九年级数学周测试卷(圆)

合集下载

九年级数学下册 圆 单元测试试卷

九年级数学下册 圆 单元测试试卷

九年级数学下册 圆 单元测试试卷班级: 姓名: 考号: 得分:一、精心选一选(9*3=27)1. 已知圆的半径为cm 5.6,圆心到直线l 的距离为cm 5.4,那么这条直线和这个圆的公共点的个数是( ) A .0B.1C.2D.不能确定2.如图,ABC △内接于圆O ,50A =∠,60ABC =∠,BD 是圆O 的直径, BD 交AC 于点E ,连结DC ,则AEB ∠等于( ) A.70B.110C.90D.120CAOO BAP3. 如图:⊙O 中弧AB 的度数为60°,AC 是⊙O 的直径,那么∠BOC 等于( )A 、150°B 、130°C 、120°D 、60°4.如图所示,BC 是⊙O 的直径,P 是CB 延长线上的一点,PA 切⊙O 于点A ,若PA= 3 ,PB=1,则∠APC 为 ( )A 、 15°B 、 30°C 、 45°D 、 60°5.一条弦分圆为1∶5两部分,则这条弦所对的圆周角的度数为 ( ) A 、300B 、1500C 、300或1500D 、不能确定 6、点P 到△ABC 各边的距离相等,则点P 是△ABC 的( ) (A )内心 (B )外心 (C )中心 (D )垂心7.如图,AB 是⊙O 的弦,AB=12 , ⊙O 的半径为10 ,点P 是弦AB 上 任意一点,则OP 的长度不可能是( ) A .9 B.8.5 C. 7 D. 10 8. 下列说法正确的是( )A .长度相等的弧是等弧。

B ·圆周角的度数一定等于圆心角度数的一半。

C ·面积相等的圆是等圆。

D ·劣弧一定比优弧短。

OABPOBAP F DGOCB E A 9. 如图,⊙O 的半径为2,点A 的坐标为(2,32),直线AB 为⊙O 的切线,B 为切点.则B 点的坐标为 ( ) A .⎪⎪⎭⎫⎝⎛-5823, B .()13,-C .⎪⎭⎫⎝⎛-5954,D .()31,-二、细心填一填(10×3=30)10、⊙O 的直径为12,P 为一个点,当PO ﹦ 时,点P 在圆上;当PO 时,点P 在圆内;当P >6时,点P 必在 。

贵阳市十九中九年级数学上册第四单元《圆》测试(有答案解析)

贵阳市十九中九年级数学上册第四单元《圆》测试(有答案解析)

