2021年实数和二次根式知识点

合集下载

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结1. 二次根式的定义和性质二次根式是指具有形式√a的数,其中a是非负实数。

以下是二次根式的一些重要性质:•非负性:对于任何非负实数a,√a也是一个非负实数。

•平方性:对于任何非负实数a,(√a)2=a。

•唯一性:每个非负实数都有唯一的平方根。

2. 化简和计算二次根式化简和计算二次根式是处理二次根式的基本操作。

下面是一些常见的规则和方法:•合并同类项:如果两个或多个二次根式具有相同的根指数并且根下的值相同,则可以合并它们。

•分解因子:对于某些特定的二次根式,可以将其分解为更简单的形式,例如√ab=√a⋅√b。

•有理化分母:当一个二次根式出现在分母中时,可以通过乘以适当的形式来有理化分母,例如√2=√22。

•乘法和除法规则:二次根式可以与其他数进行乘法和除法运算,例如√a⋅√b=√ab和√a√b =√a√b⋅√b√b=√abb。

3. 二次根式的性质和定理二次根式具有许多重要的性质和定理,这些性质和定理可以帮助我们解决各种问题。

以下是一些常见的性质和定理:•无理数性质:对于大多数非完全平方数a,√a是一个无理数。

•比较大小:对于两个非负实数a和b,如果a<b,那么√a<√b。

•平方根的加法公式:√a+√b不能化简为一个更简单的形式,除非a和b 存在某种特殊关系(例如互为有理数倍)。

•平方根的乘法公式:√a⋅√b=√ab,其中a和b可以是任意非负实数。

4. 解二次根式的方程和不等式解二次根式的方程和不等式是应用二次根式知识的重要方面。

以下是一些解决这类问题的方法:•方程:将方程两边进行平方操作,然后化简为二次根式形式,最后解得方程的解。

•不等式:根据二次根式的性质,可以比较大小或使用其他方法来解决不等式。

5. 与其他数学概念的关系二次根式与其他数学概念之间存在着密切的关系。

以下是一些与二次根式相关的重要概念:•平方数:对于某个非负实数a,如果存在另一个非负实数b,使得b2=a,那么a就是一个平方数。

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结二次根式是数学中的一种常见的根式表达式,它可以表示为$\sqrt{a}$ 的形式,其中 $a$ 是一个非负实数。

在学习二次根式时,常常会涉及到以下几个方面的知识点。

一、二次根式的性质:1. 非负性:对于任何非负实数 $a$,二次根式 $\sqrt{a}$ 都是非负实数。

2. 平方性:相对应的,对于任何非负实数 $a$,二次根式$\sqrt{a}$ 的平方等于 $a$,即 $(\sqrt{a})^2=a$。

3. 两个二次根式可以相等:如果两个二次根式 $\sqrt{a}$ 和$\sqrt{b}$ 相等,那么 $a$ 和 $b$ 必须相等,即$\sqrt{a}=\sqrt{b}$ 可推出 $a=b$。

二、二次根式的运算:1. 加减运算:两个二次根式可以进行加减运算,只要它们的被开方数相同即可。

即 $\sqrt{a} \pm \sqrt{b}=\sqrt{a \pm b}$。

2. 乘法运算:两个二次根式相乘,可以将它们的被开方数相乘并开方。

即 $\sqrt{a} \cdot \sqrt{b}=\sqrt{ab}$。

3. 除法运算:两个二次根式相除,可以将它们的被开方数相除并开方。

即 $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$。

4. 有理化分母:当二次根式的分母不含二次根式时,可以通过有理化分母的方法将其转化为含有二次根式的形式。

有理化分母的基本方法是将分母有理化,即乘以一个适当的形式为 $\sqrt{x}$ 的分子与分母相等的有理数,从而使得分母成为没有二次根式的有理数。

三、二次根式的化简:1.合并同类项:当二次根式相加或相减时,可以合并同类项,即将其中具有相同被开方数的二次根式相加或相减,并保持其他二次根式不变。

2.分解因式:当一个二次根式的被开方数可以分解成互质因子的乘积时,可以利用分解因式的方法进行化简。

3.化简根式:当二次根式的被开方数可以开方时,可以进行化简,即将其转化为整数、分数或者更简单的二次根式的形式。

二次根式知识点归纳及题型总结

二次根式知识点归纳及题型总结

二次根式知识点及题型归纳1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.4. 二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。

