰脲通过木质部运往叶片,它们还通过韧皮部将老叶的酰脲运往幼叶和正在发育的种子。在豇豆和大豆中,酰脲的利用是将其降解成脲,然后再水解。采用高纯度的营养液和低含镍种子做生长实验,营养液中不加镍时,脲则在叶尖端处积累而出现毒害,小叶尖端严重坏死。很显然,酰脲降解产生脲,没有镍就不能生成脲酶来消除毒害。

在所有植物中,嘌呤基(腺嘌呤和鸟嘌呤)的降解通过酰脲的途径,因此很可能所有植物都需要脲酶和镍。已有实验证明镍是大麦的必需元素。使用螯合剂将营养液中的镍消除后培养大麦,获得第三代的种子。结果发现第三代种子不能萌发(无活力),并发现多处解剖上的畸形。这表明镍对大麦的必需性符合第一条标准。镍对燕麦、小麦和番茄的有益作用已经清楚。镍对某些藻类也是必需的。因此镍是所有植物的必需元素,这也是自1954年以来加入必需元素行列的第一个元素。据推测,镍除了作为脲酶的金属部分外,还有其他的功能。

植物缺乏任何一种必需元素都会引起特有的病症。根据这些病症,一可以帮助认识植物必需元素的生理作用,二可以采取相应的施肥措施。由于观察根部缺乏病症很困难,许多研究仅描述植株地上部分(苗端)的缺乏病症。应该注意到不同植物、不同生长阶段和两种或多种元素缺乏含有不同的缺乏病症的表现。缺乏病症表现决定于两方面的因素:元素的生理功能和元素是否易于从老叶转移到幼叶。在植物体内韧皮部细胞运输中易于流动的元素如N,P,Mg,K,Zn的缺乏症最先在老叶出现。一些流动性较差的元素如Ca,B,Cu,Mn,S,Fe的缺乏症首先出现在幼叶,另外,Fe,Mg,Mn,Cu,S,N的缺乏,都会引起缺绿病,因为它们与叶绿素的合成有直接或间接的关系。

植物与土壤的关系简介

植物与土壤的关系简介 1. 土壤的生态意义 土壤是岩石圈表面的疏松表层,是陆生植物生活的基质。它提供了植物生活必需的营养和水分,是生态系统中物质与能量交换的重要场所。由于植物根系与土壤之间具有极大的接触面,在土壤和植物之间进行频繁的物质交换,彼此强烈影响,因而土壤是植物的一个重要生态因子,通过控制土壤因素就可影响植物的生长和产量。土壤及时满足植物对水、肥、气、热要求的能力,称为土壤肥力。肥沃的土壤同时能满足植物对水、肥、气、热的要求,是植物正常生长发育的基础。 2. 土壤的物理性质及其对植物的影响 (1)土壤质地和结构土壤是由固体、液体和气体组成的三相系统,其中固体颗粒是组成土壤的物质基础,约占土壤总重量的85%以上。根据固体颗粒的大小,可以把土粒分为以下几级:粗砂(直径~)、细砂(~)、粉砂(~)和粘粒(以下)。这些大小不同的固体颗粒的组合百分比称为土壤质地。土壤质地可分为砂土、壤土和粘土三大类。砂土类土壤以粗砂和细砂为主、粉砂和粘粒比重小,土壤粘性小、孔隙多,通气透水性强,蓄水和保肥性能差,易干旱。粘土类土壤以粉砂和粘粒为主,质地粘重,结构致密,保水保肥能力强,但孔隙小,通气透水性能差,湿时粘、干时硬。壤土类土壤质地比较均匀,其中砂粒、粉砂和粘粒所占比重大致相等,既不松又不粘,通气透水性能好,并具一定的保水保肥能力,是比较理想的农作土壤。 土壤结构是指固体颗粒的排列方式、孔隙和团聚体的数量、大小及其稳定度。它可分为微团粒结构(直径小于)、团粒结构(~10mm)和比团粒结构更大的各种结构。团粒结构是土壤中的腐殖质把矿质土粒粘结成~10mm直径的小团块,具有泡水不散的水稳性特点。具有团粒结构的土壤是结构良好的土壤,它能协调土壤中水分、空气和营养物质之间的关系,统一保肥和供肥的矛盾,有利于根系活动及吸取水分和养分,为植物的生长发育提供良好的条件。无结构或结构不良的土壤,土体坚实,通气透水性差,土壤中微生物和动物的活动受抑制,土壤肥