一、选择题1.下列说法正确的是( )A .圆是轴对称图形,任何一条直径都是圆的对称轴B .平分弦的直径垂直于弦C .长度相等的弧是等弧D .在同圆或等圆中,相等的圆心角所对的弦相等2.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切B .在圆外C .在圆上D .在圆内 3.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43 C .25或45 D .23或43 4.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70° 5.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .6.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .47.如图,A 、B 、C 三点在O 上,D 是CB 延长线上的一点,40ABD ∠=︒,那么AOC ∠的度数为( ).A .80°B .70°C .50°D .40°8.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (7,0),直线y=kx-1恰好平分⊙P 的面积,那么k 的值是( )A .12B .45C .1D .439.如图,△ABC 内接于☉O ,若☉O 的半径为6,∠A=60°,则BC 的长为( )A .2πB .4πC .6πD .8π10.在△ABC 中,∠ACB 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示.若AB=4,AC=2,图中两个新月形面积分别为S 1,S 2,两个弓形面积分别为S 3,S 4,S 1-S 2=14π,则S 3-S 4的值是( )A .294πB .234πC .114πD .54π 11.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3n cmD .4cm 12.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.如图,在扇形AOB 中,90AOB ∠=︒正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,阴影部分的面积为_______.14.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =________°.15.如图,点C ,D 是半圈O 的三等分点,直径3AB =AC 交半径OD 于E ,则阴影部分的面积是_______.16.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,58AOB ∠=,B 是弧AC 的中点,则BDC ∠的度数为___________.17.如图,正五边形ABCDE 内接于⊙O ,点F 在DE 上,则∠CFD =_____度.18.如图,AB 是O 的直径,CD 是O 的弦,AB 、CD 的延长线交于点E ,已知2AB DE =,若COD ∆为直角三角形,则E ∠的度数为______︒.19.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;20.如图,MN 是O 的直径,2MN =,点A 在O 上,30AMN ∠=︒,B 为弧AN的中点,点P 是直径MN 上的一个动点,则PA PB +的最小值为_______.三、解答题21.如图,四边形ABCD 内接于⊙O ,AC 是⊙O 的直径,E 是AB 上一点,30AEO DAC ∠=∠=︒,连接BD .(1)求证:OAE CDB △≌△;(2)连接DE ,若DE AB ⊥,2OA =,求BC 的长.22.如图,已知AB 是O 的一条弦,DE 是O 的直径且DE AB ⊥于点C . (1)若3,5OC OA ==,求AB 的长;(2)求证:EAO BAD ∠=∠.23.在O 中,弦CD 与直径AB 相交于点,62P ABC ∠=︒.(1)如图1,若100APC ∠=︒,求BAD ∠和CDB ∠的大小;(2)如图2,若CD AB ⊥,过点D 作O 的切线,与AB 的延长线相交于点E ,求E∠的大小.24.如图,在平面直角坐标系中,点A 的坐标是()10,0,点B 的坐标是()8,0,点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.(1)求CD 的长;(2)求直线BC 的解析式.25.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点.求证:AP=BP .26.如图,BC 是圆O 的直径,AD 垂直BC 于D ,弧AB=弧AF ,BF 与AD 交于E ,求证:=(1)AE BEBC=,求AD的长.(2)若A,F把半圆三等分,12【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据对称轴的定义对A进行判断;根据垂径定理的推论对B进行判断;根据等弧定义对C 进行判断;根据圆心角定理对D进行判断.【详解】解:A、圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以A选项错误;B、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C、长度相等的弧不一定能重合,所以不一定是等弧,所以C选项错误;D、在同圆或等圆中,相等的圆心角所对的弦相等,所以D选项正确.故选:D.【点睛】本题考查了圆的有关性质,掌握相关定理是解题关键.2.C解析:C【分析】设点(-3,4)为点P,原点为点O,先计算出OP的长,然后根据点与圆的位置关系的判定方法求解.【详解】解:∵设点(-3,4)为点P,原点为点O,∴OP22+5,34而⊙P的半径为5,∴OP等于圆的半径,∴点O在⊙P上.故选:C.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3.C解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =,∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM +=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.4.C解析:C【分析】连接BC ,求出∠B =65°,根据翻折的性质,得到∠ADC+∠B =180°,进而得到∠BDC=∠B =65°.解:连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°,根据翻折的性质,AC所对的圆周角为∠B,ABC所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∴∠BDC=∠B=65°,故选:C.【点睛】本题考查了圆周角定理及其推论,根据题意添加适当辅助线是解题关键.5.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.6.A解析:A【分析】如图,连接OD,设半径为r,则OM=6-r;再由垂径定理求出MD的长,然后根据勾股定理解答即可.【详解】解:如图,连接OD ,设半径为r ,则OM=6-r∵EM CD ⊥∴MD=12CD=2 在Rt △MOD 中,OD=r ,OM=6-r ,MD=2 ∴222OM MD OD +=,即()22262r r -+=,解得r=103. 故答案为A .【点睛】本题考查了圆的垂径定理和勾股定理,根据垂径定理求得MD 的长是解答本题的关键. 7.A解析:A【分析】作弧ABC 所对的圆周角∠AEC ,如图,先利用邻补角计算出∠ABC=140°,再利用圆内接四边形的性质计算出∠E=40°,然后根据圆周角定理得到∠AOC 的度数.【详解】解:作弧ABC 所对的圆周角∠AEC ,∵∠ABD=40°,∴∠ABC=180°-40°=140°,∵∠AEC+∠ABC=180°,∴∠E=40°,∴∠AOC=2∠AEC=2×40°=80°.故选:A .【点睛】本题考查了圆内接四边形对角互补,以及圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.C解析:C【分析】连接PC,PA,过点P作PD⊥AB于点D,根据切线的性质可知PC⊥y轴,故可得出四边形PDOC是矩形,所以PD=OC=3,再求出AB的长,由垂径定理可得出AD的长,故可得出OD 的长,进而得出P点坐标,再把P点坐标代入直线y=kx-1即可得出结论.【详解】解:连接PC,PA,过点P作PD⊥AB于点D,∵⊙P与y轴相切于点C(0,3),∴PC⊥y轴,∴四边形PDOC是矩形,∴PD=OC=3,∵A(1,0),B(7,0),∴AB=7-1=6,∴AD=12AB=12×6=3,∴OD=AD+OA=3+1=4,∴P(4,3),∵直线y=kx-1恰好平分⊙P的面积,∴3=4k-1,解得k=1.故选:C.【点睛】本题考查的是圆的综合题,根据题意作出辅助线,构造出直角三角形求出P点坐标即可得出结论.9.B解析:B【分析】连接OB,OC,根据圆周角定理求出∠BOC度数,再由弧长公式即可得出结论.【详解】解:连接OB,OC,∵∠A=60°,∴∠BOC=2∠A=120°,∴BC =208161π⨯=4π. 故选:B .【点睛】 本题考查了三角形的外接圆与外心,根据题意作出辅助线,利用圆周角定理及弧长公式求解是解题的关键.10.D解析:D【分析】根据AB 和AC 的长和圆的面积公式可求得S 1+S 3,S 2+S 4的值,然后再两值相减即可得出结论.【详解】解:∵AB=4,AC=2,∴S 1+S 3=2π,S 2+S 4=2π, ∴(S 1+S 3)﹣(S 2+S 4)=(S 1﹣S 2)+(S 3﹣S 4)=32π ∵S 1-S 2=14π, ∴S 3-S 4= 32π﹣14π= 54π, 故选:D .【点睛】 本题考查了圆的面积,正确表示出S 1+S 3,S 2+S 4的值是解答的关键.11.A解析:A【分析】圆锥的底面周长等于侧面展开图的扇形弧长,因而要先求扇形的弧长,根据扇形的面积公式2360n R S π=,可以求出扇形的半径,就可以求出弧长. 【详解】解:根据扇形的面积公式2360n R S π=得到:2904360R ππ=; ∴R=4,则弧长9042180cm ππ⋅==, 设圆锥的底面半径为r ,则2π=2πr ;∴r=1cm .故选:A .【点睛】 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.12.D解析:D【分析】设展开后的圆半径为r ,根据圆锥性质可知底面周长就等于展开后扇形的弧长,然后算出展开后扇形的半径,进而计算出扇形的面积.【详解】解:设展开后的扇形半径为r ,由题可得:4π=2r π解得r =8∴S 扇形=14π×82 =16π故选:D【点睛】此题主要考查了圆锥的计算,正确理解圆锥侧面展开图与各部分对应情况是解题关键. 二、填空题13.π﹣2【分析】连结OC 根据勾股定理可求OC 的长根据题意可得出阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积依此列式计算即可求解【详解】解:连接OC ∵在扇形AOB 中∠AOB =90°正方形CDEF解析:π﹣2【分析】连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积,依此列式计算即可求解.【详解】解:连接OC ,∵在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是弧AB 的中点,∴∠COD =45°,∴OC =2CD =22,∴阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积=245(22)π⨯⨯﹣12×22 =π﹣2.故答案为:π﹣2..【点睛】本题考查了扇形面积的计算以及正方形的性质,解题的关键是得到扇形半径的长度. 14.125【分析】根据三角形内角和性质结合题意可计算得的值;根据内切圆的性质分析可计算得的值从而完成求解【详解】∵∠A =70°∴∵⊙O 是△ABC 的内切圆∴∴∴故答案为:125【点睛】本题考查了三角形内角解析:125【分析】根据三角形内角和性质,结合题意,可计算得ABC ACB ∠+∠的值;根据内切圆的性质分析,可计算得OBC OCB ∠+∠的值,从而完成求解. 【详解】∵∠A =70°∴180110ABC ACB A ∠+∠=-∠=∵⊙O 是△ABC 的内切圆∴12OBC ABC ∠=∠,12OCB ACB ∠=∠ ∴11111055222OBC OCB ABC ACB ∠+∠=∠+∠=⨯= ∴180********BOC OBC OCB ∠=-∠-∠=-=故答案为:125.【点睛】本题考查了三角形内角和、三角形内切圆的知识;解题的关键是熟练掌握三角形内角和、三角形内切圆的性质,从而完成求解.15.【分析】连接OC 由点CD 是半圆O 的三等分点得到根据垂径定理得到OD ⊥AC ∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC ∵点CD 是半圆O 的三等分点∴∴OD 解析:332π-【分析】连接OC ,由点C ,D 是半圆O 的三等分点,得到AD CD CB ==,根据垂径定理得到OD ⊥AC ,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC ,∵点C ,D 是半圆O 的三等分点, ∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°, ∵3AB =∴3∴3CE=3,∴S 阴影=S 扇形COD -S △OCE 260(23)1333322ππ⋅⋅-⨯=-. 故答案为:3322π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 16.29°【分析】先由是弧的中点可得再根据圆周角定理可得结果【详解】解:连接OC ∵是弧的中点∴∴∠BOC=∠AOB=58°∴∠BDC==29°故答案为29°【点睛】本题考查了圆周角定理掌握圆周角定理是解解析:29°【分析】先由B 是弧AC 的中点,可得AB BC = ,再根据圆周角定理可得结果.【详解】解:连接OC ,∵B是弧AC的中点,∴AB BC=.∴∠BOC=∠AOB=58°∴∠BDC=1582⨯︒=29°.故答案为29°.【点睛】本题考查了圆周角定理,掌握圆周角定理是解题的关键.17.36【分析】连接OCOD求出∠COD的度数再根据圆周角定理即可解决问题【详解】如图连接OCOD∵五边形ABCDE是正五边形∴∠COD==72°∴∠CFD=∠COD=36°故答案为:36【点睛】本题考解析:36.【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题.【详解】如图,连接OC,OD.∵五边形ABCDE是正五边形,∴∠COD=3605︒=72°,∴∠CFD=12∠COD=36°,故答案为:36.【点睛】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识.18.【分析】由于AB是⊙O的直径则AB=2DO而AB=2DE可得DO=DE根据等腰三角形的性质得到∠DOE=∠E又由于△COD为直角三角形而OC=OD所以△COD为等腰直角三角形于是可得∠CDO=45°解析:22.5︒【分析】由于AB是⊙O的直径,则AB=2DO,而AB=2DE,可得DO=DE,根据等腰三角形的性质得到∠DOE=∠E,又由于△COD为直角三角形,而OC=OD,所以△COD为等腰直角三角形,于是可得∠CDO=45°,利用三角形外角性质有∠CDO=∠DOE+∠E,则∠E=1 2∠CDO=22.5°.【详解】解:∵AB是⊙O的直径,∵AB=2DO,而AB=2DE,∴DO=DE,∴∠DOE=∠E,∵△COD为直角三角形,而OC=OD,∴△COD为等腰直角三角形,∴∠CDO=45°,∵∠CDO=∠DOE+∠E,∴∠E=12∠CDO=22.5°.故答案为:22.5°.【点睛】本题考查了圆的认识:圆上任意两点的连线段叫圆的弦;过圆心的弦叫圆的直径;直径的长等于半径的2倍.也考查了等腰直角三角形的判定与性质以及等腰三角形的性质.19.(2n﹣10)【分析】根据题意先求出点AB的坐标再利用勾股定理求出AA1AA2AA3……AAn的长可得到点A1A2A3……An的坐标找到规律即可解答【详解】解:当x=0时y=当y=0时x=﹣1∴A(解析:(2n﹣1,0)【分析】根据题意,先求出点A、B的坐标,再利用勾股定理求出AA1、AA2、AA3……AA n的长,可得到点A1、A2、A3……A n的坐标,找到规律即可解答.【详解】解:当x=0时,y=0时,x=﹣1,∴A(﹣1,0),B(0,∴AA12=,则点A1(1,0),B1(1,,∴AA2=AB14=,则点A2(3,0),B2(3,,∴AA3=AB28=,则点A3(7,0),B3(7,,……∴可以得到A n 的坐标为(2n ﹣1,0),故答案为:(2n ﹣1,0).【点睛】本题考查了一次函数图象上的点的坐标特征、图形的规律探究、圆的基本知识、勾股定理,解答的关键是利用勾股定理求得AA 1、AA 2、AA 3……AA n 的长,进而得到A 1、A 2、A 3……A n 的坐标的变化规律.20.【分析】作点A 的对称点根据中位线可知最小时P 正好在上在根据圆周角定理和等弧所对圆心角相等求得再利用勾股定理即可求解【详解】如图作点关于的垂线交圆与连接交于点连接则此时的值最小∵∴∵点是的中点∴∵关于 解析:2【分析】作点A 的对称点,根据中位线可知PA PA =' ,PA PB +最小时P 正好在A B '上,在根据圆周角定理和等弧所对圆心角相等求得90AOB ∠'=︒,再利用勾股定理即可求解.【详解】如图,作点A 关于MN 的垂线交圆与A ' ,连接A B ' 交MN 于点P ,连接AP OB OA OA '、、、 ,则此时AP BP + 的值最小A B =' ,∵30AMN ∠=︒,∴60AON ∠=︒,∵点B 是AN 的中点,∴30BON ∠=︒ ,∵A A '、 关于MN 对称,∴60AON AON ∠'=∠=︒,∴306090AOB ∠'=︒+︒=︒,又∵112122OA OB MN '===⨯=, 在RT A OB '△中 ∴221+1=2A B '=AP BP + 的值最小22.【点睛】本题主要考查了圆心角、弧、弦之间的关系、圆周角定理、垂直平分线定理、勾股定理等.在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.本题是与圆有关的将军饮马模型.三、解答题21.(1)见解析;(2)277. 【分析】(1)借助同圆中,同弧上的圆周角相等,利用AAS 证明全等;(2) 过O 作OH AB ⊥,利用三角形全等,勾股定理,建立一元二次方程求解即可.【详解】解:(1)证明:∵AC 是O 的直径, ∴90ADC ∠=︒.∵30CAD ∠=︒,∴2AC CD =.∵2AC OA =,∴OA CD =.∵BC BC =,CD CD =,∴EAO CDB ∠=∠,CAD CBD ∠=∠.∵AEO DAC ∠=∠,∴AEO CBD ∠=∠.∴OAE CDB △≌△;(2)解:连接DE ,过O 作OH AB ⊥于H ,∴AH HB =.∵AO OC =,∴2BC OH =.设OH x =,∵30OEA CAD ∠=∠=︒, ∴HE =.由(1)知OAE CDB △≌△,∴AE DB =.∵AD AD =,∴60ABD ACD ∠=∠=︒.∵DE AB ⊥,∴30BDE ∠=︒.∴2DB BE =,AE DB =.∴2AE BE =.设AH HB y ==,则AE y =+,BE y =-.∴()2y y =.∴y =.在Rt OAH 中,2OA =,AH =,OH x =,222OH AH OA +=,()2222x +=.解得1x =,2x =(舍去).∴7OH =.∴2BC OH ==. 【点睛】本题考查了圆周角的性质,垂径定理,勾股定理,方程思想,熟练运用圆周角定理,作辅助线,构造垂径定理是解题的关键.22.(1)8AB =;(2)见解析【分析】(1)由DE ⊥AB ,得∠OCA =90°,OC =3,OA =5,通过勾股定理即可求出AC ;由DE 是⊙O 的直径,所以DE 平分AB ,得到AB =2AC ,即可得到AB ;(2)由OA =OE ,得∠EAO =∠E ,而直径DE ⊥AB ,则AD BD =,所以∠E =∠BAD ,由此得到∠EAO =∠BAD .【详解】(1)∵DE ⊥AB∴∠OCA=90°,则OC 2+AC 2=OA 2又∵OC =3,OA =5,∴AC=4,∵DE 是⊙O 的直径,且DE ⊥AB ,∴AB =2AC=8(2)证明∵ EO=AO ,∴∠E=∠EAO又∵DE 是⊙O 的直径,且DE ⊥AB ,∴AD BD =,∴∠E=∠BAD∴∠EAO =∠BAD .【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了垂径定理以及勾股定理.23.(1)3828BAD CDB ∠=∠=,;(2)34E ∠=.【分析】(1)首先利用三角形外角的性质即可求出∠BAD 的度数,然后利用圆周角定理及其推论即可求出∠CDB 的度数;(2)首先根据直角三角形两锐角互余得出∠PCB 的度数,然后根据切线的性质及圆周角定理即可得出答案.【详解】(1)如图1,,APC ABC BCP ∠=∠+∠又100,62APC ABC ∠=︒∠=︒,38,BCD ∴∠=︒38,BAD BCD ∴∠=∠=︒ AB 是O 的直径,90,ADB ∴∠=︒62,ADC ABC ∠=∠=︒28CDB ∴∠=.(2)如图2,连接,OD AD ,则,A ADO ∠=∠,CD AB ⊥90,BPC APD ∴∠=∠=︒62,ABC ∠=︒28BCP DAP ∴∠=∠=.56,DOP ∴∠=︒34,ODP ∴∠=︒ DE 是O 的切线,90,ODE ∴∠=︒34E ODP ∴∠=∠=.【点睛】本题主要考查圆的综合问题,掌握切线的性质,圆周角定理及其推论是解题的关键. 24.(1)8CD =;(2)32477y x =-+ 【分析】(1)根据平行四边形的性质即可求得答案;(2)添加辅助线构造直角三角形,根据平行四边形的性质、垂径定理、勾股定理、线段的和差即可求得()1,3C,再根据待定系数法即可求得直线解析式.【详解】解:(1)∵点B 的坐标是()8,0∴8OB =∵四边形OCDB 是平行四边形∴8CD OB ==.(2)过点M 作MN CD ⊥,连接MC ,过点C 作CH OA ⊥,如图:∵MN CD ⊥,8CD = ∴142CN CD == ∵()10,0A∴10OA = ∴152OM OA == ∴在Rt CMN 中,223MN CM CN =-=∵四边形OCDB 是平行四边形∴//CD OB∵CH OA ⊥∴四边形CHMN 是平行四边形∴3CH MN ==,4HM CN ==∴1OH OM HM =-=∴()1,3C∴设直线BC 的解析式为:y kx b =+ ∴083k b k b =+⎧⎨=+⎩ ∴37247k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线BC 的解析式为:32477y x =-+. 【点睛】本题考查了平行四边形的性质和判定、垂径定理、勾股定理、线段的和差、待定系数法等,添加辅助线构造直角三角形是解决问题的关键.25.见解析【分析】根据切线的性质得出OP ⊥AB ,根据垂径定理得出即可.【详解】证明:如图,连接OP ,∵大圆的弦AB 是小圆的切线,点P 为切点,∴OP ⊥AB ,∵OP 过O ,∴AP=BP .【点睛】本题考查了切线的性质和垂径定理的应用,主要考查学生的推理能力,题目比较好,难度适中.26.(1)见解析;(2)33【分析】(1)连接AC ,则∠BAC=90°,进而证得∠C=∠BAE ,由弧AB=弧AF 证得∠C=∠ABF ,则∠ABE=∠BAE ,根据等腰三角形的等角对等边证得结论;(2)由A ,F 把半圆三等分可得∠ACB=30°,再由BC=12和直角三角形中30°角所对的直角边等于斜边的一半可得AB=6,由勾股定理求得AC=63=AC AD 的长.【详解】(1)证明:连AC ,如图,∵BC 为直径,则90BAC ∠=︒, 90C ABC ∴∠+∠=︒,又∵AD ⊥BC90BAE ABC ∴∠+∠=︒,C BAE ∴∠=∠,由弧AB=弧AF ,可得C ABF ∠=∠,ABE BAE ∴∠=∠,AE BE ∴=;(2)∵A ,F 把半圆三等分,30ACB ∴∠=︒,在直角三角形ABC 中,12BC =,则162AB BC ==,363AC AB = 在直角三角形ADC 中,1332AD AC == 所以33AD =.【点睛】本题考查了同弧或等弧所对的圆周角相等、直径所对的圆周角是直角、含30°角的直角三角形的性质,熟练掌握圆的基本知识和直角三角形中30°角所对的直角边等于斜边的一半是解答的关键.。