2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。

②两项二次根式:利用平方差公式来确定。

如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。

3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。

(完整版)二次根式知识点归纳及题型总结精华版

(完整版)二次根式知识点归纳及题型总结精华版

二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.;2.;3.;4.积的算术平方根的性质:;5. 商的算术平方根的性质:.6.假设,那么.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混杂运算(1) 明确运算的序次,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2) 整式、分式中的运算律、运算法那么及乘法公式在二次根式的混杂运算中也同样适用.一. 利用二次根式的双重非负性来解题〔a0 〔a≥0〕,即一个非负数的算术平方根是一个非负数。

〕1.〕。

A、3;B、x ;C、x21;D、x1以下各式中必然是二次根式的是〔2.等式(x 1)2=1- x 成立的条件是 _____________ .3.当 x____________ 时,二次根式2x 3 有意义.4.x 取何值时,以下各式在实数范围内有意义。

〔 1〕〔 2〕1〔3〕5x 2 x1x4〔 4〕假设x( x1)x x1,那么 x 的取值范围是〔 5〕假设x3x3,那么 x 的取值范围是。

x1x16.假设3m 1 有意义,那么m能取的最小整数值是;假设 20m 是一个正整数,那么正整数m的最小值是________.7.当 x 为何整数时,10x11有最小整数值,这个最小整数值为。

8. 假设2004 a a2005a ,那么a2004 2=_____________;假设y x33x 4 ,那么x y9.设 m、n 满足n m299m22mn =。

m 3,那么10. 假设三角形的三边a、 b、 c 满足a24a 4 b 3 =0,那么第三边c的取值范围是11. 假设|4x8 |x y m0 ,且 y 0 时,那么〔〕 A 、0m1 B 、m2C、m 2 D、 m 2利用二次根式的性质2a(a b)(即一个数的平方的算术平方根等于这个数的绝对值)来解题二. a =|a|=0(a0)a(a0)1.x33x2=-x x 3 ,那么〔〕 A.x≤0 B. x≤- 3C. x≥- 3 D.- 3≤x≤ 02.. a<b,化简二次根式 a 3b 的正确结果是〔〕A.a ab B .a ab C. a ab D .a ab3.假设化简 | 1-x |-28x16 的结果为2x-5 那么〔〕 A 、 x 为任意实数B、1≤ x≤ 4C、 x≥1 D 、x≤ 4 x4. a, b, c 为三角形的三边,那么(a b c)2(b c a) 2(b c a) 2=5.当 -3<x<5 时,化简26921025 =。

专题03二次根式的运算(知识点总结+例题讲解)-2021届中考数学一轮复习

专题03二次根式的运算(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学 专题03 二次根式的运算(知识点总结+例题讲解)一、数的乘方与开方:1.数的乘方:(1)负数的奇次幂是负数,负数的偶次幂是正数;(2)正数的任何次幂都是正数;(3)0的任何正整数次幂都是0;2.数的开方:(1)平方根:如果一个数x 的平方等于a ,那么这个数就叫做a 的平方根(或二次方根); 即:若x 2=a ,则x 叫做a 的平方根;①正数有两个平方根(互为相反数);②负数没有平方根;③0的平方根是0;(2)算术平方根:正数的正的平方根叫做算术平方根;记作“a ”。

(3)若a b =3,则b 叫做a 的立方根;①一个正数有一个正的立方根;②一个负数有一个负的立方根;③0的立方根是0;【例题1】(2020•青海)(-3+8)的相反数是 ;的平方根是 .【答案】-5;±2【解析】解:-3+8=5,5的相反数是-54,4的平方根是±2.【变式练习1】4的算术平方根是 ,9的平方根是 , -27的立方根是 。

【答案】2;±3,﹣3【解析】解:4的算术平方根是2,9的平方根是±3,﹣27的立方根是﹣3.【例题2】(2020•黄冈)计算38-= 。

【答案】-2 【解析】解:38-=-2.【变式练习2】若a=,则a 的值为( )A. 1B. 0C. 0或1D. 0或1或–1【答案】C=,∴a 为0或1;故选C 。