土壤与植物的基本关系

土壤与植物的基本关系 本章的目的是讨论土壤中离子交换现象,同时探讨关于土壤溶液中离子的运移及其被吸入根细胞的机理。离子交换是可逆过程,一种吸持在固相上的阳离子或阴离子可与另一种液相中的阳离子或阴离子发生交换。若使两个固体接触,其接触面上也发生离子交换。在阳离子交换和阴离子交换这两种过程中,一般认为前者更重要,因为大多数农业土壤保持阴离子的能力远逊于保持阳离子的能力。阳离子交换的性质是区别土壤与其他植物生根介质的主要特征。 第一节阳离子交换 一、阳离子交换的概念 土壤由三种状态的物质组成:固体、液体和气体。土壤中的固态物质由有机物和无机物组成。有机组分包括处于各个分解阶段的植物和动物残体,其稳定部分通常称为腐殖质。 土壤固相的无机组分由不同粒径的原生和次生矿物组成。土壤离子交换是在有效粒径小于20毫微米(μm)的有机物质和矿质组分上进行的。这些颗粒包括部分粉粒和全部粘粒(小于2μm的部分)以及胶体有机质。 因为阳离子带正电荷,故其附着于带负电胶体颗粒的表面。有机组分中,其位点由某些功能团,尤其是羧基(-COOH)和酚基(-C6H4OH)上的H+解离生成。在pH值低于7时,许多羧基会解离,在功能团所在部位留下负电荷,如以下方程式所示: -COOH ←→COO- + H+ 估计腐殖质中负电荷的85%~90%都由这两种功能团生成。另两种功能团,烯醇(-COH=CH)和酰亚胺(=NH)也为有机质提供负电荷。 无机粘粒组分的电荷一般有两个来源。一个是蒙脱石等层状硅酸盐矿物的同晶置换;另一个是硅氧四面体平面破裂边缘上连接硅原子的羟基(-OH)和层状硅酸盐矿物晶层暴露的AlOH基脱去质子造成的。 同晶置换形成的电荷由于硅或铝原子被一个几何形状相同但电荷较低原子取代所致(如Mg2+取代Al3+,或Al3+取代Si4+)。由此产生的负电荷相对均匀地分布在片状粘粒上。同晶置换主要发生在层状硅酸盐矿物结晶过程中,而且一旦产生电荷,不再受以后环境变化的影响。同晶置换形成的电荷是土壤的永久电荷。 随着pH值增加,以下反应使粘粒边缘上形成负电荷: -SiOH + OH- ←→-SiO- + H2O -AlOH + OH- ←→-AlO- + H2O 土壤中层状硅酸盐矿物分为3大类:即2∶1型,2∶1∶1型和1∶1型。2∶1型粘土矿物由多层组成,其中每层为两层硅氧片夹一层铝氧片。2∶1型粘土矿物的例子有蒙皂石(蒙脱石),伊利石和蛭石。白云母和黑云母是2∶1型原生矿物,富含于粉粒和砂粒组分中。 绿泥石通常是土壤中发现的2∶1∶1型层状硅酸盐。这种粘土矿物在上述2∶1结构层间添加了一层氢氧化物片而成。 1∶1型粘土由许多层组成,每层含一层硅氧片和一层铝氧片。高岭石和埃洛石即为此类中两个重要粘土矿物。 同晶置换是2∶1型和2∶1∶1型两类粘土矿物中负电荷的主要来源,但在1∶1型粘土矿物中作用不大。从粘土颗粒破裂边缘上脱去质子即从羟基解离出H+是1∶1型粘土矿物负电荷的主要来源。高pH值有利于裸露的羟基脱去质子。 高度风化土壤中富含的氧化物及水合氧化物,具有pH值依变电荷。这些氧化物质出现在结晶粘土矿物的表面和层间。当暴露于水分中时,其表面形成羟基。或经表面羟基的两性解离或经吸附H+或OH-,羟基化的表面上产生了电荷。土壤颗粒的总电荷通常随测定时的pH值变化。随pH值降低产生正电荷,又随pH值升高形成过量负电荷,这称为pH值依变电荷。在2∶1型粘土中仅有5~10%的负电荷为pH值依变电荷,而在1∶1型粘土矿物中pH值依变电荷可达50%或更多。 有机胶体或矿物胶体上产生的负电荷由被吸引到这些胶体表面的阳离子所中和。以每100克烘干土中的毫克当量数(meq/100g)表示的阳离子交换数量被定义为土壤阳子交换量(CEC)。这是重要的土壤化学特性之一,并且与土壤肥力密切相关。为了理解土壤肥力和土壤酸度,有必要透彻了解阳离子交换。下面简要讨论一下其定量测定的方法。测定各种土壤中阳离子交换量的程序各异,这里只简述其基本特点。 如前所述,阳离子交换是指一个阳离子被溶液中的另一个阳离子所交换。土壤胶体在其交换位点上吸附了众多阳离子,包括钙、镁、钾、钠、铵、铝、铁和氢。这些离子依其电荷及其水合半径和非水合半径不同程度地吸持。通常,二价或三价离子比一价阳离子吸持得更紧。离子水合程度越大吸持得就越松。

花卉生长需要的土壤

花卉生长需要的土壤 土壤是花卉生长发育的环境条件之一,根系在土壤中舒展延伸,只要土层深厚,排水透气,酸碱度适宜,并有一定的肥力,就能正常生长和开花。由于花卉的生长发育所要求的环境条件不同,包括对土壤的理化特性的要求也因花卉的种类而异。因此,土壤处理技术为花卉栽培成功与否的关键。一般盆栽花卉根系被局限在花盆里。依靠有限的土壤来供应养分和水分,维持生长和发育的需要。因此,对土壤的要求就更加严格。 一、花卉对土壤的基本要求花卉的种类很多,与其生长发育相适应土壤的特性也有很大的差别。一般而言,多数花卉要求土壤富含腐殖质,土壤疏松肥沃,排水良好,透气性强。绝大多数露地花卉要求土壤的pH值在7.0左右,而温室花卉则要求酸性土壤。 1、花卉要求的土壤特性: ①团粒结构良好,排水透气团粒结构是土壤中的腐殖质与矿物值粘结所成的0.01~5mm 大小的团粒。团粒内部有毛管孔隙,可蓄水保肥,团粒之间又有较大的孔隙,可以排水透气,浇水或雨后不板结。团粒结构不良的土壤,多为粘重、板结、排水不畅,栽培花卉容易导致花卉根系腐烂,叶片发黄,甚至干枯死亡。 ②腐殖质丰富,肥效持久腐殖质是动植物残体及排泄物经腐烂后形成的有机物。腐殖质含量丰富,有效态营养元素的含量丰富,利于花卉根系的吸收。增加土壤的腐殖质的方法,主要依靠增加充分腐熟的有机肥。 ③酸碱度(pH值)要适宜一般大多数露地花卉要求中性土壤,而大多数温室花卉要求酸性土壤。植物对环境中酸碱性的适应性是由植物的根系特性决定的。根据植物根系对环境酸碱性的适应性将其分为:酸性土植物;弱酸性土植物;近中性(偏酸性)土植物;弱碱性土植物。各种植物对氢离子浓度的适应范围见表1-1。土壤的酸碱度通常可以用硫酸和生石灰调节,硫酸亚铁也可调节土壤的pH值。一般用工业废硫酸调节,以节约成本。 2、各类花卉对土壤的要求: ⑴露地花卉: ①一、二年生花卉:在排水良好的沙质壤土、壤土上均可生长良好,粘土及过轻质的土壤生长不良。适宜的土壤为表土深厚、地下水位较高、干湿适中、富含有机质的土壤。夏季开花的种类最忌土壤干燥,,因此要求排灌方便。秋播花卉以粘质壤土为宜,如金盏菊、矢车菊、羽扇豆等。 ②多年生宿根花卉:根系较强,入土较深,应有40~50cm的土层;下层应铺设排水物,使其排水良好。栽植时应施较多的有机肥,以长期维持较好的土壤结构。一次施肥后可维持多年开花。一般宿根花卉在幼苗期要求富含腐殖质的轻质壤土。而在第二年以后则以稍粘重的土壤为宜。 ③球根花卉:对土壤的要求十分严格。球根花卉一般都以富含腐殖质的轻质排水良好的壤土为宜。壤土也可。尤以下层为排水良好的砾石土、表土为深厚的沙质壤土为宜。但水仙花、风信子、百合、石蒜、晚香玉、及郁金香等则以壤土为宜。 ⑵温室花卉要求富含腐殖质,土壤疏松柔软,透气性和排水性良好,能长久维持土壤的湿润状态,不易干燥。一般绝大多数温室花卉都要求酸性土壤.。