第27章 圆 数学华东师大版九年级下册单元评估测试卷(含答案)

第27章 圆 数学华东师大版九年级下册单元评估测试卷(含答案)

第27章 圆评估测试卷(满分:150分 时间:120分钟)一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.如图,若AB、CE是☉O的直径,∠COD=60°,且AD=BC,则与∠AOC相等的角有( )A.1个B.2个C.3个D.4个2.已知☉O的直径等于8,圆心O到点P的距离为5,则点P与☉O的位置关系是( )A.点P在☉O上B.点P在☉O外C.点P在☉O内D.无法确定3.(2024安徽中考)若扇形AOB的半径为6,∠AOB=120°,则AB的长为( )A.2πB.3πC.4πD.6π4.(2024云南中考)某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40 cm,底面的半径为30 cm,则该圆锥的侧面积为( )A.700π cm2B.900π cm2C.1 200π cm2D.1 600π cm25.如图,在☉O中,弦BC与半径OA相交于点D,连结AB、OC.若∠A=60°,∠ADC=85°,则∠C的度数是( )A.25°B.27.5°C.30°D.35°6.如图,已知☉O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为( )A.4B.6C.63D.87.如图,四边形ABCD 是☉O 的内接四边形,∠B =90°,∠BCD =120°,AB =2,CD =1,则AD 的长为 ( )A.23-2B.3-3C.4-3D.28.如图,正六边形ABCDEF 的边长为6,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为( )A.4πB.6πC.8πD.12π9.(2024泰安中考)两个半径相等的半圆按如图方式放置,半圆O'的一个直径端点与半圆O 的圆心重合,若半圆的半径为2,则阴影部分的面积是( )A.43π-3B.43πC.23π-3D.43π-3410.如图,在直角梯形ABCD 中,以AD 为直径的半圆O 与BC 相切于点E ,BO 交半圆O 于点F ,DF 的延长线交AB 于点P ,连结DE .以下结论:①DE ∥OF ;②AB +CD =BC ;③PB =PF ;④AD 2=4AB ·DC .其中正确的是( )A.①②③④B.①②C.①②④D.③④二、填空题:本大题共6小题,每小题4分,共24分.11.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=20°,则这个正多边形的边数为 .12.某班同学要制作一个圆锥形纸帽,已知圆锥的母线长为30 cm,底面直径为20 cm,则这个纸帽的表面积为 .13.抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC、BD分别与☉O相切于点C、D,延长AC、BD交于点P.若∠P=120°,☉O的半径为6 cm,则图中劣弧CD的长为 cm.(结果保留π)14.已知☉O的直径为10,弦AB=6,P为弦AB上的一个动点,则OP长的取值范围是 .15.已知∠APE,有一量角器如图摆放,中心O在PA边上,OA为0°刻度线,OB为180°刻度线,角的另一边PE与量角器半圆交于C、D两点,点C、D对应的刻度分别为160°,68°,则∠APE= °.第15题图 第16题图16.(2024牡丹江中考)如图,在☉O中,直径AB⊥CD于点E,CD=6,BE=1,则弦AC的长为 .三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.(7分)如图,在矩形ABCD中,AB=6 cm,BC=4 cm,扇形BAE的半径AE=6 cm,扇形BCF的半径CB=4 cm,求阴影部分的面积.(π取3.14)18.(7分)(2024武威凉州区二模)如图,点A、B、C都在☉O上,且CA=CB,若AB=8,☉O的半径为5,连结CO,求AC的长.19.(7分)如图,在平面直角坐标系中,有一条圆心角为90°的圆弧,且该圆弧经过网格点A(0,4),B(-4,4),C(-6,2).(1)该圆弧所在圆的圆心M的坐标为 ;(2)求扇形AMC的面积.20.(8分)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点E,DE⊥BE.(1)已知DE=4,BE=6,求tan∠CBE的值.(2)求证:AC是☉O的切线.21.(8分)如图,AB为☉O的直径,DE为切线,AE⊥DE,若AE=6,∠D=30°,求图中阴影部分的面积.22.(9分)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA为半径的☉O与BC相切于点D,分别交AB、AC边于点E、F.(1)求证:AD平分∠BAC;(2)若AC=6,tan∠CAD=1,求AE的长.2四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.(9分)如图,AB=AC,∠APC=60°.(1)求证:△ABC是等边三角形;(2)若BC=4 cm,求☉O的面积.24.(9分)(2024绍兴期末)如图,在平面直角坐标系中,直线y=x-4与坐标轴相交于点A、B,过点O、A的☉E与该直线相交于点C,连结OE,OE=2.5.(1)求点E到x轴的距离;(2)连结OC,求OC的长.25.(10分)如图,四边形ABCD是正方形,以边AB为直径作☉O,点E在BC边上,连结AE交☉O于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧BF的长.(结果保留π)26.(10分)(2024兰州中考)如图,△ABC内接于☉O,AB为☉O的直径,点D为☉O上一点,BC=BD,延长BA至点E,使得∠ADE=∠CBA.(1)求证:ED是☉O的切线;,求ED的长.(2)若OB=4,tan∠CBA=1227.(12分)(2024烟台中考)如图,AB是☉O的直径,△ABC内接于☉O,点I为△ABC的内心,连结CI 并延长交☉O于点D,E是BC上任意一点,连结AD、BD、BE、CE.(1)若∠ABC=25°,求∠CEB的度数;(2)找出图中所有与DI相等的线段,并证明;(3)若CI=22,DI=132,求△ABC的周长.2【详解答案】1.C 2.B3.C 解析:AB的长=nπr180=120×π×6180=4π.故选C.4.C 解析:圆锥的侧面积=12×2π×30×40=1200π(cm2).故选C.5.D 解析:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°.∴∠AOC=2∠B=50°.∴∠C=180°-95°-50°=35°.故选D.6.D 解析:如图,过点O作OC⊥AB于点C,连结OA,则∠OCA=90°.∵MO=6,∠OMA=30°,∴OC=12MO=3.在Rt△OCA中,由勾股定理,得AC=OA2-OC2=52-32=4.∵OC⊥AB,OC 过点O,∴BC=AC,即AB=2AC=2×4=8.故选D.7.C 解析:如图,延长AD、BC交于点E.∵∠BCD=120°,∴∠A=60°.∵∠B=90°,∴∠ADC=90°,∠E=30°.在Rt△ABE中,AE=2AB=4.在Rt△CDE中,DE=CDtan E=3.∴AD=AE-DE=4-3.故选C.8.D 解析:根据题意,得正六边形的内角和为(6-2)×180°=720°.∵正六边形的六个内角相等,∴∠A=16×720°=120°.∵正六边形的边长为6,∴扇形的半径为6,∴S阴影=S扇形BAF=120π×62360=12π,即阴影部分的面积为12π.故选D.9.A 解析:如图,连结OA、AO',作AB⊥OO'于点B,∵OA=OO'=AO'=2,∴三角形AOO'是等边三角形.∴∠AOO'=60°,OB=12OO'=1.∴AB=22-12=3.∴S弓形AO'=S扇形AOO'-S△AOO'=60π×22360-2×3×12=2π3―3,∴S阴影=S弓形AO'+S扇形AO'O=2π3―3+2π3=4π3―3.故选A.10.C 解析:如图,连结AE.∵BA、BE是圆的切线,∴AB=BE,BO是△ABE顶角的平分线,∴OB⊥AE,∵AD是圆的直径,∴DE⊥AE,∴DE∥OF,故①正确;∵CD=CE,AB=BE,∴AB+CD=BC,故②正确;∵OD=OF,∴∠ODF=∠OFD=∠BFP,若PB=PF,则有∠PBF=∠BFP=∠ODF,而△ADP与△ABO不一定相似,故PB=PF不一定成立,故③不正确;连结OC ,可以证明△OAB ∽△CDO ,∴OA CD =AB OD ,即OA ·OD =AB ·CD ,∴AD 2=4AB ·DC ,故④正确.故正确的是①②④.故选C.11.九12.300π cm 2 解析:S 表=S 扇形=12lR =12×π×20×30=300π(cm 2).13.2π 解析:连结OC 、OD (图略).∵AC 、BD 分别与☉O 相切于点C 、D ,∴∠OCP =∠ODP =90°.∵∠P =120°,∴∠COD =60°.∵☉O 的半径为6 cm,∴劣弧CD 的长为60×π×6180=2π(cm).14.4≤OP ≤5 解析:作OC ⊥AB 于点C ,连结OA (图略),则OC =OA 2-AC 24,即OP 的最小值为4,当OP 取最大值时点P 在圆上,即点P 与点A 或B 重合时,OP 取得最大值,最大值为☉O 的半径,∴OP 长的取值范围为4≤OP ≤5.15.24 解析:如图,连结OD 、OC ,根据题意,得∠AOD =68°,∠AOC =160°.∴∠COD =∠AOC -∠AOD =92°,∠COP =180°-∠AOC =20°.∵OC =OD ,∴∠OCD =∠ODC =12×(180°-92°)=44°.∵∠OCD =∠COP +∠APE ,∴∠APE =24°.16.310 解析:∵AB⊥CD,CD=6,∴CE=DE=12CD=3.设☉O的半径为r,则OE=OB-BE=r-1,在Rt△OED中,由勾股定理,得OE2+DE2=OD2,即(r-1)2+32=r2,解得r=5,∴OA=5,OE=4.∴AE=OA+OE=9,在Rt△AEC中,由勾股定理,得AC=CE2+AE2=32+92=310.17.解:∵四边形ABCD为矩形,∴∠A=∠C=90°,∴阴影部分的面积=扇形BAE面积+扇形BCF面积-矩形面积=90 360×π×AB2+90360×π×CB2-AB×BC=90 360×π×62+90360×π×42-6×4=9π+4π-24≈13×3.14-24=16.82(cm2).18.解:如图,设AB与OC交于点D,连结OA、OB,则OA=OB.∵CA=CB,∴OC垂直平分AB,即OC⊥BA.∵AB=8,∴AD=BD=12AB=4.∵☉O的半径为5,∴OD=OA2-AD2=3.∴CD=OC-OD=5-3=2.∴AC=AD2+CD2=25.19.解:(1)(-2,0)(2)∵扇形的半径r=22+42=4+16=25,∠AMC=90°,∴S扇形AMC=nπr2360=90π×(25)2360=5π.20.(1)解:∵DE⊥BE,∴∠BED=90°.在Rt△BED中,DE=4,BE=6,则tan∠EBD=EDBE =23.又∵BE是∠ABC的平分线,∴∠CBE=∠EBD.∴tan∠CBE=tan∠EBD=23. (2)证明:如图,连结OE.∵OE=OB,∴∠EBO=∠OEB.又∵∠CBE=∠EBD,即∠CBE=∠EBO,∴∠OEB=∠CBE.∴BC∥OE.又∵∠C=90°,∴∠OEA=90°,即OE⊥AC.又∵点E在☉O上,∴AC是☉O的切线.21.解:如图,连结OC,∵DE为☉O的切线,∴OC ⊥DE .∴∠OCD =90°.∵∠D =30°,∴∠DOC =60°,OD =2OC .∴BD =OB =OA .∵AE ⊥DE ,∠D =30°,AE =6,∴AD =2AE =12.∴OD =8,OC =4.∴CD =OD 2-OC 2=82-42=43,∴S 阴影=S △OCD -S 扇形BOC =12×43×4-60π×42360=83―83π.22.(1)证明:如图,连结OD ,则OD =OA ,∴∠ODA =∠BAD .∵☉O 与BC 相切于点D ,∴BC ⊥OD .∴∠ODB =∠C =90°.∴OD ∥AC .∴∠ODA =∠CAD .∴∠BAD =∠CAD .∴AD 平分∠BAC .(2)解:如图,连结DE ,在Rt △ACD 中,tan ∠CAD =CD AC =12,AC =6,∴CD =12AC =3.∴AD =CD 2+AC 2=32+62=35.∵AE 是☉O 的直径,∴∠ADE =90°.∴∠ADE =∠C .由(1)知∠EAD =∠CAD .∴△ADE ∽△ACD .∴AEAD =ADAC,即AE35=356,∴AE=7.5.23.(1)证明:∵AB=AC,∴AB=AC.又∵∠B=∠APC=60°,∴△ABC是等边三角形.(2)解:连结BO并延长,交☉O于点D,连结CD(图略).∵BD是☉O的直径,∴∠BCD=90°.又∵∠BAC=60°,∴∠BDC=60°.在Rt△BCD中,BC=4 cm,∠BDC=60°,∴BD=BCsin∠BDC =4sin60°=833(cm),∴OB=433cm,∴S圆=π·(OB)2=163π(cm2). 24.解:(1)过点E作EH⊥x轴于点H,如图,当y=0时,x-4=0,解得x=4,∴A(4,0).∵EH⊥OA,∴OH=AH=12OA=2.在Rt△OHE中,EH=OE2-OH2= 2.52-22=32,∴点E到x轴的距离为32.(2)连结CE,如图,当x=0时,y=x-4=-4,∴B(0,-4).∵OA=OB=4,∴△OAB为等腰直角三角形.∴∠OAB=45°.∴∠OEC=2∠OAB=90°.∴△OEC为等腰直角三角形.∴OC=2OE=522.25.(1)证明:∵四边形ABCD是正方形,AB为☉O的直径,∴∠ABE=∠BCG=∠AFB=90°,AB=BC,∴∠BAF+∠ABF=90°,∠ABF+∠EBF=90°,∴∠EBF=∠BAF.在△ABE和△BCG中,∠BAE=∠CBG, AB=BC,∠ABE=∠BCG,∴△ABE≌△BCG(A.S.A.). (2)解:连结OF,如图.∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°-55°=35°.∴∠BOF=2∠BAE=70°.∵OA=3,∴劣弧BF的长=70×π×3180=7π6.26.(1)证明:连结OD,如图所示:∵AB为☉O的直径,∴∠BCA=∠BDA=90°,OB=OD,∴∠DBA=∠BDO.在Rt△BCA和Rt△BDA中,BA=BA, BC=BD,∴Rt△BCA≌Rt△BDA(H.L.),∴∠CBA=∠DBA.∵∠ADE=∠CBA,∠DBA=∠BDO,∴∠ADE=∠DBA=∠BDO.∵∠BDO+∠ADO=∠BDA=90°,∴∠ADE+∠ADO=90°,即ED⊥OD.∵OD是☉O的半径,∴ED是☉O的切线.(2)解:∵OB=4,∴AB=2OB=8.∴EB=AE+AB=AE+8.∵tan∠CBA=12,∠CBA=∠DBA,∴tan∠DBA=12.在Rt△ABD中,tan∠DBA=ADBD =12,设AD=a,则BD=2a,∵∠ADE=∠DBA,∠E=∠E,∴△EAD∽△EDB,∴ED∶EB=EA∶ED=AD∶DB,即ED∶(AE+8)=EA∶ED=a∶2a,由EA∶ED=a∶2a,得EA=12ED,由ED∶(AE+8)=a∶2a,得2ED=AE+8,∴2ED=12ED+8,∴ED=163.27.解:(1)∵AB是☉O的直径,∴∠ADB=∠ACB=90°.又∵∠ABC=25°,∴∠CAB=90°-25°=65°.∵四边形ABEC是☉O的内接四边形,∴∠CEB+∠CAB=180°,∴∠CEB=180°-∠CAB=115°.(2)DI=AD=BD.证明如下:如图1,连结AI,图1∵点I为△ABC的内心,∠ACB=45°.∴∠CAI=∠BAI,∠ACI=∠BCI=12∴AD=BD,∴∠DAB=∠DCB=∠ACI,AD=BD.∵∠DAI=∠DAB+∠BAI,∠DIA=∠ACI+∠CAI,∴∠DAI=∠DIA.∴DI=AD=BD.(3)如图2,过点I分别作IQ⊥AB,IF⊥AC,IP⊥BC,垂足分别为Q、F、P,图2∵点I为△ABC的内心,即为△ABC的内切圆的圆心,∴Q、F、P分别为该内切圆与△ABC三边的切点,∴AQ=AF,CF=CP,BQ=BP.∵CI=22,∠IFC=90°,∠ACI=45°,∴CF=CI·cos 45°=2=CP.,∠ADB=90°,∵DI=AD=BD,DI=1322=13,∴AB=AD2+BD2=2DI=2×1322∴△ABC的周长为AB+AC+BC=AB+AF+CF+CP+BP=AB+AQ+2CF+BQ =2AB+2CF=2×13+2×2=30.。