二、二次根式:1.二次根式的定义:形如a (a ≥0)的式子,叫做二次根式;(或是说,表示非负数的算术平方根的式子,叫做二次根式)2.二次根式有意义的条件:被开方数≥0;(被开方数大于或等于 0 )3.二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)⎪⎩⎪⎨⎧<-=>==),(),(),(00002a a a a a a a (4)非负数的积的算术平方根等于积中各因式的算术平方根的积; 即:b a ab •=(a ≥0,b ≥0);反之:ab b a =⨯;(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根;即:b a b a =(a ≥0,b>0);反之:b a ba =;【例题3】(2020•广东)x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠-2【答案】B∴2x-4≥0,解得:x ≥2,∴x 的取值范围是:x ≥2;故选:B 。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是:a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A . 该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简.(3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A BA ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a∵1-a ≥0,()22-b ≥0∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________. 分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法:解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0∴()23-x ≥m -9∵()23-x ≥0∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0解之得:m ≥9.例 5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a∵6-a ≥0,8-b ≥0,()210-c ≥0∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+ ∴△ABC 为直角三角形.习题 6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】 (A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________.习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=;(2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算.例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-; (3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3 ∴()()22125x x x -+-++图(1)23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a ∴()()222b a c c a a --++-ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】 (A )()332= (B )()332-=-(C )333= (D )()332-=-习题16. 下列各式成立的是 【 】图(2)(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________.习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b a a b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________. 习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为 【 】 (A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】 (A )a - (B )a - (C )a (D )a --分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 图(3)解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0); (4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则 【 】 (A )x ≥6 (B )0≤x ≤6 (C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥060x x解之得:x ≥6. 选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x解之得:x ≥1. 例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0). 习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫⎝⎛-=m ,则有 【 】 (A )65<<m (B )54<<m (C )45-<<-m (D )56-<<-m 习题26. 化简12的结果是_________. 四、二次根式的除法 一般地,有:baba =(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件; (2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b ); (4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变. 五、最简二次根式符合以下条件的二次根式为最简二次根式: (1)被开方数中不含有完全平方数或完全平方式; (2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化. 如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+- 注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ). 解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯=(2)原式228324182712===⨯=.习题27. 下列计算正确的是 【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x yx +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【】 (A )32(B )3 (C )9 (D )12例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+; (2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-= 习题37. 化简:891231121++++++ .七、同类二次根式 如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=.注意:不是同类二次根式不能合并.例25. 计算:1832225-+.解:原式232425-+=2272225=+=例26. 计算:(1)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223;(2)()()()23225775-++-.解:(1)原式223223⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=36199243=-=(2)原式364875+-+-=649-=.。

二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。

【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

二次根式的知识点汇总

二次根式的知识点汇总二次根式是指含有平方根(开方)的代数式。

学习和掌握二次根式的知识点,对于进一步理解和应用高等数学和物理学等学科内容至关重要。

以下是二次根式的知识点汇总:一、基本概念与性质:1.平方根与二次根式的概念:平方根的定义及其在代数中的性质,二次根式的定义与示例。

2.约分与化简:二次根式的约分、化简及约分规则。

3. 同类二次根式的合并与分解:同类二次根式的合并与分解法则,如$\sqrt{a} \pm \sqrt{b} = \sqrt{(\pm \sqrt{a})^2 + (\pm\sqrt{b})^2}$。

二、四则运算:1. 加减法:同类二次根式的加减法规则,如$\sqrt{a} \pm \sqrt{b} = \sqrt{(\pm \sqrt{a})^2 + (\pm \sqrt{b})^2}$。