第十章 植物对逆境土壤条件的适应性

第十章植物对逆境土壤条件的适应性植物正常生长发育有赖于良好的土壤环境。但在自然界中,植物生长的土壤往往存在着各种各样的障碍因素,限制着植物生长。例如,世界陆地表面大面积盐碱土中有高浓度的盐分;酸性土壤中有高浓度的H+ , A13+ , Mn 2+和Fe2+等;淹水土壤中有过量的还原性物质和Fe2+等;石灰性土壤中缺乏足够的有效磷、铁和锌等。这些具有植物生长障碍因素的土壤称为逆境土壤。逆境土壤分布的面积广泛,而且改良难度大,因此,已成为农业生产发展的限制因素。 植物在长期进化过程中对各种逆境产生了一定的适应能力。某些植物在一定程度上能够忍耐上述不良的逆境条件。了解植物对土壤环境的生理反应和抗逆机理,对发展农业生产是十分重要的。第一节植物对酸性土壤的适应性酸性土壤是低pH值土壤的总称,包括红壤、黄壤、砖红壤、赤红壤和灰化土等。酸性土壤地区降水充沛,淋溶作用强烈,盐基饱和度较低,酸度较高。酸性土壤在世界范围内分布广泛,在农业生产中占有重要地位。 一、酸性土壤的主要障碍因子 酸性土壤的主要障碍因子是低pH值,游离铝和交换性铝浓度过高(铝毒),还原态锰浓度过高(锰毒),缺磷、钾、钙和镁,有时也缺钼。各种障碍因子在不同生态条件下其危害程度不同,有时只是某一因素起主导作用,而有时则是几种因素的综合作用。 (一)氢离子毒害 当土壤pH<4时,H+对植物生长会产生直接的毒害作用,不仅根的数量减少,而且形态也会发生变化,如根系变短,变粗,根表呈暗棕色至暗灰色等症状,严重时造成根尖死亡。 1. 破坏生物膜高浓度H+通过离子竞争作用将稳定原生质膜结构的阳离子交换下来,其中最为重要的是钙,从而使质膜的酯化键桥解体,导致膜透性增加。 2. 降低土壤微生物活性根瘤菌的固氮作用对豆科植物的氮素营养有重要作用,而高浓度H+抑制根瘤菌的侵染,并降低其固氮效率,从而造成植物缺氮。土壤过酸还会严重降低土壤有机质的矿化速率。当土壤pH值过低时,多种微生物的活性都会受到严重影响。 在自然土壤中,pH值一般都不会低于4,因而H+直接产生毒害的可能性不大。更重要的是低土壤pH值所产生的间接影响。这时土壤中抑制植物生长的主要因素是铝和锰的浓度过高,即铝毒和锰毒。 (二)铝的毒害 无论是水田还是旱地,酸性土壤的铝毒现象都较为普遍。根系是铝毒危害最敏感的部位。土壤溶液中的铝可以多种形态存在,各种形态铝的含量及其比例取决于溶液的pH值。在pH<5的土壤溶液中, A13+离子浓度较高;pH值在5- 6 时, Al (0H)2+离子占优势,而在pH> 6的条件下,其他形态的可溶性铝,如Al (0H)3+和Al (OH)4-数量很多。当土壤溶液中可溶性铝离子浓度超过一定限度时,植物根就会表现出典型的中毒症状:根系生长明显受阻,根短小,出现畸形卷曲,脆弱易断。在植株地上部往往表现出缺钙和缺铁的症状。(三)锰的毒害

植物生产环境知识点资料讲解

一、土壤环境调控 (一)土壤肥力 主壤肥力是土壤在植物生长发育过程中,为植物生长供应和协调养分、水分、空气和执量的能力,是土壤物理、化学和生物学性质的综合反应。土壤肥力是土壤的基本属性和本特征,土壤肥力的高低是影响植物生长的重要因素之一土壤肥力根据其产生的原因可以分为自然肥力和人工肥力 自然肥力是由土壤母质、气候、生物、地形等自然因素的作用下形成的土壤肥力,是土壤的物理、化学和生物特征的综合表现。自然肥力是自然再生产过程的产物,是土地生产力的基础,它能自发地生长天然植被。 人工肥力是指通过人类生产活动,如耕作、施肥、灌溉、土壤改良等人为因素作用下形成的土壤肥力。 随着人类对土壤利用强度的不断扩展,人为因素对土壤作用的力度越来越大,已成为定土壤肥力发展方向的基本动力之一。自然土壤只具有自然肥力,而农业土壤可以按照人类的需求同时具有自然肥力和人工肥力。 (二)土壤质地 土壤质地分类任何一种土壤都不可能只由单一的某一粒级的矿物质土粒组成,同时土壤中各粒级矿物质土粒的含量也不是平均分配的,而是以不同的比例组合而成。将土壤中各粒级土粒质量分数的配合比例称为土壤质地。 土壤质地也称为土壤机械组成,或称土壤颗粒组成,是根据土壤的颗粒组成划分的土壤类型。一般将土壤质地分成沙土、壤土和黏土三个基本等级。土壤质地这样划分主要是继承了成土母质的类型和特点,又受到耕作、施肥、排灌、平整土地等人为因素的影响,是土壤的一种十分稳定的自然属性,对土壤肥力有很大影响。不同的土壤质地分类方案的标准不尽相同 1.土壤质地的改良 1.增施有机肥料 2.客土法 3.翻淤压沙、翻沙压淤 4.耕作管理措施 (三)土壤质地与土壤肥力的关系 沙质土,保水保肥性能差,不耐干旱,肥效快效期短,含矿质养分少潜在养分含量低,易于转化为速效养分,不利于有机质的积累;施肥见效快,肥效短保持养分能力差,养分易流失

第3章+植物与土壤基础知识答案

第3章植物与土壤基础知识 第1节土壤中有什么 1、土壤的层次结构:一般分枯枝落叶层、上土层和下土层,其中枯枝落叶层是小动物活动的主要场所;上土层植物根系大量分布。 2、土壤环境特点:主要指的是土壤的湿度、土壤疏松程度、土壤温度、光照和植物生长状况等环境因素。 3、在特定生态系统中数量较多的生物称优势物种。 4、在观察土壤生物的调查表格中,简要分析栏应着重分析土壤中生物,特别是优势物种的生活与 环境之间的相互关系。 5、我们把生活在土壤中的微生物、动物、和植物等称为土壤生物;其中微生物包括细菌、真菌、放线菌。土壤中含有的非生命物质有①空气;②水;③有机物(腐殖质);④无机盐(矿物质)。 6、在烧杯内盛一定量的水,将干燥的土壤块慢慢放入水中,你观察到的现象有气泡产生。 说明土壤中有空气;其作用是为植物根呼吸和微生物的生命活动提供氧气。 7、书本P77页图3-2测量土壤中空气的体积分数实验: (1)在烧杯中放入一块土壤(土壤的体积为V),缓慢注入水,直到水面把土壤全部浸没为止。记录在烧杯中所加的水的体积。记做V1. (2)用与土壤体积相等的铁块替代土壤,重复上述实验。记录所加水的体积记做V2。 (3) V1大于 V2(大于,小于或等于),因为土壤间隙中有空气。土壤中空气的体积分数约为(V1-V2)/V ;在土壤中,空气约占土壤体积的 15%~35% 。 8、取少许土壤,放入试管中,在酒精灯上加热,观察到的现象是试管壁上有小水珠;试管口冒出水雾;这个实验说明土壤中有水;它是植物生长的必要条件;(其中小部分水供给植物光合作用,大部分水供给植物蒸腾作用。 9、实验:给你一只坩埚、一把刻度尺、一只酒精灯和一台精确度足够的天平,你有办法测量土壤水分体积占土壤体积的体积分数吗? (1)选取一规则几何体状的土壤样本,用刻度尺测出其相关数据,算出土壤体积数V; (2)用天平称出其质量M ; (3)将土壤捣碎,放在坩埚上用酒精灯加热,让其水分充分汽化充分散失,再称其质量M1。 (4)将水分的质量换算成体积:V水= (M-M1)/ρ水; (5)土壤中水分的体积分数= (M-M1)/(ρ水V)。