上海控江中学九年级数学上册第四单元《圆》测试卷(含答案解析)

上海控江中学九年级数学上册第四单元《圆》测试卷(含答案解析)

一、选择题 1.如图,在平面直角坐标系中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ的最小值为( )

A.1 B.2 C.3 D.5

2.如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OB=3:5,连接DO,则

DE的长为( )

A.3 B.4 C.6 D.8 3.如图,ABC为O的一个内接三角形,过点B作O的切线PB与OA的延长线交

于点P.已知34ACB,则P等于( )

A.17° B.27° C.32° D.22° 4.如图在ABC中,∠B=90°,AC=10,作ABC的内切圆圆O,分别与AB、BC、AC相切

于点D、E、F,设AD=x,ABC的面积为S,则S关于x的函数图像大致为( ) A. B.

C.

D.

5.如图,一条公路的拐弯处是一段圆弧AB,点O是这段弧所在的圆的圆心,

20cmAB,点C是AB的中点,点D是AB的中点,且5cmCD,则这段弯路所在圆

的半径为( )

A.10cm B.12.5cm C.15cm D.17cm 6.已知O的直径10CDcm,AB是O的弦,ABCD,垂足为M,且

8ABcm,则AC的长为( )

A.25 B.43 C.25或45 D.23或43

7.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C.若

∠ACB=30°,AB= 3,则阴影部分的面积( ) A.32 B.33 C.3π26 D.

36

8.如图,在ABC中,90C,7AB,4AC,以点C为圆心、CA为半径的

圆交AB于点D,求弦AD的长为( )

A.4337 B.327 C.2337 D.

16

7

9.如图,在⊙O中,OABC,35ADB.则AOC的度数为( )

A.40 B.55 C.70 D.

65

10.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中 容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( ) A.8.5 B.17 C.3 D.