2. 乘法:二次根式的乘法规则,如$(a+b)(c+d)=ac+ad+bc+bd$。

3. 除法:二次根式的除法规则,如$\frac{a+b}{c+d}=\frac{(a+b)(c-d)}{(c+d)(c-d)}$。

4.有理化方法:如分子、分母都有二次根式时的有理化方法,分别是乘以共轭式和有理化因式。

三、二次根式的化简与证明:1.合并同类项:在二次根式的化简中,将同类项合并为一个二次根式。

2.分解因式:在二次根式的化简中,将二次根式分解为若干个二次根式相乘的形式。

3.公因式提取:在二次根式的化简中,提取公因式使其化简为整数或其他形式。

四、二次根式的应用:1.代数方程的解:使用二次根式求解一元二次方程。

2.几何意义:二次根式在几何中的应用,例如计算三角形的边长、面积等。

3.物理问题:通过建立代数模型和运用二次根式,解决物理问题,如自由落体、速度、力等。

五、常见的二次根式:1. $\sqrt{a^2}=,a,$,其中$a$表示任意实数。

2. $\sqrt{a}\sqrt{b}=\sqrt{ab}$,其中$a$和$b$分别表示任意非负实数。

二次根式知识点

二次根式知识点1. 二次根式的定义二次根式指的是形如√a的数,其中a为非负实数。

a被称为被开方数,√a被称为二次根式,也可以叫做平方根。

2. 二次根式的基本性质① 非负性:二次根式必须为非负实数。

② 同根式的加减法:同一指数的二次根式可以进行加减法运算,结果等于指数不变时各自运算后相加减。

③ 同根式的乘法:同一指数的二次根式可以进行乘法运算,结果等于指数不变时各自运算后相乘。

④ 同底数的指数运算:同一被开方数的不同指数的二次根式,可以进行指数运算,结果等于底数相同时指数相加或相减后的二次根式。

⑤ 合并同类项:不同被开方数的二次根式不能进行加减运算,必须化为同一被开方数才能进行操作。

3. 二次根式的化简① 化简含有平方数的二次根式例如:√36 = √(6²)= 6② 化简含有分数的二次根式例如:√(1/4)= 1/√4= 1/2③ 化简含有根号的二次根式例如:√(128)= √(2*64)= 8√2④ 去除被开方数中的平方因子例如:√(80)= √(16*5)= 4√54. 二次根式的应用由于二次根式代表着平方根,所以在一些实际问题中,经常出现二次根式的应用。

例1:计算正方形对角线的长度设正方形边长为a,则对角线长度d = √(a²+a²)=a√2例2:炮弹落地问题假设炮弹以初速度v以角度α斜抛,落地时的水平距离为x,求炮弹所需的最小速度v。

根据物理学上的知识,可以得到:x = v²sin2α/g其中g为重力加速度,有g = 9.8m/s²,化简可得:v = √(gx/ sin2α)在实际问题中,二次根式的应用还有很多,比如在建筑设计中计算楼梯踏步和踏板的长度,计算圆周率的近似值等等。

5. 二次根式的拓展除了√a这种形式的二次根式外,还可以拓展为含有多个根号的形式。

例如:√(a±√b)化简时,可以拆分成两个二次根式相加或相减的形式:当加号为正号时,可拆分为:√(a+√b)+√(a-√b)当减号为负号时,可拆分为:√(a-√b)-√(a+√b)在拓展的形式中,二次根式的化简变得更为复杂,需要运用其他方法进行化简。

二次根式知识点总结

知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【例2】假设式子13x -有意义,那么x 的取值X 围是. 举一反三:1、使代数式221x x-+-有意义的x 的取值X 围是2、如果代数式mnm 1+-有意义,那么,直角坐标系中点P 〔m ,n 〕的位置在〔 〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限【例3】假设y=5-x +x -5+2009,那么x+y=解题思路:式a a ≥0〕,50,50x x -≥⎧⎨-≥⎩5x =,y=2009,那么x+y=2014 举一反三: 111x x --2()x y =+,那么x -y 的值为〔 〕A .-1B .1C .2D .33、当a 211a +取值最小,并求出这个最小值。

a 5b 是512a b ++的值。

假设17的整数局部为x ,小数局部为y ,求yx 12+的值.知识点二:二次根式的性质【知识要点】1. 非负性:是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到.2. ()()a a a 20=≥. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:3.a a a a a a 200==≥-<⎧⎨⎩||()() 注意:〔1〕字母不一定是正数.〔2〕能开得尽方的因式移到根号外时,必须用它的算术平方根代替.〔3〕可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a a a 20=≥的区别与联系〔1〕a 2表示求一个数的平方的算术根,a 的X 围是一切实数. 〔2〕()a 2表示一个数的算术平方根的平方,a 的X 围是非负数.〔3〕a 2和()a 2的运算结果都是非负的.【典型例题】【例4】假设()2240a c --=,那么=+-c b a .举一反三:1、直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,那么第三边长为______.2、假设1a b -+互为相反数,那么()2005_____________a b -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《实数和二次根式》知识点
1.平方根:普通地,如果一种数x平方等于a,那么这个数x就叫做a平
2=,则x叫做a平方根。

方根,也就是若x a
2.开平方:求一种数平方根运算叫做开平方。

开平方与平方互为逆运算。

3.平方根性质:正数有两个平方根,它们互为相反数;零平方根是零;负数没有平方根。

4.平方根表达:当a≥0时,a平方根记为±a。

5.算术平方根:正数a正平方根,叫做a算术平方根,零算术平方根是零。

注:(1)非负数才有算术平方根
(2)非负数算术平方根仍为非负数
6.算术平方根表达:当a≥0时,a算术平方根记作a
7.立方根:
(1)定义:普通地,如果一种数x立方等于a,那么这个数x就叫a立3=,则x叫做a立方根。