土壤和植物中的锰

土壤和植物中的锰 锰在地壳中是一个分布很广的元素,至少能在大多数岩石中,特别是铁镁物质中找到微量锰的存在。锰在植株中的正常浓度一般是20×10-6~500×10-6。植物根及叶片以锰离子(Mn2+)及其与某些天然或合成络合剂结合成的分子形式吸收。 原生矿物风化后释放的锰与O2、CO32-和SiO2结合生成许多次生矿物,包括软锰矿(MnO2)、墨锰矿(Mn3O4)、水锰矿(MnOOH)、菱锰矿(MnCO3)和蔷薇辉石(MnSiO3),其中软锰矿及水锰矿等含锰氧化物含量最丰富。锰在土壤中常见的形态是各种氧化物和氢氧化物。它们常包被在土壤颗粒上,沉积在裂缝和矿脉中,与铁的氧化物和其它土壤组分混合形成结核。单个雏晶体积很小,表面积很大。 一般认为,土壤中锰以下列形态存在:(1)交换态锰(Mn2+);(2)水溶性锰(Mn2+);(3)水溶和不溶性有机束缚态锰;(4)易还原态锰;(5)各种锰氧化物。各种形态的锰对植物有效性程度不同,它们彼此处于平衡状态。 在锰循环中存在两种主要过程,一个是氧化还原过程,另一个是能络合可溶性和不溶性锰的天然络合剂的合成和分解过程。一般认为,有机质的不断消长和植物残体的分解在溶解惰性锰和维持水溶性锰方面贡献最大。 锰在土壤溶液中的主要离子态是锰离子(Mn2+),另外一些次要形态有水溶性MnSO4、MnHCO3+和MnOH+。 土壤pH值对Mn2+溶解度影响很大,pH值每增加1,Mn2+浓度就降低100倍。在高pH值、石灰性土壤、缓冲性能差、粗质地土壤中锰的有效性低,可通过施用产酸氮肥和含硫化合物的酸化作用来纠正。在极酸性土壤中Mn2+的溶解性可大到足以使敏感作物受毒害的程度,可用施石灰的办法降低土壤pH值而降低Mn2+浓度。高pH值也有利于土壤微生物将可溶性Mn2+氧化成Mn4+生成沉淀,或生成有效性差的锰有机复合物。 扩散是锰向植物根系运移的重要机制。土壤中相当大一部分锰与有机质络合。有机锰络合物大大增加了溶液中的锰浓度,因此增强了浓度梯度。在有机质含量高的碱性土壤上,可生成难溶性螯合Mn2+化合物导致锰有效性降低。在泥炭土或腐殖土中,锰也能被禁锢在无效的有机络合物中。 在酸性和低氧化还原电位下,土壤溶液中的锰大大增加。土壤淹水或水涝会降低氧(O2)分压,从而降低氧化还原电位。当氧化还原电位低时,Mn4+还原为Mn2+,使锰的有效性增加。这和铁十分相似。在紧实土壤中,通气不良以及根系密集区二氧化碳(CO2)积累也能增加锰的有效性。 因为锰的有效性与土壤微生物有关,就与水分干湿,温度高低等气候因素有关,受季节变化的影响。 植物组织中锰和磷之间存在着负相关。锰与铁也有强烈的拮抗关系,铁抑制锰的吸收和积累。锰也可以作为氧化剂使作物体内的Fe2+氧化成 Fe3+或抑制Fe3+还原为Fe2+。锰过多会导致缺铁。 湿润地区土壤较易缺锰。大多数中性或碱性土壤有可能缺锰。石灰性土壤,尤其是排水不良和有机质含量高的石灰性土壤易缺锰。长年一贯施用粪肥和石灰的老菜园黑土上较易缺锰。极砂的酸性矿质土壤天生含锰低,而且有限的有效态锰已从根区淋出。因Mn2+有移动性,所以能从土壤中淋失,尤其是在酸性灰壤中更易淋失。在排水不良的矿质土壤和有机土壤这经常出现的缺锰现象往往是可溶性Mn2+的过分淋失造