北师大版数学九年级下册第三章 圆 单元测试卷

北师大版数学九年级下册第三章 圆 单元测试卷

第三章 圆 单元测试卷一、选择题(本大题10小题,每小题3分,共30分)1. 已知AB 是半径为5的圆的一条弦,则AB 的长不可能是( )A .4B .8C .10D .122.如图,在⊙O 中,AB =AC ,若∠ABC =57.5°,则∠BOC 的度数为( )A. 132.5° B .130° C .122.5° D .115°第2题图 第4题图 第5题图 第6题图 第7题图3.在平面直角坐标系xOy 中,若点P (4,3)在⊙O 内,则⊙O 的半径r 的取值范围是( )A .0<r <4B .3<r <4C .4<r <5D .r >54.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠CDA =122°,则∠C 的度数为( )A .22°B .26°C .28°D .30°5.如图,正方形ABCD 内接于⊙O ,AB =22,则的长是( ) A. π B .23π C .2π D .21π 6.如图所示方格纸中,点A ,B ,C ,D ,O 均为格点,则点O 是( )A .△ABC 的内心B .△ABC 的外心 C .△ACD 的内心 D .△ACD 的外心7.一把直尺、含60°角的直角三角尺和光盘如图所示摆放,A 为60°角与直尺的交点,B 为直尺与光盘的切点.若AB =3,则光盘的直径是( )A .3B .33C .6D .63第8题图 第9题图 第10题图8.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A ,与y 轴交于B ,C 两点,M 的坐标为(3,5),则B 的坐标为( )A .(0,5)B .(0,7)C .(0,8)D .(0,9)9.如图,一个扇形纸片的圆心角为90°,半径为6.将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .6π﹣293 B .6π﹣93 C .12π﹣293 D .49 10.如图,在等边三角形ABC 中,点O 在边AB 上,⊙O 过点B 且分别与边AB ,BC 相交于点D ,E ,F 是AC 上的点,下列说法错误的是( )A .若EF ⊥AC ,则EF 是⊙O 的切线B .若EF 是⊙O 的切线,则EF ⊥ACC .若BE =EC ,则AC 是⊙O 的切线D .若BE =23EC ,则AC 是⊙O 的切线 二、填空题(本大题6小题,每小题4分,共24分)11. 如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE = °.第11题图 第13题图 第14题图 第15题图 第16题图12.已知⊙O 的半径为3 cm ,点A ,B ,C 是直线l 上的三个点,点A ,B ,C 到圆心O 的距离分别为2 cm ,3 cm ,5 cm ,则直线l 与⊙O 的位置是 .13.如图,点 A ,B ,C 均在6×6的正方形网格格点上,过A ,B ,C 三点的圆除经过A ,B ,C 三点外还能经过的格点数为 .14. 如图,Rt △ABC 的内切圆⊙I 分别与斜边AB ,直角边BC ,CA 切于点D ,E ,F ,AD=3,BD=2,则Rt △ABC 的面积为 .15.木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O 于点A ,并使较长边与⊙O 相切于点C .记角尺的直角顶点为B ,量得AB =2 cm ,BC =4 cm ,则⊙O 的半径是 cm .16.如图,⊙O 的直径为25 cm ,弦AB ⊥弦CD 于点E ,连接AD ,BC ,若AD =4 cm ,则BC 的长为 cm .三、解答题(本大题7小题,共66分)17.(6分)如图,AB 为⊙O 的直径,C ,D 是⊙O 上的两点,且BD ∥OC ,求证:=.第17题图 第18题图 第19题图18. (8分)如图,I 是△ABC 的内心,AI 的延长线交△ABC 的外接圆于点D ,试判断DB 与DI 相等吗?说明理由.19. (8分)一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一个直径为10 mm 的小钢球紧贴在孔道边缘,测得钢球顶端离孔道口的距离为8 mm ,求这个孔道的直径AB .20.(10分)如图,以等边三角形ABC 的边AB 为直径的圆,与另两边BC ,AC 分别交于点E ,F ,请仅用无刻度的直尺作出△ABC 的边AB 上的高CD .第20题图 第21题图 第22题图21.(10分)如图,四边形ABCD是⊙O的内接四边形,延长DC,AB交于点E,且BE=BC.(1)求证:△ADE是等腰三角形;(2)若∠D=90°,⊙O的半径为5,BC∶DC=1∶2,求△CBE的周长.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,C是⊙O外一点且∠DBC=∠A,连接OE并延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.23.(12分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE 交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.①②③第23题图第24题图24.我们知道,如图①,AB是⊙O的弦,F是的中点,过点F作EF⊥AB于点E,易得E是AB的中点,即AE=EB.若⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图②),过点F作EF⊥AC于点E,求证:E是“折弦ACB”的中点,即AE=EC+CB;(2)当点C在弦AB的下方时(如图③),其他条件不变,则上述结论是否仍然成立?若成立,说明理由;若不成立,那么AE,EC,CB满足怎样的数量关系?(直接写出,不必证明.)第三章 圆 单元测试卷 参考答案 答案详解 10.C 提示:连接OE ,如图所示,则OB =OE.因为∠B =60°,所以∠BOE =60°.因为∠BAC =60°,所以∠BOE =∠BAC.所以OE ∥AC.因为EF ⊥AC ,所以OE ⊥EF.所以EF 是⊙O 的切线.选项A 正确;因为EF 是⊙O 的切线,所以OE ⊥EF.由A 知OE ∥AC ,所以AC ⊥EF. 选项B 正确;因为∠B =60°,OB =OE ,所以BE =OB.因为BE =CE ,所以BC =AB =2BO.所以AO =OB.如图,过点O 作OH ⊥AC 于点H ,所以∠OHA=90°.因为∠BAC =60°,所以∠AOH=30°. 在Rt △OAH 中 ,由勾股定理,得OH =22OA AH -= 222OA OA ⎛⎫- ⎪⎝⎭=23AO ≠OB. 选项C 错误;因为BE =23EC ,所以CE =332BE.因为AB =BC ,BO =BE ,所以AO =CE =332OB. 在Rt △OAH 中 ,由勾股定理,得OH =22OA AH -=23AO =OB.所以AC 是⊙O 的切线. 选项D 正确.16.2 提示:如图,作直径DH ,连接AH ,CH ,AC .因为DH 是直径,所以∠DCH =∠DAH =90°.因为AB ⊥CD ,所以∠AED =∠DCH =90°.所以CH ∥AB.所以∠CAB =∠ACH.所以=.所以AH =BC. 在Rt △ADH 中,AH =22224)52(-=-AD DH =2(cm ),所以BC =AH =2 cm .三、17.证明:因为OB =OD ,所以∠D =∠B.因为BD ∥OC ,所以∠D =∠COD ,∠AOC =∠B.所以∠AOC =∠COD.所以=.18.解:DB =DI.理由:连接BI.由圆周角定理,得∠DBC =∠DAC.因为I 是△ABC 的内心,所以∠ABI =∠CBI ,∠BAD =∠CAD. 由三角形的外角的性质,知∠DIB =∠IBA+∠BAI.又∠DBI =∠DBC+∠IBC ,所以∠DIB =∠DBI.所以DB =DI .19.解:连接OA ,过点O 作OD ⊥AB 于点D ,则AB =2AD.答案速览一、1. D 2.B 3.D 4.B 5.A 6.D 7. D 8.D 9.A 10.C二、11. n 12.相交 13.5 14. 6 15.5 16.2三、解答题见“答案详解”因为钢球的直径是10 mm ,所以钢球的半径是5 mm ,即OA=5 mm.因为钢球顶端离孔道口的距离为8 mm ,所以OD =3 mm.在Rt △AOD 中,由勾股定理,得AD =222235-=-OD OA =4(mm ), 所以AB =8 mm . 20.解:如图所示,CD 即为所求.21.(1)证明:因为四边形ABCD 是⊙O 的内接四边形,所以∠A+∠DCB=180°.又∠DCB+∠BCE=180°,所以∠A =∠BCE.因为BE =BC ,所以∠BCE =∠E.所以∠A =∠E.所以DA =DE ,即△ADE 是等腰三角形.(2)解:连接AC.设BC =k ,则CD =2k.因为∠D =90°,所以∠CBE =90°,AC 是⊙O 的直径.因为BE =BC ,所以∠E =45°.所以BE =BC =k ,EC =2k.所以DA=DE =22k.在Rt △DAC 中,由勾股定理,得AC =10k.因为⊙O 的半径为5,所以10k =10,解得k =10.所以BC+BE+CE=210+25,即△CBE 的周长为210+25.22.(1)证明:连接OB.因为E 是弦BD 的中点,所以BE =DE ,OE ⊥BD ,=12.所以∠BOE =∠A ,∠OBE+∠BOE =90°.因为∠DBC =∠A ,所以∠BOE =∠DBC.所以∠OBE+∠DBC =90°.所以∠OBC =90°,即BC ⊥OB.所以BC 是⊙O 的切线.(2)解:因为OB =6,BC =8,BC ⊥OB ,所以OC =22BC OB +=10.因为△OBC 的面积=12OC •BE =12OB •BC ,所以BE =OB BC OC ⋅=6810⨯=4.8.所以BD =2BE =9.6,即弦BD 的长为9.6. 23.证明:(1)因为AB 是⊙O 的直径,所以∠ADB =90°.所以∠A+∠ABD =90°.因为∠A =∠DEB ,∠DEB =∠DBC ,所以∠A =∠DBC.所以∠DBC+∠ABD =90°.所以BC 是⊙O 的切线.(2)连接OD.因为BF =BC =2,∠ADB =90°,所以∠CBD =∠FBD.因为OE ∥BD ,所以∠FBD =∠OEB.因为OE =OB ,所以∠OEB =∠OBE.所以∠OBE=∠FBD.所以∠CBD =∠FBD =∠OBE =13∠ABC =13×90°=30°.所以∠C =60°,∠A =30°.所以AC=4. 在Rt △ABC 中,由勾股定理,得AB =22AC BC -=23,所以⊙O 的半径为3.因为OA=OD ,所以∠ODA =∠A=30°.所以∠DOB=60°. 在Rt △ABD 中,由勾股定理,得AD=22AB BD -=3.所以S 阴影=S 扇形DOB -S △DOB =61π×(3)2-12×12×3×3=2π-433. 24.(1)证明:在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,如图①所示.因为F 是的中点,所以FA=FB.在△FAG和△FBC中,FA FBFAG FBCAG BC=⎧⎪∠=∠⎨⎪=⎩,,,所以△FAG≌△FBC(SAS).所以FG=FC.因为FE⊥AC,所以EG=EC.所以AE=AG+EG=BC+CE. (2)解:结论AE=EC+CB不成立,新结论为CE=BC+AE.理由:在CA上截取CG=CB,连接FA,FB,FC,如图②所示.因为F 是的中点,所以FA=FB ,.所以∠FCG=∠FCB.在△FCG和△FCB中,CG CBFCG FCBFC FC=⎧⎪∠=∠⎨⎪=⎩,,,所以△FCG≌△FCB(SAS).所以FG=FB.所以FA=FG.因为FE⊥AC,所以AE=GE.所以CE=CG+GE=BC+AE.①②第24题图。

沪科版2019-2020学年九年级数学下册第24章圆单元测试卷(含答案)

沪科版2019-2020学年九年级数学下册第24章圆单元测试卷(含答案)

沪科版九下第24章圆单元检测卷时间:90分钟,分值100分一、选择题(本大题共10小题,每小题3分,共30分)1. 下列交通标志中既是中心对称图形,又是轴对称图形的是【 】2.如图所示,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,错误的是【 】A.CE=DEB.弧BC=弧BDC.∠BAC=∠BADD.AC>AD3.在一个圆中,给出下列命题,其中正确的是【 】A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直 B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径 4.如图,点都在圆上,若∠C=34°,则∠AOB 的度数为【 】 A.34° B.56° C.60° D.68°5. 如图所示,体育课上,小丽的铅球成绩为6.4 m ,她投出的铅球落在【 】 A.区域① B.区域② C.区域③ D.区域④A B C D6.半径为R 的圆内接正三角形的面积是【】A.23R B.2πR C.233R D.233R 7.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16 cm ,那么钢丝大约需要加长【 】 A.102 cm B.104 cm C.106 cm D.108 cm8.如图所示,已知⊙O 的半径OA=6,∠AOB=90°,则∠AOB 所对的弧AB 的长为【 】A. B. C. D.9.钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过 的弧长是【 】 A.B.C.D.10.如图所示,⊙的半径为2,点到直线的距离为3,点是直线上的一个动点,PB 切⊙O 于点,则PB 的最小值是【 】A.13B.5C.3D.2二、填空题(每小题3分,共24分)11.如图所示,在⊙O 中,直径CD 垂直弦AB 于点,连接OB,CB ,已知⊙的半O B第8题图径为2,AB=23 ,则∠BCD=________度.12.如图,在边长为3的正方形ABCD 中,⊙O 1与⊙O 2外切,且⊙O 1分别与DA 、DC 边相切,⊙O 2分别与BA 、BC 边相切,则圆心距O 1 O 2为.13.如图所示,已知⊙的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦所在直线的距离为2的点有______个.14.如图所示,⊙O 的半径为4 cm ,直线l 与⊙O 相交于A ,B 两点,AB =43 cm ,P 为直线l 上一动点,以1 cm 为半径的⊙P 与⊙O 没有公共点.设PO =d cm ,则d 的取值范围是_____________.15.如图所示,A 是⊙O 的直径,点C,D 是圆上两点,∠AOC=100°,则∠D=_______. 16.如图所示,图①中圆与正方形各边都相切,设这个圆的周长为;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长为;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆第15题图的周长为;….依此规律,当正方形边长为2时,C 1+C 2+C 3+...+C 100= _______.17.如图所示,以O 为圆心的两个同心圆中,大圆的弦与小圆相切于点,若大圆半径为10cm ,小圆半径为6cm ,则弦AB 的长为_______.18.如图所示,PA ,PB 切⊙O 于A ,B 两点,若∠APB=60°,⊙O 的半径为3,则阴影部分的面积为_______.三、解答题(共46分) 19.(6分)如图所示,⊙O 的直径AB 和弦CD 相交于点,AE=2,EB=6 ,∠DEB=30°,求弦CD 长.20.(6分)如图, AB 为☉O 的直径,C 为☉O 外一点,过C 作☉O 的切线,切点为B,连接AC 交☉O 于D,∠C=38°.点E 在AB 右侧的半圆周上运动(不与A,B 重合),求∠AED 的大小。

人教版数学九年级上册《圆》单元测试卷(含答案)