方根,也就是若x a
3
(2)立方根表达:a
(3)开立方:求一种数立方根运算叫做开立方。

开立方和立方互为逆运算,开立方成果是立方根。

(4)性质:一种正数有一种正立方根;0立方根是0;一种负数有一种负立方根。

8.平方根和立方根区别
(1)被开方数取值范畴不同
(2)正数平方根有两个,而它立方根只有一种,负数没有平方根,而它有一种立方根。

9.实数:有理数和无理数统称为实数。

实数与数轴上点一一相应。

分类:
实数有理数正有理数负有理数有限小数或无限循环小数无理数正无理数负无理数无限不循环小数0⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪⎧⎨⎩⎫⎬⎭⎧⎨⎪⎪⎪⎩⎪⎪⎪
10.实数相反数、绝对值、倒数、比较大小、运算律和运算法则应用类似于有理数中。

11.二次根式:普通地,式子a a ()≥0叫做二次根式。

注:(1
)具有二次根号“”
(2)被开方数a 是代数式且a 必要是非负数
(3)二次根式a a ()≥0是a 算术平方根,因而a a ≥≥00()
12.二次根式基本性质:
()()a a a 20=≥ 非负数a 可以写成一种数平方形式
a a a =≥()()20 13.二次根式性质:
a a a a a a 2
00==≥-<⎧⎨⎩||()()
注:(1)在应用性质时,注意规范书写格式,绝对值这一步要写,然后再依照绝对值符号内式子进行进一步化简。

(2)在应用性质时,若给出条件,则在给出条件下进行化简,若未给出条件,则需分类讨论。

14.注意a 2与()a 2区别与联系
(1)平方符号位置不同
(2)意义不同:()a 2表达a 算术平方根平方;a 2表达a 平方算术平
方根
(3)取值范畴不同:在()a 2中a ≥0,在a 2中,a 是全体实数
(4)运算成果不同:()()a a a 20=≥,a a 2=||
(5)a 2与()a 2都是非负数,当a ≥0时,a a 22=()
15.积算术平方根:ab a b =⋅(a b ≥≥00,) 商算术平方根:a b a b =(a b ≥>00,)
16.二次根式乘法:a b ab ⋅=(a b ≥≥00,) 二次根式除法:a b a b =(a b ≥>00,) 分母有理化:a b
a b b ab b =⋅=()2(a b ≥>00,) 17.最简二次根式:如果一种二次根式满足下列两个条件:
(1)被开方数不具有能开得尽方因数或因式
(2)被开方数因数是整数,字母因式是整式
咱们把这个二次根式叫最简二次根式。

注:普通地,二次根式运算成果应化为最简二次根式。

18.同类二次根式:普通地,几种二次根式分别化为最简二次根式后来,如果被开方数相似,就把这几种二次根式叫同类二次根式。

19.进行二次根式加减法普通环节:
(1)将每个二次根式化为最简二次根式
(2)找出其中同类二次根式
(3)合并同类二次根式
合并同类二次根式:与合并同类项类似
20.代入求值
(1)先化简二次根式,再代入求值
(2)注意“整体代换”思想
21.二次根式混合运算:明确二次根式运算顺序,与实数运算顺序同样,先乘方开方再乘除,最后算加减,有括号先算括号里,实数中运算律、运算法则及所有公式在二次根式中依然合用。

《春雨色彩》说课稿
一、教材内容分析:
春天里万物复苏,百花争艳、绿草如荫、一派迷人景色。

《春雨色彩》意境优美,散文诗中绵绵春雨,屋檐下叽叽喳喳小鸟,万紫千红大地,给人以美陶冶和享有,与此同步启发幼儿通过简洁优美语言以及相应情景对话练习感受春天勃勃生机。

激发幼儿热爱大自然情感,启发幼儿观测、发现自然界变化,感知春意韵,并尝试运用各种办法把春雨色彩体现出来,以此来表达自己情感
体验。

二、幼儿状况分析:
中班下学期幼儿探究、分析、观测能力有了一定发展,并且孩子们布满了好奇心和强烈探究欲,能积极地去探究周边和环境变化,并且能依照变化运用自己表达方式将感知到变化加以体现。