植物生理第2章矿质营养习题答案

第2章矿质营养习题答案 一、名词解释 矿质元素亦称灰分元素,将干燥植物材料燃烧后,留在灰分中的元素。 必需元素是指在植物生活中作为必需成分或必需的调节物质而不可缺少的元素。 大量元素在植物体内含量较多,占植物体干重0.001% 以上的元素。植物必需的大量元素有:碳、氢、氧、氮、磷、钾、钙、镁、硫。 微量元素在植物体内含量较少,大约占植物体干物重的0.001~0.00001% 的元素。植物必需的微量元素有:铁、锰、铜、锌、钼、硼、氯、镍。 有益元素亦称有利元素。是指对植物生长表现出有利的促进作用,并在某一必需元素缺乏时,能部分代替该必需元素的作用而减缓缺素症状的元素。如钠、钴、硒、镓、硅等。 水培法将各种无机盐按照生理浓度,以一定的比例,保持适宜的pH 值配制成平衡溶液,用以培养植物的方法。 砂培法是用洁净的石英砂或玻璃球代替土壤,再加入培养液培养植物的方法。 生理酸性盐例如(NH 4)SO4 ,植物吸收铵离子较硫酸根离子多而快,这种选择性吸收导致溶液逐渐变酸,故把这种盐称为生理酸性盐。 生理碱性盐例如NaNO ,植物吸收硝酸根离子比吸收钠离子多而快,这种选择性吸收的结果使溶液变碱,故称这类盐为生理碱性盐。 生理中性盐例如NH4 NO3 ,植物吸收其阴离子与阳离子的量几乎相等,不改变周围介质的pH 值,故称这类盐为生理中性盐。 单盐毒害植物被培养在某种单一的盐溶液中,即使是植物必需的营养元素,不久即呈现不正常状态,最后死亡,这种现象称单盐毒害。 离子拮抗在单盐溶液中加入少量其它盐类,再用其培养植物时,就可以消除单盐毒害现象,离子间这种相互消除毒害的现象称为离子拮抗。 离子协合作用是指一种离子的存在促进对另一种离子吸收利用的作用。 平衡溶液在含有适当比例的多种盐溶液中,各种离子的毒害作用被消除,用以培养植物可以正常生长发育。 胞饮作用物质吸附在质膜上,然后通过膜的内折而转移到细胞内的摄取物质的过程。 可再利用元素亦称参与循环元素,某些元素进入地上部分后,仍呈离子状态(例如钾),有些则形成不稳定的化合物(如氮、磷),可不断被分解,释放出的离子又转移到其它器官中去,这些元素在植物体内不止一次的反复被利用,称这些元素为可再利用元素。 诱导酶亦称适应酶,是指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。如水稻幼苗本来无硝酸还原酶,如果将其培养在硝酸盐溶液中,体内即可生成此酶。 载体存在于生物膜上的能携带离子或分子透过膜的蛋白质,它们与离子或分子有专一的结合部位,能选择性的携带物质通过膜,又称透过酶。 矿质元素的被动吸收亦称非代谢吸收。是指通过不需要代谢能量的扩散作用或其它物理过程而吸收矿质元素的方式。矿质元素的主动吸收亦称代谢性吸收。是指细胞利用呼吸释放的能量作功而逆着电化学势梯度吸收矿质元素的方式。矿质营养是指植物对矿质元素的吸收、运转与同化的过程。 离子通道是指由贯穿质膜的由多亚基组成的蛋白质,通过构象变化而形成的调控离子跨膜运转的门系统,通过门的开闭控制离子运转的种类和速度。 生物固氮微生物自生或与植物(或动物)共生,通过体内固氮酶的作用,将大气中的游离氮固定转化为含氮化合物的过程。 二、写出下列符号的中文名称 NR :硝酸还原酶;NiR :亚硝酸还原酶;AFS :表观自由空间。 三、填空题 1. 化学势梯度,电势梯度 2. 被动吸收,主动吸收,胞饮作用 3. 化学势梯度,电势梯度

中药材种植对土壤的要求

中药材种植对土壤的要求 土壤的选择 土壤是植物生长繁育的基地,土壤质地、营养、水分、酸碱度、土壤空气及土壤微生物等均影响土壤肥力及中药材生长发育和产量品质,土壤污染程度也是中药材品质好坏的重要影响因素。另外,种植中药材选择土壤地块重点关注四个指标。 指标1:土壤质地 沙土:沙粒含量在50%以上,土壤通气性、透水性好,但保水能力差,土壤温度变化剧烈,对热的缓冲能力差,所以易干旱。如河滩、季节性河床等。此类土壤适宜种植耐旱的药用植物,如甘草、防风等。 黏土:土壤结构致密,保水保肥能力强,通气、透水性差,但供给养分慢,土壤耕性差,耕作阻力大,不利于根系生长。药用植物一般生长周期较长,不能每年进行耕翻,同一般农作物相比,对多数中药材更不适宜。品种也只能选择以植株、花朵、叶子、果实入药的品种。如紫苏、蒲公英、枸杞等。

壤土(两合土):土壤各种颗粒的粗细比列适度,沙粒、黏粒适宜,兼有沙土和黏土的优点,是多数中药材栽培最理想的土壤类型。特别是以根、根茎、鳞茎做药的植物最为合适。适于沙土种植的中药材在此类土壤中也能更好的生长。 指标2:有机质含量 有机质对植物生长具有以下作用:一是所含营养成分较为全面,含有较多的大量元素和丰富的微量元素,是植物营养的主要来源。二是腐殖质是良好的胶结剂,能促进土壤团粒结构的形成。三是腐殖质可提高保水保肥能力。四是腐殖质为黑色,容易吸收光能,提高土温。五是有机质可以使土壤保持较好的水、肥、气、热条件,这是植物生长所需的最佳环境。 指标3:土壤PH值 酸碱度(PH值)小于6.5的为酸性土壤,在6.5---7.5的为中性土壤,大于7.5的为碱性土壤。不同的酸碱度影响着土壤微生物的活动和土壤中化学元素的含量,从而影响着植物的生长和发育。对中药材种植来讲,酸碱度中性土壤最好。 PH值调节改良

土壤和植物中锰的测定(高锰酸盐比色法)

土壤和植物中锰的测定(高锰酸盐比色法) (一)土壤有效锰测定 (二)植物中锰的测定 一、方法原理: 在酸性溶液中,加热煮沸条件下,用强氧化剂将二价锰氧化为MnO4-,溶液显紫红色,在一定范围内颜色深度与锰的含量成正比,可直接比色测定. 反应: 2Mn2+ + 5IO4- + 3H20 → 2Mn04- + 5I03- + 6H+ 吸收峰在540nm,测定范围0.6 ~ 25ppm 二、试剂: 1.KIO4,分析纯 2.H3P04(85%),HN03,H2S04,HCl04 3.H202 4.1mol/lNH4OAc(pH7):冰醋酸57ml,溶于400ml水,加入69ml浓氨水,加水至950ml,用HOAe或NH4OH调pH7.0(用酸度计),加水至1000ml; 5.1mol/l中性NH4OAc—对苯二酚溶液:100m11mol/l中性NH4OAc溶液中溶解0.2g对苯二酚,用前加人。 6.锰标准溶液:0.4060g MnS04·4H20(分析纯或优级纯)溶于水,加lml浓H2SO4,定容为1000ml,此液含Mn为100ppm. 三、仪器: 振荡机、721分光光度计。 四、操作步骤: (一)样品待测液制备: A1、土壤代换态Mn: 取lmm风干土样5.0g→三角瓶中,加入1mol/l中性NH4OAc 50ml,塞紧,振荡30分钟,再放置和间或振荡6小时,过滤,得滤液。 取滤液25ml呻100ml烧杯中,小心加热蒸干,加浓HN03ml,H202 2ml,水浴加热30分钟,再蒸发至干,用20ml水溶解,待测。 A2、土壤易还原态Mn: 取1mm风干土5.0g,加1mol/l NH40Ac—0.2%对苯二酚提取液50ml,同土壤代换态Mn的操作步骤进行。 B、植物中的Mn: ①湿消化:取磨碎的植物样1~2g加入开氏瓶中,加混合酸(HN03: H2S04 : HCl04 5:2: 1) 8ml,加热消化,至冒白烟;如不清,再加少量HCl04消化,至清亮后,再加热5分钟,冷却,用20ml水稀释,冷却后转入50ml容量瓶中,用水定容,澄清或过滤后取滤液测定,也可以直接将开氏瓶中消化液用水转入烧杯中测定。 ②干灰化法:称取样品1 ~ 2g,放人瓷坩埚中,在电炉上炭化至无烟。移人马福炉中,5500C 灰化至无黑色。取出加3ml水,加2ml l:1 HN03溶解灰分,移入50ml容量瓶,水洗净坩埚,洗液并入容量瓶中,水定容,澄清或过滤后取溶液测定。 (二)显色测定: 1.在盛有待测液的烧杯中(如样品处理时已转入50ml容量瓶定容,则吸取10 ~25ml溶液或滤液至lOOml烧杯中进行显色测定),加入HN03 2ml,H3PO5 5ml.