人教版数学九年级上学期《圆》单元测试【考试时间:90分钟满分:120分】一.选择题(共12小题)1.(2020春•南岸区校级月考)如图,AB是⊙O的直径,C和D是⊙O上两点,连接AC、BC、BD、CD,若∠CDB=36°,则∠ABC=()A.36°B.44°C.54°D.72°2.(2020•清江浦区)如图,A、B、C是⊙O上的三个点,∠AOB=58°,则∠BCA的度数是()A.58°B.42°C.32°D.29°3.(2020•斗门区)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为()A.2B.4C.6D.8 4.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60°B.65°C.70°D.75°5.(2020•通辽)如图,P A,PB分别与⊙O相切于A,B两点,∠P=72°,则∠C=()A.108°B.72°C.54°D.36°6.(2020•三明)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,若AD=8,∠B=30°,则AC的长度为()A.3B.4C.4√2D.4√3 7.(2020•南充模拟)如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A .9B .10C .12D .158.若正六边形的边长为8cm ,则它的边心距为( )A .8cmB .6cmC .4√3cmD .2√3cm9.(2020•天台县)如图,圆锥的底面半径为6,母线长为10,则圆锥的侧面积是( )A .36πB .60πC .96πD .100π10.(2020•包头)如图,AB 是⊙O 的直径,CD 是弦,点C ,D 在直径AB 的两侧.若∠AOC :∠AOD :∠DOB =2:7:11,CD =4,则CD̂的长为( )A .2πB .4πC .√2π2D .√2π11.一个扇形的圆心角是120°,它的面积是3πcm 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( )A .3cmB .2cmC .1cmD .4cm12.如图,在正方形纸板上剪下一个扇形和圆,围成一个圆锥模型,设围成的圆锥底面半径为r,母线长为R,正方形的边长为a,则用r表示a为()A.a=2+√22r B.a=5+2√22r C.a=2+5√22r D.a=(1+5√22r)二.填空题(共7小题)13.(2020•铁岭)如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=cm.14.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是AB̂的中点,且CD=10m,则这段弯路所在圆的半径为m.15.如图,AB为⊙O的直径,△P AB的边P A,PB与⊙O的交点分别为C、D.若AĈ=CD̂=DB̂,则∠P的大小为度.16.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是.17.(2020•碑林区校级四模)如图,若正六边形ABCDEF边长为1,连接对角线AC,AD.则△ACD的周长为.18.(2020春•南岸区校级月考)如图,在正方形ABCD中,AB=2,分别以B、C为圆心,以AB的长为半径作弧,则阴影部分的面积为.19.(2020•娄底)如图,四边形ABDC中,AB=AC=3,BD=CD=2,则将它以AD为轴旋转180°后所得分别以AB、BD为母线的上下两个圆锥的侧面积之比为.三.解析题(共6小题)20.(2020•鼓楼区校级模拟)如图①,AB为⊙O的直径,点C在⊙O上,AD平分∠CAB,AD与BC交于点F,过点D作DE⊥AB于点E.(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.21.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.22.(2020•鼓楼区校级模拟)如图,AB是⊙O直径,AC是⊙O切线,BC交⊙O与点E.(1)若点D在AC上,连接DE,且AD=DE,求证:DE是⊙O的切线;(2)若CE=1.BE=3,求∠ACB的度数.23.(2020•江岸区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.24.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.25.(2020•承德)如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优̂,使点B在点O右下方,且∠AOB=30°,在优弧AB̂上任取一点P,过点P作直弧AB线OB的垂线,交数轴于点Q,设Q在数轴上对应的数为x,连接OP.̂上一段AP̂的长为10π,求∠AOP的度数及x的值;(1)若优弧AB̂所在圆的位置关系.(2)求x的最小值,并指出此时直线PQ与AB答案与解析一.选择题(共12小题)1.(2020春•南岸区)如图,AB是⊙O的直径,C和D是⊙O上两点,连接AC、BC、BD、CD,若∠CDB=36°,则∠ABC=()A.36°B.44°C.54°D.72°【答案】C【解析】∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=∠D=36°,∴∠ABC=90°﹣36°=54°,故选:C.【小贴士】圆周角定理,直角三角形的性质等知识,属于中考常考题型.【考点】圆周角定理.2.(2020•清江浦区)如图,A、B、C是⊙O上的三个点,∠AOB=58°,则∠BCA的度数是()A.58°B.42°C.32°D.29°【答案】D【解析】如图,∵A、B、C是⊙O上的三个点,∠AOB=58°,∴∠BCA=12∠AOB=29°,故选:D.【小贴士】圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,基础题.【考点】圆周角定理.3.(2020•斗门区)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为()A.2B.4C.6D.8【考点】勾股定理;垂径定理.【答案】B【分析】根据CE=2,DE=8,得出直径CD=10,从而得出半径为5,在直角三角形OBE 中,由勾股定理得BE.【解析】∵CE=2,DE=8,∴CD=10,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,BE=√OB2−OE2=√52−32=4,故选:B.【小贴士】勾股定理以及垂径定理,是基础.4.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60°B.65°C.70°D.75°【考点】切线的性质.【答案】B【解析】∵AC与⊙O相切于点A,∴AC⊥OA,∴∠OAC=90°,∵OA=OB,∴∠OAB=∠OBA.∵∠O=130°,∴∠OAB=180°−∠O2=25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.【小贴士】切线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•通辽)如图,P A,PB分别与⊙O相切于A,B两点,∠P=72°,则∠C=()A.108°B.72°C.54°D.36°【考点】圆周角定理和切线的性质.【答案】C【解析】连接OA、OB,∵P A,PB分别为⊙O的切线,∴OA⊥P A,OB⊥PB,∴∠P AO=90°,∠PBO=90°,∴∠AOB=360°﹣∠P AO﹣∠PBO﹣∠P=360°﹣90°﹣90°﹣72°=108°,由圆周角定理得,∠C=12∠AOB=54°,故选:C.【小贴士】的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(2020•三明)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,若AD=8,∠B=30°,则AC的长度为()A.3B.4C.4√2D.4√3【考点】三角形的外接圆与外心.【答案】B【解析】连接CD,∵AD是⊙O的直径,∴∠ACD=90°,又∵∠B=∠D=30°,∴AC=12AD=4,故选:B.7.(2020•南充模拟)如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A.9B.10C.12D.15【考点】正多边形和圆.【答案】C【解析】如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BCO=∠AOC﹣∠AOB=30°,由题意30°=360°n,∴n=12,8.若正六边形的边长为8cm,则它的边心距为()A.8cm B.6cm C.4√3cm D.2√3cm 【考点】正多边形和圆.【答案】C【解析】如图所示,连接OA,OB,过O作OD⊥AB于D,则OA=OB,OD⊥AB,AD=BD=12AB=12×8=4cm,∵此六边形是正六边形,∴∠AOB=360°6=60°,∴∠AOD=12∠AOB=12×60°=30°,∴OD=AD•cot∠AOD=4×√3=4√3cm.故选:C.9.(2020•天台县)如图,圆锥的底面半径为6,母线长为10,则圆锥的侧面积是()A.36πB.60πC.96πD.100π【考点】圆锥的计算.【答案】B【解析】底面周长是:2×6π=12π,则圆锥的侧面积是:12×12π×10=60π.故选:B .10.(2020•包头)如图,AB 是⊙O 的直径,CD 是弦,点C ,D 在直径AB 的两侧.若∠AOC :∠AOD :∠DOB =2:7:11,CD =4,则CD̂的长为( )A .2πB .4πC .√2π2D .√2π【考点】弧长的计算.【答案】D【解析】∵∠AOC :∠AOD :∠DOB =2:7:11,∠AOD +∠DOB =180°,∴∠AOD =77+11×180°=70°,∠DOB =110°,∠COA =20°,∴∠COD =∠COA +∠AOD =90°,∵OD =OC ,CD =4,∴2OD 2=42,∴OD =2√2,∴CD ̂的长是nπr 180=90π×2√2180=√2π,故选:D .【小贴士】解直角三角形和弧长公式,能求出半径OD 的长是解此题的关键,注意:圆心角是n °,半径是r 的弧的长度是nπr 180.11.一个扇形的圆心角是120°,它的面积是3πcm 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( )A .3cmB .2cmC .1cmD .4cm【考点】圆锥的计算.【答案】C【分析】利用扇形的面积公式可得圆锥的母线长,进而可求得圆锥的弧长,除以2π即为圆锥的底面半径.【解析】设圆锥的母线长为R ,120π×R 2360=3π,解得R =3cm , ∴圆锥的侧面展开图的弧长=120π×3180=2πcm , ∴圆锥的底面半径=2π÷2π=1cm ,故选:C .【小贴士】用到的知识点为:圆锥的侧面展开图的面积=nπR 2360;圆锥的侧面展开图的弧长=nπR 180;圆锥的侧面展开图的弧长等于底面周长.12.如图,在正方形纸板上剪下一个扇形和圆,围成一个圆锥模型,设围成的圆锥底面半径为r ,母线长为R ,正方形的边长为a ,则用r 表示a 为( )A.a=2+√22r B.a=5+2√22r C.a=2+5√22r D.a=(1+5√22r)【考点】弧长的计算.【答案】C【分析】利用底面周长=展开图的弧长求出半径比,再根据过小圆的圆心作垂线,垂直于正方形的边,就构成等腰直角三角形,从图中关系可知,直角三角形的斜边是r+R,直角边a﹣r,根据勾股定理计算.【解析】利用底面周长=展开图的弧长可得;2πr=90πR180,得出R=4r,利用勾股定理解得a=2+5√22r.故选:C.【小贴士】的关键是利用底面周长=展开图的弧长求得r与R的关系,然后由勾股定理求得a与r之间的关系.二.填空题(共7小题)13.(2020•铁岭)如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=8cm.【考点】勾股定理和垂径定理.【答案】8【解析】∵CD⊥OB,∴CE=DE=12CD=4,在Rt△OCE中,OE=√52−42=3,∴AE=AO+OE=5+3=8(cm).14.(2019秋•昌平区期末)如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是AB̂的中点,且CD=10m,则这段弯路所在圆的半径为25 m.【考点】垂径定理的应用.【答案】25【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解析】∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.15.(2019•长春)如图,AB为⊙O的直径,△P AB的边P A,PB与⊙O的交点分别为C、D.若AĈ=CD̂=DB̂,则∠P的大小为60度.【考点】圆心角、弧、弦的关系.【答案】60【解析】连接OC、OD,̂=CD̂=DB̂,∵AC∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,OB=OD,∴△AOC和△BOD都是等边三角形,∴∠A=60°,∠B=60°,∴∠P=60°,故答案为:60.【小贴士】在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.16.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是√41−52.【考点】垂径定理和三角形的外接圆与外心.【解析】连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,∵⊙O是△ABC的外接圆,∠BAC=45°,∴∠BOC=90°,∵BD=4,CD=1,∴BC=4+1=5,∴OB=OC=5√2 2,∴OA=5√22,OF=BF=52,∴DF=BD﹣BF=3 2,∴OG=32,GD=52,在Rt△AGO中,AG=√OA2−OG2=√412,∴GE=√41 2,∴DE=GE﹣GD=√41−52.17.(2020•碑林区校级四模)如图,若正六边形ABCDEF边长为1,连接对角线AC,AD.则△ACD的周长为3+√3.【考点】正多边形和圆.【答案】3+√3.【分析】根据正六边形的性质和直角三角形的性质即可得到结论.【解析】∵正六边形ABCDEF中,AB=BC=CD=1,∠B=∠BCD=120°,∴∠ACB=∠BAC=30°,∴∠ACD=90°,∵∠CDA=∠EDA=60°,∴∠CAD=30°,∴AD=2CD=2,AC=√3CD=√3,∴△ACD的周长=AD+AC+CD=3+√3,18.(2020春•南岸区校级月考)如图,在正方形ABCD中,AB=2,分别以B、C为圆心,以AB的长为半径作弧,则阴影部分的面积为2√3−23π.【考点】扇形面积的计算.【答案】2√3−23π.【分析】连接BE 、CE ,得出等边三角形EBC ,求出∠DCE =30°,∠EBC =60°,分别求出扇形EBC 、扇形DCE 和△EBC 的面积,再求出答案即可.【解析】∵在正方形ABCD 中,AB =2,分别以B 、C 为圆心,以AB 的长为半径作弧, ∴∠DCB =90°,BC =AB =2,弧对应的半径是2,如图,连接BE 、CE ,∵BC =CE =BE =2,∴△BEC 是等边三角形,∴∠EBC =∠ECB =60°,∴∠DCE =30°,S 弓形=S 扇形EBC ﹣S △EBC =60π×22360−12×2×√3=23π−√3, ∴阴影部分的面积S =2(S 扇形DCE ﹣S 弓形)=2×[30π×22360−(23π−√3)]=2√3−23π.19.(2020•娄底)如图,四边形ABDC 中,AB =AC =3,BD =CD =2,则将它以AD 为轴旋转180°后所得分别以AB 、BD 为母线的上下两个圆锥的侧面积之比为 3:2 .【考点】圆锥的计算.【答案】3:2,【分析】根据两个圆锥的底面圆相同,设底面圆的周长为l ,根据圆锥的侧面积公式可得上面圆锥的侧面积为:12l •AB ,下面圆锥的侧面积为:12l •BD ,即可得出答案. 【解析】∵两个圆锥的底面圆相同,∴可设底面圆的周长为l ,∴上面圆锥的侧面积为:12l •AB ,下面圆锥的侧面积为:12l •BD ,∵AB =AC =3,BD =CD =2,∴S 上:S 下=3:2,三.解析题(共6小题)20.(2020•鼓楼区校级模拟)如图①,AB 为⊙O 的直径,点C 在⊙O 上,AD 平分∠CAB ,AD 与BC 交于点F ,过点D 作DE ⊥AB 于点E .(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.【考点】圆周角定理.【分析】(1)如图①中,延长DE交⊙O于G,连接AG.想办法证明DE=EG,BC=DG即可.(2)如图②中,作FR⊥AB于R,OS⊥AD于S.首先证明BF=BO,利用相似三角形的性质证明AC=2FR=2CF,由tan∠F AR=tan∠F AC=12,设SO=t,AS=2t,SF=SO=t,利用勾股定理求出t即可解决问题.【解析】(1)证明:如图①中,延长DE交⊙O于G,连接AG.∵AB⊥DG,AB是直径,∴BD̂=BĜ,DE=EG,∵AD平分∠CAB,∴CD̂=BD̂,∴BĈ=DĜ,∴BC=DG=2DE.(2)如图②中,作FR⊥AB于R,OS⊥AD于S.∵AD平分∠CAB,FC⊥AC,FR⊥AB,∴∠CAD=∠BAD=x,FC=FR,∴∠FBO=90°﹣2x,∵∠AFO=45°,∴∠FOB=45°+x,∴∠OFB=180°﹣(90°﹣2x)﹣(45°+x)=45°+x,∴∠FOB=∠OFB∴BF=BO=OA,∵∠FRB=∠ACB=90°,∠FBR=∠ABC,∴△BFR∽△BAC,∴FBAB =FRAC=12,∴tan∠F AR=tan∠F AC=1 2,设SO=t,AS=2t,SF=SO=t,则t2+4t2=4,∵t>0,∴t=2√5 5,∴AF=3t=6√55,设CF=m,则AC=2m,则有5m2=36 5,∵m>0,∴m=6 5,∴AC=2m=12 5.【小贴士】解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.21.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.【考点】等腰三角形的判定与性质;圆周角定理.【解析】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴AF=EF.22.(2020•鼓楼区校级模拟)如图,AB是⊙O直径,AC是⊙O切线,BC交⊙O与点E.(1)若点D在AC上,连接DE,且AD=DE,求证:DE是⊙O的切线;(2)若CE=1.BE=3,求∠ACB的度数.【考点】圆周角定理和切线的判定与性质.【解析】(1)连接OE,AE,∵AE=DE,OA=OE,∴∠DAE=∠DEA,∠OAE=∠OEA,∵AC是⊙O的切线,∴∠BAC=90°,∴∠DAE+∠OAE=∠DEA+∠OEA=90°,∵OE是⊙O的半径,∴DE是⊙O的切线.(2)∵AB是⊙O的直径,∴∠AEB=90°,∵∠C+∠CAE=∠CAE+∠BAE=90°,∴∠C=∠BAE,∴AE2=CE•BE,∴AE2=1×3,∴AE=√3,在Rt△ACE中,∴tan∠ACE=AECE=√3,∴∠ACE=60°.23.(2020•江岸区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.【解析】(1)证明:在⊙O中,∵∠BAC与∠CPB是BĈ对的圆周角,∠ABC与∠APC是AĈ所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.24.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.【考点】正多边形和圆.【解析】(1)∵六边形ABCDEF 是正六边形,∴∠F AB =(6−2)×1806=120°; (2)证明:连接OA 、OB ,∵OA =OB ,∴∠OAB =∠OBA ,∵∠F AB =∠CBA ,∴∠OAG =∠OBH ,在△AOG 和△BOH 中,{AG =BH ∠OAG =∠OBH OA =OB,∴△AOG ≌△BOH (SAS )∴OG =OH .25.(2020•承德)如图,点A 在数轴上对应的数为20,以原点O 为圆心,OA 为半径作优弧AB̂,使点B 在点O 右下方,且∠AOB =30°,在优弧AB ̂上任取一点P ,过点P 作直线OB 的垂线,交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为10π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线PQ 与AB̂所在圆的位置关系.【考点】实数与数轴和圆周角定理和弧长的计算.【解析】(1)如图1,由n⋅π×20180=10π,解得n=90°,∴∠POQ=90°,∴∠AOP=180°﹣∠POQ=90°,∵PQ⊥OB,∴∠PQO=60°,∴tan∠PQO=OPOQ=√3,∴OQ=20√3 3∴x=−20√3 3;(2)如备用图,当直线PQ与AB̂所在圆的位置关系相切时,x有最小值,则∠QPO=90°,∵∠POQ=∠AOB=30°,OP=20,∴OQ=2√33OP=40√33,∴x=−40√3 3.【小贴士】切线的判定和性质,弧长计算,锐角三角函数定义,解题的关键是熟练掌握切线的性质.。