同步这个时期幼儿语言表达能力及审美能力有一定发展,孩子们在平时活动中也积累了许多关于绘画方面经验在活动展示出来。

三、活动目的:
教诲活动目的是教诲活动起点和归宿,对教诲活动起着主导作用,我依照中班幼儿实际状况制定了一下活动目的:
1、情感态度目的:引导幼儿感受散文诗意境美。

2、能力目的:发展幼儿审美能力和想象力。

3、认知目的:协助幼儿在理解散文基本上感受春天生机,懂得春雨对万物生长作用。

四、活动重点和难点:
重点是:引导幼儿份角色朗读小动物对话,感受散文诗优美,进而丰富词汇、发展幼儿观测能力、思维和语言表达能力。

难点是:学习词语“淋、滴、洒、落”、学习春雨对话、诗句“亲爱小鸟们,你们说得都对,但都没说全面,我自身是无色,但我能给春天大地带来万紫千红”。

五、活动准备:
1、经验准备:课前学会朗读诗《春天》,并组织幼儿春游,依照天气状况实地观测春雨,让幼儿感受理解春天关于知识经验。

2、物质准备:小动物头饰、教学课件、幼儿绘画用纸笔
六、教法:陶行知先生曾经说:“解放小朋友双手,让她们去做去干”因此在本次活动中,我力求对幼儿充分放手,对大限度激发幼儿学习兴趣,让她们自己去探究、去发现、去感受,我重要采用了如下教学法:
1、谈话法:在活动得导入环节我运用与幼儿进行关于春天主题谈话,协助幼儿积累整顿自己积累关于春天知识经验。

2、演示法:在活动中我通过多媒体课件向幼儿展示春天勃勃生机,《春雨色彩》散文诗情景,也是通过课件中轻柔配乐诗朗读体现出来。

当代教学辅助手段运用进一步强化了她作用,使幼儿对春天、春雨更加理解和熟悉。

3、情景演示法:将幼儿置身于《春雨色彩》散文情景中,通过角色表演,强化幼儿对春雨色彩感受。

此外我还适时采用了交流讨论法、勉励法、审美熏陶法和动静交替法加以整合,使幼儿从多方面获得摸索过程愉悦。

七、学法:
1、各种感官参加法:《新纲要》中明确指出:幼儿能用各种感官动手动脑、探究问题,用恰当方式表达交流摸索过程和成果,本次活动中,幼儿通过观测发现自然界变化,感知春天意韵,并尝试引导幼儿运用各种办法把春雨色
彩体现出来,以此来表达自己情感体验。

2、体验法:心理学指出:凡是人们积极参加体验过活动,人记忆效果就会明显提高。

在活动中,让幼儿自己进行角色表演,说出小动物们之间对话,一定会留下深刻印象,同伴之间合伙表演高兴,也将成为她们永远回忆。

八、教学过程
活动流程我采用环环相扣来组织活动程序,活动流程为激发兴趣谈春天-----看春雨-------欣赏散文诗------情景表演-------经验总结-------审美延(绘画形式)
1、激发兴趣谈春天
“兴趣是最佳教师”。

活动开始我运用谈话形式引导幼儿将自己已关于于春天经验进行整顿,激发幼儿活动兴趣。

2、看春雨
观看课件《春雨色彩》前半某些,到春雨姐姐欢迎最热烈教师说:一天,一群小鸟在屋檐下躲雨,她们在争论一种有趣话题,你们懂得她们在争论什么问题吗?(幼儿回答)对她们在争论:春雨究竟是什么颜色?
这样设计自然合理,进而引出散文诗《春雨色彩》
3、欣赏散文诗
(1)完整欣赏后请幼儿把不懂得地方提出来,由幼儿提出来,教师引导讨论,协助幼儿理解散文诗内容。

(2)寻找句子、加深印象
给幼儿提出规定,请幼儿找一找诗里描写春雨下到草地上、柳树上、桃树上、杏树上、有菜地里、蒲公英上各用那些词语,通过找,让幼儿学会“淋、滴、洒、落”并学会用小动物话来朗读、来回答,增进幼儿积极思维,锻炼幼儿口语表达能力,强调了重点,理解了难点。

4、情景表演:分角色进行朗读表演。

5、经验总结:
将本家活动内容前半某些进行总结,给幼儿一种春天完整印象。

6、扩展延伸、升华主题
引导幼儿运用手工工具,用绘画方式将幼儿感受到《春雨色彩》散文诗意境描绘出来,巩固和加深幼儿对春天及春雨任认知。

相关文档
最新文档