土壤和植物中的铁

土壤和植物中的铁 地壳中大约含铁5%,是岩石圈中第四个含量丰富的元素。作物充足含铁量一般是50×10-6~250×10-6 。铁既作为结构组分,又充当酶促反应的辅助因子。代谢需要亚铁离子(Fe 2+)且以此形态被作物吸收。Fe +2活性高且有效地结合进生物分子结构。而一些富含高铁(Fe 3+)的植物组织却能出现缺铁症状。 含铁矿物通常有橄榄石[(Mg,Fe)2SiO 4]、黄铁矿(FeS )、菱铁矿(FeCO 3)、赤铁矿(Fe 2O 3)、针铁矿 (FeOOH )、磁铁矿(Fe 3O 4)和褐铁矿[FeO(OH)?nH 2O+ Fe 2O 3.nH 2O]。土壤中大多数铁存在于原生矿物、粘粒、 氧化物和氢氧化物中,赤铁矿和针铁矿是土壤中最常见的含铁氧化物。 铁以低铁离子(Fe 2+)形态被植物根系吸收,并以螯合态铁被运移到根表面。含高铁离子(Fe 3+)的化合物可溶性低,这严重限制了Fe 3+的有效性和植物对Fe3+的吸收。一般认为,扩散和质流是铁从土壤向根表面转移的机制。土壤中铁的溶解度主要受氧化铁控制。水解作用、土壤酸度、螯合作用和氧化作用都影响铁的溶解度。 无机铁在土壤溶液中可能被水解为Fe(OH)42+、Fe 3+、Fe(OH)2+、Fe(OH)30、和Fe(OH)4-。在酸性条件下以 前四种形式为主,在pH 值大于7时主要为后两种形式。植物吸收这些离子中任何一种都将引起其它离子解离,所有这些离子之间将重新恢复平衡关系。 铁在土壤溶液中的溶解度取决于土壤pH 值,pH 值每增加1,Fe 3+和Fe 2+的溶解度就各降低1000倍和100倍。在pH 值=3时,可溶性铁总浓度将会高得足以全部由质流为根系充分供铁。在正常土壤pH 值条件下,即使铁以扩散、根系截获和质流全部三种方式向根系转移,有效铁的数量也远远低于植物所需。土壤溶液中铁的溶解度在pH 值介于7.4~8.5时达到最低点,这是常见的土壤缺铁范围。土壤中碳酸氢根离子(HCO 3-)多最易出现缺铁。碳酸氢根离子在石灰性土壤中是通过二氧化碳和水作用于方解石而形成的: CaCO 3 + CO 2 +H 2O ←----→Ca 2+ +2HCO 3- 虽然单凭石灰不一定诱导缺铁,但石灰与一定环境条件相结合似乎可能造成某些植物缺铁。石灰性土壤中形成难溶的碳酸铁。在中性和微酸性土壤中铁主要形成氢氧化铁沉淀。酸性土壤尤其是长期淹水时铁被还原为速效性的亚铁,亚铁离子过多使植物发生铁中毒。形成亚铁还与氧化还原作用有关。 土壤空气中氧分压的改变引起铁离子的氧化还原反应,显著影响土壤溶液中可溶性铁的数量。排水良好的土壤中铁以Fe 3+形式存在,而土壤因水分过多缺氧时,可溶性Fe 2+水平则显著提高。要与土壤pH 值同时考虑氧化还原电位。氧化还原电位低时可溶性Fe 2+水平高。 根系分泌物、土壤有机质、微生物活动代谢产物等可溶性有机复合物在溶液中与铁发生络合或螯合反应。在土壤溶液中,这些天然螯合铁保持的铁浓度一般远高于仅与无机铁化合物处于平衡状态的离子铁浓度。土壤腐殖质中的富里酸和胡敏酸具有络合和转移的能力。这些螯合物有助于增加土壤溶液中铁的浓度,促使铁向植物根系扩散。 铜、锰、锌、钴等养分会引起缺铁。过多的磷或钼也会造成缺铁。植物吸收硝酸盐导致根区附近和植物体内的碱化作用,显著降低铁的溶解性;而当植物利用铵态氮时,铵盐产出的酸有利于铁的溶解,提高其有效性。缺钾和缺锌可扰乱铁在植物体内的移动,造成铁在玉米茎节内的积累。在淹水土壤中,还原含

高考生物知识点:植物的矿质营养

2019高考生物知识点:植物的矿质营养 2019高考生物知识点:植物的矿质营养 (一) 1、植物的矿质营养:是指植物对矿质元素的吸收、运输和利用。 2、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。植物必需的矿质元素有13种.其中大量元素7种N、S、P、Ca、Mg、K(Mg是合成叶绿素所必需的一种矿质元素)巧记:丹留人盖美家。Fe、Mn、B、Zn、Cu、Mo、Cl属于微量元素,巧记:铁门碰醒铜母(驴)。 3、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。 4、选择吸收:指植物对外界环境中各种离子的吸收所具有的选择性。它表现为植物吸收的离子与溶液中的离子数量不成比例。 5、合理施肥:根据植物的需肥规律,适时地施肥,适量地施肥。 (二) 1、根对矿质元素的吸收①吸收的状态:离子状态②吸收的部位:根尖成熟区表皮细胞。③、细胞吸收矿质元素离子可以分为两个过程:一是根细胞表面的阴、阳离子与土壤溶液中的离子进行交换吸附;二是离子被主动运输进入根细胞内

部,根进行离子的交换需要的HCO-和H+是根细胞呼吸作用产生的CO2与水结合后理解成的,根细胞主动运输吸收离子要消耗能量。④影响根对矿质元素吸收的因素:a、呼吸作用:为交换吸附提供HCO-和H+,为主动运输供能,因此生产上需要疏松土壤;b、载体的种类是决定是否吸收某种离子,载体的数量是决定吸收某种离子的多少,因此,根对吸收离子有选择性。氧气和温度(影响酶的活性)都能影响呼吸作用。 2、植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。①吸收部位:都为成熟区表皮细胞。②吸收方式:根对水分的吸收---渗透吸水,根对矿质元素的吸收----主动运输。③、所需条件:根对水分的吸收----半透膜和半透膜两侧的浓度差,根对矿质元素的吸收----能量和载体。④联系:矿质离子在土壤中溶于水,进入植物体后,随水运到各个器官,植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。 3、矿质元素的运输和利用:①运输:随水分的运输到达植物体的各部分。②利用形式:矿质运输的利用,取决于各种元素在植物体内的存在形式。K在植物体内以离子状态的形式存在,很容易转移,能反复利用,如果植物体缺乏这类元素,首先在老的部位出现病态;N、P、Mg在植物体内以不稳定化合物的形式存在,能转移,能多次利用,如果植物体缺乏这类元素,首先在老的部位出现病态;Ca、Fe在植物体