九年级数学上册第二十四章圆测试卷1新人教版附答案

九年级数学上册第二十四章圆测试卷1新人教版附答案一、选择题1.用圆心角为120°,半径6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.2cm B.3cm C.4cm D.4cm2.如图,边长为40cm的等边三角形硬纸片,小明剪下与边BC相切的扇形AEF,切点为D,点E、F分别在AB、AC上,做成圆锥形圣诞帽,(重叠部分忽略不计),则圆锥形圣诞帽的底面圆形半径是()A.cm B.cm C.cm D.cm3.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(接缝忽略不计),则这个纸帽的高是()A.cmB.2cm C.3cm D.4cm4.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm25.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm26.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10cm2B.10πcm2C.20cm2D.20πcm27.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm8.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°9.如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5B.12C.13D.1410.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15πB.20πC.24πD.30π11.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5B.2C.2.5D.312.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π13.一个立体图形的三视图如图,根据图中数据求得这个立体图形的侧面积为()A.12πB.15πC.18πD.24π14.已知圆锥的母线长为3,底面的半径为2,则圆锥的侧面积是()A.4πB.6πC.10πD.12π15.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.16.一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.17.一个几何体的三视图如图所示,这个几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm218.底面半径为4,高为3的圆锥的侧面积是()A.12πB.15πC.20πD.36π二、填空题19.一个圆锥形漏斗,某同学用三角波测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为.20.在△ABC纸板中,AB=3cm,BC=4cm,AC=5cm,将△ABC纸板以AB所在直线为轴旋转一周,则所形成的几何体的侧面积为cm2(结果用含π的式子表示).21.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.22.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为cm2.23.一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是度.24.已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于.25.若圆锥的侧面展开图的弧长为24πcm,则此圆锥底面的半径为cm.26.用一个圆心角为240°半径为6的扇形做一个圆锥的侧面,则这个圆锥底面半径为.27.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为.28.如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是cm.29.用圆心角是216°,半径是5cm的扇形围成一个圆锥体的侧面(接缝处不重叠),则这个圆锥体的高是cm.30.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是.参考答案与试题解析一、选择题1.用圆心角为120°,半径6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.2cm B.3cm C.4cm D.4cm【考点】圆锥的计算.【分析】先利用弧长公式得到圆心角为120°,半径为6cm的扇形的弧长=4π,根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,则可计算出圆锥的底面圆的半径为2,然后根据勾股定理可计算出圆锥的高.【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了弧长公式和勾股定理.2.如图,边长为40cm的等边三角形硬纸片,小明剪下与边BC相切的扇形AEF,切点为D,点E、F分别在AB、AC上,做成圆锥形圣诞帽,(重叠部分忽略不计),则圆锥形圣诞帽的底面圆形半径是()A.cm B.cm C.cm D.cm【考点】圆锥的计算.【专题】计算题.【分析】连结AD,如图,根据切线的性质得AD⊥BC,再根据等边三角形的性质得∠BAC=∠B=60°,BD=BC=20,所以AD=BD=20,设圆锥形圣诞帽的底面圆形半径为rcm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,再解方程即可.【解答】解:连结AD,如图,∵边BC相切于扇形AEF,切点为D,∴AD⊥BC,∵△ABC为等边三角形,∴∠BAC=∠B=60°,BD=BC=×40=20,∴AD=BD=20,设圆锥形圣诞帽的底面圆形半径为rcm,∴2πr=,解得r=(cm),即圆锥形圣诞帽的底面圆形半径为cm.故选A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.3.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(接缝忽略不计),则这个纸帽的高是()A.cmB.2cm C.3cm D.4cm【考点】圆锥的计算.【分析】先利用弧长公式得到圆心角为120°,半径为6cm的扇形的弧长=4π,根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,则可计算出圆锥的底面圆的半径为2,然后根据勾股定理可计算出圆锥的高.【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了弧长公式和勾股定理.4.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×4×5÷2=20π.故选:A.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.5.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【考点】圆锥的计算.【专题】计算题.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选:B.【点评】由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.6.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10cm2B.10πcm2C.20cm2D.20πcm2【考点】圆锥的计算.【专题】数形结合.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的侧面积=2π×2×5÷2=10π.故选:B.【点评】本题考查了圆锥的计算,解题的关键是知道圆锥的侧面积的计算方法.7.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm【考点】圆锥的计算.【专题】计算题.【分析】圆锥的母线长=圆锥的底面周长×.【解答】解:圆锥的母线长=2×π×6×=12cm,故选:B.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.8.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到=2•2π,再解关于n的方程即可.【解答】解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故选:D.【点评】本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5B.12C.13D.14【考点】圆锥的计算.【专题】几何图形问题.【分析】首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【解答】解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高==12cm.故选:B.【点评】此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.10.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15πB.20πC.24πD.30π【考点】圆锥的计算;简单几何体的三视图.【专题】计算题.【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=•5•2π•3=15π.故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.11.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5B.2C.2.5D.3【考点】圆锥的计算.【专题】计算题.【分析】半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.【解答】解:设圆锥的底面半径是r,半径为6的半圆的弧长是6π,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选:D.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.12.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:此圆锥的侧面积=•4•2π•2=8π.故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.一个立体图形的三视图如图,根据图中数据求得这个立体图形的侧面积为()A.12πB.15πC.18πD.24π【考点】圆锥的计算;由三视图判断几何体.【分析】从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥,由三视图可知圆锥的底面半径为3,高为4,故母线长为5,据此可以求得其侧面积.【解答】解:由三视图可知圆锥的底面半径为3,高为4,所以母线长为5,所以侧面积为πrl=3×5π=15π,故选:B.【点评】本题主要考查了由三视图确定几何体和求圆锥的侧面积.牢记公式是解题的关键,难度不大.14.已知圆锥的母线长为3,底面的半径为2,则圆锥的侧面积是()A.4πB.6πC.10πD.12π【考点】圆锥的计算.【专题】计算题.【分析】根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【解答】解:圆锥的侧面积=•2π•2•3=6π.故选:B.【点评】本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.【解答】解:设底面圆的半径为r,则:2πr==π.∴r=,∴圆锥的底面周长为,故选:B.【点评】本题考查的是弧长的计算,利用弧长公式求出弧长,然后根据扇形弧长与圆锥底面半径的关系求出底面圆的半径.16.一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.【考点】圆锥的计算.【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长,然后表示出圆锥的高即可.【解答】解:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=R.由勾股定理得到圆锥的高为=,故选:D.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.一个几何体的三视图如图所示,这个几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm2【考点】圆锥的计算;由三视图判断几何体.【专题】几何图形问题.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:此几何体为圆锥;∵半径为1,圆锥母线长为4,∴侧面积=2πrR÷2=2π×1×4÷2=4π;故选:B.【点评】本题考查了圆锥的计算,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.18.底面半径为4,高为3的圆锥的侧面积是()A.12πB.15πC.20πD.36π【考点】圆锥的计算.【专题】计算题.【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面半径为4,高为3,∴母线长为5,∴圆锥的侧面积为:πrl=π×4×5=20π,故选:C.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.二、填空题19.一个圆锥形漏斗,某同学用三角波测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为15π.【考点】圆锥的计算.【专题】计算题.【分析】根据图中数据得到圆锥的高为4,底面圆的半径为3,则根据勾股定理计算出母线长为5,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:圆锥的母线长==5,所以该圆锥形漏斗的侧面积=•2π•3•5=15π.故答案为15π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.20.在△ABC纸板中,AB=3cm,BC=4cm,AC=5cm,将△ABC纸板以AB所在直线为轴旋转一周,则所形成的几何体的侧面积为20πcm2(结果用含π的式子表示).【考点】圆锥的计算;点、线、面、体;勾股定理的逆定理.【分析】易得此几何体为圆锥,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵在△ABC中,AB=3,BC=4,AC=5,∴△ABC为直角三角形,∴底面周长=8π,侧面积=×8π×5=20πcm2.故答案为:20π.【点评】本题考查了圆锥的计算,以及勾股定理的逆定理,利用圆的周长公式和扇形面积公式求解.21.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160°.【点评】本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.22.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为60πcm2.【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:圆锥的侧面积=π×6×10=60πcm2.【点评】本题考查圆锥侧面积公式的运用,掌握公式是关键.23.一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.【考点】圆锥的计算.【专题】计算题.【分析】利用底面周长=展开图的弧长可得.【解答】解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为:120.【点评】考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.24.已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于24π.【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×8÷2=24π,故答案为:24π.【点评】本题考查圆锥的侧面积的求法,牢记公式是解答本题的关键,难度不大.25.若圆锥的侧面展开图的弧长为24πcm,则此圆锥底面的半径为12cm.【考点】圆锥的计算.【分析】利用扇形的弧长等于圆锥的底面周长列出等式求得圆锥的底面半径即可.【解答】解:设圆锥的底面半径为r,∵圆锥的侧面展开图的弧长为24πcm,∴2πr=24π,解得:r=12,故答案为:12.【点评】本题考查了圆锥的计算,解题的关键是牢记扇形的弧长等于圆锥的底面周长.26.用一个圆心角为240°半径为6的扇形做一个圆锥的侧面,则这个圆锥底面半径为4.【考点】圆锥的计算.【专题】计算题.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:∵扇形的弧长==8π,∴圆锥的底面半径为8π÷2π=4.故答案为:4.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.27.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为π.【考点】圆锥的计算.【分析】根据圆锥的底面周长即为圆锥的侧面展开扇形的弧长求解.【解答】解:圆锥的底面圆的周长=π,故答案为:π.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.28.如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是2cm.【考点】圆锥的计算.【专题】几何图形问题.【分析】易求得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长为:=4πcm,圆锥的底面半径为:4π÷2π=2cm,故答案为:2.【点评】考查了扇形的弧长公式,圆的周长公式,用到的知识点为:圆锥的弧长等于底面周长.29.用圆心角是216°,半径是5cm的扇形围成一个圆锥体的侧面(接缝处不重叠),则这个圆锥体的高是4cm.【考点】圆锥的计算.【分析】设圆锥底面的圆的半径为r,利用圆锥的侧面展开图为一扇形得到2πr=,解得r=3,然后根据勾股定理计算这个圆锥的高.【解答】解:设圆锥底面的圆的半径为r,根据题意得2πr=,解得r=3,所以这个圆锥的高==4(cm).故答案为:4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.30.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是180°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到扇形的弧长为4π,扇形的半径为4,再根据弧长公式求解.【解答】解:∵轴截面是一个边长为4的等边三角形,∴母线长为4,圆锥底面直径为4,∴底面周长为4π,即扇形弧长为4π.设这个圆锥的侧面展开后所得到的扇形的圆心角的度数为n,根据题意得4π=,解得n=180°.故答案为:180°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.。