土壤与植物的关系

土壤与植物的关系 土壤的生态意义: 土壤是岩石圈表面的疏松表层,是陆生植物生活的基质。它提供了植物生活必需的营养和水分,是生态系统中物质与能量交换的重要场所。由于植物根系与土壤之间具有极大的接触面,在土壤和植物之间进行频繁的物质交换,彼此强烈影响,因而土壤是植物的一个重要生态因子,通过控制土壤因素就可影响植物的生长和产量。土壤及时满足植物对水、肥、气、热要求的能力,称为土壤肥力。肥沃的土壤同时能满足植物对水、肥、气、热的要求,是植物正常生长发育的基础。 土壤的化学性质对植物的影响: (1)土壤酸碱度:土壤酸碱度是土壤最重要的化学性质,因为它是土壤各种化学性质的综合反映,它与土壤微生物的活动、有机质的合成和分解、各种营养元素的转化与释放及有效性、土壤保持养分的能力都有关系。土壤酸碱度常用pH值表示。我国土壤酸碱度可分为5级:pH<5.0为强酸性,pH5.0~6.5为酸性,pH6.5~7.5为中性,pH7.5~8 。5为碱性,pH>8.5为强碱性。 (2)土壤有机质:土壤有机质是土壤的重要组成部分,它包括腐殖质和非腐殖质两大类。前者是土壤微生物在分解有机质时重新合成的多聚体化合物,约占土壤有机质的85~90%,对植物的营养有重要的作用。土壤有机质能改善土壤的物理和化学性质,有利于土壤团粒结构的形成,从而促进植物的生长和养分的吸收。 (3)土壤中的无机元素:植物从土壤中摄取的无机元素中有13种对其正常生长发育都是不可缺少的(营养元素):N、P、K、S、Ca、Mg、Fe、Mn、Mo、Cl、Cu、Zn、B。植物所需的无机元素主要来自土壤中的矿物质和有机质的分解。腐殖质是无机元素的储备源,通过矿化作用缓慢释放可供植物利用的元素。土壤中必须含有植物所必需的各种元素及这些元素的适当比例,才能使植物生长发育良好,因此通过合理施肥改善土壤的营养状况是提高植物产量的重要措施。

植物生长的土壤环境-

第五章植物生长的土壤环境 教学目标: 掌握土壤、土壤肥力、土壤质地、土壤有机质、土壤通气性、土壤胶体、土壤保肥性、土壤供肥性、土壤缓冲性、土壤空隙性、土壤结构、土壤耕性等基本概念;土壤的基本组成及各组分的特性。 第一节土壤的基本组成。 一、土壤矿物质及土壤质地 二、土壤生物和土壤有机质 三、土壤水分和土壤空气 1.土壤:即指覆盖在地球陆地表面上的,能够生长绿色植物的疏松表层。土壤分为:自然土壤和农业土壤。 2.土壤肥力:是指在植物生长发育过程中,土壤不断地供给和调节植物所必需的水、肥、气、热等物质和能量的能力。 3.土壤的组成:自然界土壤由矿物质、有机质(土壤固相)、土壤水分(液相)和土壤空气(气相)三相物质组成。 一、土壤矿物质及土壤质地 (一)土壤矿物质的组成 原生矿物是在风化过程中没有改变化学组成而遗留在土壤中的一类矿物。次生矿物是原生矿物在风化和成土作用下,重新形成的一类矿物。 (二)土壤质地 土壤中各种粒级的配合和组合状况称为土壤质地,即土壤沙黏程度。土壤质地可分为沙土、壤土和黏土三类。 1.沙土。沙土的特性粒间孔隙大,通气性强,保水性差,不耐旱。有机质分解快,保肥能力弱,但肥效快。土壤温度变幅大,常称“热性土”。作物前期生长快,后期易脱肥,“发小苗不发老苗”,肥水管理应是少量多次。 2.壤土。壤土兼有沙土与黏土的优点,通气透水性良好,保水保肥力强;有机质分解较快,供肥性能好;土温较稳定,耕性良好水、肥、气、热状况比较协调,适宜种植各种作物,发小苗也发老苗——“壮子送老” 3.黏土。黏土的黏粒含量较多,其粒间孔隙小而总孔隙度大,毛细管作用强烈,透水透气性差,但保水保肥性强;黏质土矿质养分丰富,加之通气不良,有机质分解缓慢,肥效稳长后劲足;黏土水多气少,土温升降速度慢,昼夜温差小,称“冷性土” 二、土壤生物和土壤有机质 (一)土壤生物。 土壤生物包括土壤中的动物、植物和微生物。 土壤微生物种类:细菌、放线菌、真菌、藻类及病毒等。 (二)土壤有机质 1.土壤有机质的来源与组成 >来源:施用的有机肥料、作物的秸秆以及残留的根茬等。 >元素组成:C、O、H、N,分别占52%~58%、34%~39%、3.3%~4.8%和3.7%~4.1%,其次是P和S。 >物质组成:糖类(单糖、多糖、淀粉、纤维素、果胶物质等)、木质素、蛋白质、树脂、蜡质等占10%~15%。腐殖质占土壤有机质的85%~90%,是土壤有机质的主体。 >转化过程:矿质化过程、腐殖化过程。

土壤与园艺植物的关系

土壤的生态学意义:土壤是岩石圈表面的疏松表层,是陆生园艺园艺作物生活的基质。它提供了园艺园艺作物生活必需的营养和水分,是生态系统中物质与能量交换的重要场所。由于园艺作物根系与土壤之间具有极大的接触面,在土壤和园艺园艺作物之间进行频繁的物质交换,彼此强烈影响,因而土壤是园艺园艺作物的一个重要生态因子,通过控制土壤因素就可影响园艺园艺作物的生长和产量。土壤及时满足园艺园艺作物对水、肥、气、热要求的能力,称为土壤肥力。肥沃的土壤同时能满足园艺园艺作物对水、肥、气、热的要求,是园艺园艺作物正常生长发育的基础。 土壤是由固体、液体和气体组成的三相系统,其中固体颗粒是组成土壤的物质基础,约占土壤总重量的85%以上。根据固体颗粒的大小,可以把土粒分为以下几级:粗砂(直径2.0~0.2mm)、细砂(0.2~0.02mm)、粉砂(0.02~0.002mm)和粘粒(0.002mm以下)。这些大小不同的固体颗粒的组合百分比称为土壤质地。土壤质地可分为砂土、壤土和粘土三大类。砂土类土壤以粗砂和细砂为主、粉砂和粘粒比重小,土壤粘性小、孔隙多,通气透水性强,蓄水和保肥性能差,易干旱。粘土类土壤以粉砂和粘粒为主,质地粘重,结构致密,保水保肥能力强,但孔隙小,通气透水性能差,湿时粘、干时硬。壤土类土壤质地比较均匀,其中砂粒、粉砂和粘粒所占比重大致相等,既不松又不粘,通气透水性能好,并具一定的保水保肥能力,是比较理想的农作土壤。 土壤结构是指固体颗粒的排列方式、孔隙和团聚体的数量、大小及其稳定度。它可分为微团粒结构(直径小于0.25mm)、团粒结构(0.25~10mm)和比团粒结构更大的各种结构。团粒结构是土壤中的腐殖质把矿质土粒粘结成 0.25~10mm直径的小团块,具有泡水不散的水稳性特点。具有团粒结构的土壤是结构良好的土壤,它能协调土壤中水分、空气和营养物质之间的关系,统一保肥和供肥的矛盾,有利于根系活动及吸取水分和养分,为园艺园艺作物的生长发育提供良好的条件。无结构或结构不良的土壤,土体坚实,通气透水性差,土壤中微生物和动物的活动受抑制,土壤肥力差,不利于园艺园艺作物根系扎根和生长。土壤质地和结构与土壤的水分、空气和温度状况有密切的关系。 1 土壤水分

常用植物对土壤的要求

常用植物对土壤酸碱性的要求 (以《园林树木学》中的描述为准) 一、酸壤 1、马尾松:PH4.5-6.5之间。 2、湿地松:在中性至强酸性红壤中生长良好。 3、池杉:喜酸性、微酸性土。对碱性土颇敏感,PH>7.2,即发生黄化现象。 4、水杉:喜酸性土,但在微碱性土壤上可生长良好。 5、垂柳:喜酸性及中性土壤。 6、小叶榕、黄葛树:喜酸性土壤。 7、木莲:喜酸性土。 8、白兰花:喜微酸性沙壤。 9、含笑:喜酸性土。 10、鹅掌楸:喜酸性至微酸性土(PH4.5-6.5)。 11、香樟:以微酸性粘质土最好,不耐盐碱。 12、桢楠:喜中性或微酸性土。 13、八仙花:喜酸性土。 14、黄杨:喜微酸性土。 15、酸枣:喜酸性或中性土,不耐盐碱。 16、冬青:喜酸性土。 17、杜英:喜酸性黄壤。 18、木芙蓉:喜微酸性沙壤。 19、山茶:喜微酸性土(PH5-6.5),不耐碱性土。 20、茶梅:喜酸性土。 21、栀子:喜酸性土。 二、碱壤 1、铺地柏:喜石灰质肥沃土壤。 2、榆树:耐盐碱土。 3、朴树:能耐轻盐碱土。 4、构树:喜钙质土。

5、牡丹:较耐碱。 6、紫玉兰:在碱土上生长不良。 7、梅:在轻碱性土中正常生长。 8、桃:碱性土不适宜。 9、栾树:喜石灰质土壤。 10、紫薇:喜石灰性土壤。 11、石榴:喜石灰质土壤,PH可在4.5-8.2。 12、泡桐:PH:6-7.5,不耐盐碱。 三、砂壤 1、银杏:喜深厚砂壤,以中性或微酸性最宜,在PH4.5,PH8.0中也可生长良好。 2、五针松:不适于砂地生长。 3、黑松:喜生于干砂壤土。 4、柳杉:喜砂壤。 5、罗汉松:喜砂壤。 6、银桦:喜偏酸性(PH5.5-6.5)沙壤,在偏碱性土壤上生长不良。 7、广玉兰:喜砂壤,在碱性土上生长不良。 8、腊梅:喜砂壤。 9、樱桃:喜砂壤。 10、刺槐:以沙壤最佳,但在酸性土、轻度盐碱土上正常生长。 11、国槐:喜砂壤,但在酸性、石灰性、轻碱性土上正常生长。 12、柚子树:喜微酸性沙壤。 13、广柑:喜中性或微酸性沙壤。 14、桂花:喜砂壤,忌碱地。 四、对土壤要求不严 1、雪松:能生长于微酸性及微碱性土壤中,亦能生于瘠薄地和粘土地。 2、油松:对土壤要求不严。 3、侧柏:对土壤要求不严。 4、毛白杨:对土壤要求不严。 5、枫杨:对土壤要求不严。 6、桤木:对土壤要求不严。

植物生长与环境教学大纲

《植物生长与环境》教学大纲 第一部分大纲说明 一、课程的性质、目的: 按照教育部对高职高专的教学要求,高职院以培养应用性高等技术专门人才为根本任务,授课内容要讲究针对性和实用性。《植物生长与环境》是种植类专业如园艺、园林、生物技术、农艺专业的一门重要的专业基础课。通过教学使学生能够掌握植物及植物生长发育的基本理论、基础知识和技术技能,学会结合当地生产实际,运用所学知识和技术技能解决生产上存在的问题,为后续专业课学习以及将来从事现代农业生产打下必要的基础。 本大纲规定的教学内容把种植类的主要专业基础课《植物学》、《植物生理学》、《土壤学》、《肥料学》和《农业气象学》综合在一起,合成《植物生长与环境》。在教学过程中紧扣理论为实践服务的宗旨,把理论讲活,增加学生兴趣;实践教学结合学生将来从事的工作环境,为学生将来学以致用打下基础。 二、与其它课程的关系 本课程在学习之前应具有一定的普通化学、有机化学、生物化学知识,是种植类专业学生农作物、蔬菜、果树、花卉类植物栽培学等课程的基础。

三、课程的任务: 通过本课程的学习,使学生了解使学生系统掌握种子植物的形态结构、生长发育和生殖的规律,了解植物界中各类群的特征及代表植物的形态结构、亲缘关系等植物系统学知识。掌握被子植物分类的一般知识和重要科、属、种的特征,认识当地常见的代表植物,并通过实验和实习,掌握观察、解剖、描述、检索、鉴定植物的基本知识和技能。学习植物生理过程的基本概念、基本理论、重要机理,以及环境因素对各种生理过程的影响和调节作用。研究植物在生长过程中与土壤环境、水分、温度、养分之间的机理和关系,将植物、生理、土壤、肥料、小气候有机地交互融合成一个整体。为种植类专业课-栽培学、遗传育种、植物保护等专业课打下理论和技能基础。 本课程参考学时总计160学时(理论教学118学时,实验教学4 0学时),实践实训1.5-2.0周,学时分配参考表见下表。

相关文档
最新文档