北师大版九年级下册数学 第三章 圆 单元测试卷(含答案解析)

北师大版九年级下册数学第三章圆单元测试卷(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列说法正确的个数是()①直径是圆的对称轴;②半径相等的两个半圆是等弧;③长度相等的两条弧是等弧;④和圆有一个公共点的直线是圆的切线.A.1B.2C.3D.42. 圆内接四边形MNPQ中,∠M、∠N、∠P的度数比是3:4:6,则∠Q的度数为()A.60∘B.80∘C.100∘D.120∘3. 某公园计划砌一个形状如图(1)的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,若两种方案砌各圆形水池的周边需用的材料费分别为W1和W2,则()A.W1<W2B.W1>W2C.W1=W2D.无法确定4. 如图,AB、CD是⊙O的两条弦,OE⊥AB于E,OF⊥CD于F.如果AB=CD,那么下列判断中错误的是()̂=CD̂ B.∠AOB=∠CODA.ABC.OE=OFD.∠AOC=∠BOD̂的中点,连接OC,点E,F分别是OA,OC上的点,5. 如图,AB是⊙O的直径,C是AB若EF // AC,则∠EFC的度数为()A.45∘B.60∘C.135∘D.160∘6. 下列说法中,正确的是()A.90∘的圆周角所对的弦是直径B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.经过半径的端点并且垂直于这条半径的直线是这个圆的切线D.长度相等的弧是等弧7. 如图,⊙O阴影部分为残缺部分,现要在剩下部分裁去一个最大的正方形,若OP=2,⊙O半径为5,则裁去的最大正方形边长为多少?()A.7B.6C.5D.48. 如图,由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是()。

九年级上册数学单元测试卷-第2章 对称图形——圆-苏科版(含答案)

九年级上册数学单元测试卷-第2章对称图形——圆-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,AB是⊙O的直径,O是圆心,弦CD⊥AB于E,AB=10,CD=8,则OE的长为( )A.2B.3C.4D.52、如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=( ).A.8cmB.5cmC.3cmD.2cm3、如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C 的大小等于()A.20°B.25°C.40°D.50°4、若⊙O的面积为25π,在同一平面内有一个点P,且点P到圆心O的距离为4.9,则点P与⊙O的位置关系为()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定5、如图,已知⊙O的半径为5cm,弦AB=6cm,则圆心O到弦AB的距离是()A.1cmB.2cmC.3cmD.4cm6、若扇形的半径为3,圆心角为60°,则此扇形的弧长是()A.πB. 2πC. 3πD.4π7、下列有关圆的一些结论:①弦的垂直平分线经过圆心;②平分弦的直径垂直于弦;③相等的圆心角所对的两条弦的弦心距相等;④等弧所在的扇形面积都相等,其中正确结论的个数是()A.4B.3C.2D.18、过钝角三角形的三个顶点作圆,其圆心在()A.三角形内B.三角形上C.三角形外D.以上都有可能9、如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点A的直线折叠,点O 恰好落在弧AB上的点处,折痕交OB于点C,则弧的长是()A. B. C. D.10、下列命题正确的是()A.三角形的内心到三角形三个顶点的距离相等B.三角形的内心不一定在三角形的内部C.等边三角形的内心,外心重合D.一个圆一定有唯一一个外切三角形11、如图△ABC的内接圆于⊙O,∠C=45°,AB=4,则⊙O的半径为()A.2B.4C.2D.412、如图,Rt△ABC中,∠C=90°,AB=13,BC=5,则其内切圆半径为()A.1B.2C.3D.413、已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.2 cmB.4 cmC.2 cm或4 cmD.2 cm或4cm14、如图,在中,,于,已知,,以点为圆心,为半径画圆,则点在()A. 上B. 内C. 外D.都有可能15、如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A. B. C.2π D.二、填空题(共10题,共计30分)16、如图,,是的切线,,为切点,连接,,,则________度.17、如图,已知正方形ABCD的顶点A、B在⊙O上,顶点C、D在⊙O内,将正方形ABCD绕点逆时针旋转,使点D落在⊙O上.若正方形ABCD的边长和⊙O的半径均为6cm,则点D 运动的路径长为________ cm.18、如图所示,四边形ABCD是圆内接四边形,其中,则________.19、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2 cm,∠BCD=22.5°,则⊙O的半径为________cm.20、如图,已知AB,CD是☉O的直径,弧AE=弧AC,∠AOE=32°,那么∠COE的度数为________度.21、如图,已知⊙O上三点,,,切线交延长线于点,若,则________.22、如图,C是以AB为直径的⊙O上一点,已知AB=10,BC=6,则圆心O到弦BC的距离是________.23、如图,圆锥的底面半径为1cm,高SO等于2 cm,则侧面展开图扇形的圆心角为________°.24、已知圆锥的底面半径为5cm,母线长为8cm,则它的侧面积为________cm2.25、钟表的分针长10cm,经过20分钟,它的针尖转过的弧长是________cm.三、解答题(共5题,共计25分)26、现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计)求该圆锥底面圆的半径.27、如图,在Rt△ABC中,∠ABC=90°,点F为AC中点,⊙O经过点B,F,且与AC交于点D,与AB交于点E,与BC交于点G,连结BF,DE,弧EFG的长度为(1+)π.(1)求⊙O的半径;(2)若DE∥BF,且AE=a,DF=2+﹣a,请判断圆心O和直线BF的位置关系,并说明理由.28、如图,AC是⊙O的直径,弦BD交AC于点E.(1)求证:△ADE∽△BCE;(2)如果AD2=AE·AC,求证:CD=CB.29、如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.30、如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学周测试卷(总分60分)
班别 姓名 学号
一、选择题(每题4分,共24分)
1.如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是( )
A.CE=DE B .B C= B D C.∠BAC=∠BAD D.AC >AD
第1题 第2题 第3题 第4题
2.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是⊙O 上的一个动点,那么∠OAP 的最大值是( )
A .30°
B .45°
C .60°
D .90°
3.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )
A.4
B.6
C.7
D.8
4.如图,点A B C ,,都⊙O 在上,若34C =∠,则AOB ∠的度数为( )
A.34
B.56
C.60
D.68
5.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧CD ⌒上不同于 点C 的任意一点,则∠BPC 的度数是( ) A.45° B.60° C.75° D.90°
6.如图,PA,PB,CD 是⊙O 的切线,A,B,E 是切点,CD 分别交
PA,PB 于C ,D 两点,若∠APB=40°则∠COD 的度数( ) A.50° B.60° C.70° D.75° 第6题 二、填空题(每题4分,共16分)
7.如图,已知AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点,且∠BAC =50°,则∠ACD = ____°. (10中考)
第7题
8.如图,在⊙O 中,∠AOB =100°,点P 在⊙O 上,则∠APB 的度数是___.(06年中考) 9.如图是一圆形水管的截面图,已知⊙O 的半径OA =13,水面宽AB =24,则水的深度CD 是 .(13中考)
10.如图,ABC △内接于⊙O,AD 是⊙O 的直径,30ABC ∠=,则CAD ∠=______ ° .
P A B O 第8题图O A
P
B C
O 第9题 C
E
D
O
B
A
O
M
O
C
B
A
O
D C
B A
第5题
A D B
O
第10题 D
O
P
C A
B
E
三、解答题
11.(10分)如图,已知线段AB 与⊙O 相切于点M ,AM =BM ;OA 、OB 分别交⊙O 于点P 、Q ,点C 、D 在⊙O 上,且MPC =MQD .(07中考)
求证:(1)OA =OB ;(2)AC =BD .
12.(10分)如图,AB 是⊙O 的直径,点C 是⊙O 上一点,∠BAC 的平分线AD 交⊙O 于点D ,过点D 垂直于AC 的直线交AC 的延长线于点E .(12年中考)
(1)求证:DE 是⊙O 的切线;
(2)如果AD =5,AE =4,求⊙O 的直径.
A
B
O
D
C E。

相关文档
最新文档