生物柴油的研究进展及发展方向
微藻制备生物柴油的技术进展

微藻制备生物柴油的技术进展郭丹;银建中【摘要】生物柴油是一种新型的可再生能源,是石化柴油的替代品.微藻种类多、光合作用效率高、生长速度快、生物产量大、含油量高,已成为发展生物柴油产业的最有潜力的原料之一.综述了微藻制备生物柴油的优点及研究进展.针对目前微藻生物柴油存在的瓶颈问题和实际需求,指出未来研究和发展的主要方向.【期刊名称】《化工装备技术》【年(卷),期】2014(035)004【总页数】6页(P4-9)【关键词】微藻;生物柴油;可再生能源;石化柴油【作者】郭丹;银建中【作者单位】大连理工大学化工机械学院;大连理工大学化工机械学院【正文语种】中文【中图分类】TK6进入21世纪,人们对能源消耗和环境保护的观念越来越深入,可持续发展战略和能源再生战略也在全球得到确定并得以实施。
生物柴油作为一种可再生、无污染的清洁能源,凭借其突出的性能,引起了世界范围内的高度关注,其中发达国家,尤其是资源贫瘠国家更是进行了大量且深入的研究。
生物柴油的主要成分为脂肪酸烷基单酯,一般是由植物油或者动物油脂经过和甲醇进行酯交换反应制得,且分子量与石化柴油相当,燃烧性能也与石化柴油类似,故成为有力的替代能源。
生物柴油的研究自20世纪以来,经过100多年的发展,在生产的工艺上和技术上也日趋成熟。
全球生物柴油的产量增长迅速,从 2004年的2.196×109L到2007年的9.841×109L,再到 2012年总产量为22.5×109L,年增长量为2.532×109L[1]。
与此同时,世界上许多国家都已制定了生物柴油的发展规划,并且出台了相应的政策和法规,以推动生物柴油的推广和使用。
作为欧盟乃至全球最大的生物柴油生产国,德国政府对生物柴油的生产和应用给予了极大的鼓励,并在价格上给予了一定的补贴。
目前在德国,生物柴油已经替代普通柴油作为公交车、出租车等运输行业使用的燃料。
美国是世界能源消耗大国,为了缓解能源危机,对生物柴油的研究和发展也是不遗余力的。
生物柴油简介

生物柴油简介摘要介绍了生物柴油作为燃料的性质、制备生物柴油的原料和生产方法。
关键词生物柴油可再生清洁能源酯交换反应?オ?石油危机和环境污染成为当今世界的2大问题,寻找可再生和低污染的生物能源成为迫切的需要。
为了解决能源和环境问题,人们一直在不断寻找可替代石油原料的可再生清洁能源。
生物柴油作为可再生的清洁能源,已在美国和欧盟等多个国家和地区推行使用。
利用生活废弃物或生物原料通过各种化学反应制造柴油的方法就是在这种背景下顺应而生的方法。
为了区别于石油原料制备的柴油,人们把来源于生物质原料的油脂经过化学变化后生成的、具有和柴油相似功能的酯称为生物柴油(Biodiesel)。
??1 生物柴油的主要成分、性质和原料??1. 1 生物柴油的成分和性质石油原料生产的柴油(以下简称矿物柴油)是含C12~C19的烷烃为主的混合物。
生物柴油是生物质油脂(A)(R视原料来源可以相同也可以不同)与甲醇经酯交换反应生成的高级脂肪酸的甲酯[1]:??一般R为奇数碳原子,主要含C11~C17的烃基(有的含不饱和双键),副产物主要是甘油。
生物柴油有较高的燃料十六烷值、基本不含硫和芳烃、低挥发性和分子中含氧等优点,使其具有降低柴油机排放的潜能。
生物柴油是典型的可再生能源,还具有无毒和可生物降解性,对环境无害。
表1是以食用色拉油为原料生产的生物柴油和0号矿物柴油的特性比较[2](由于生物柴油和矿物柴油的来源不同,可能以下特性有不同的值)。
生物柴油存在油脂分子量大(约为矿物柴油的4倍),黏度高(约为矿物柴油12倍),挥发性差,与空气混合效果不佳,易产生热聚合作用等问题。
其中高黏度是不适合柴油发动机的关键因素之一。
稀释、热分解、微细乳化及酯交换是解决上述问题的方法。
目前最好的方法是酯交换,而最常用的方法是生成甲酯[3]。
这就是制备生物柴油都要经过上述反应的原因。
酯交换反应(transesterification)又称酯的醇解(alcoholysis for ester)是一个酯分子中的烷氧基被醇中的另一种烷氧基置换,生成一种新醇和新酯,该反应是一个可逆反应。
利用海藻发展生物燃油

利用海藻发展生物燃油浅析摘要:本文介绍了国内外利用海藻发展生物燃油相关技术的研究进展情况,分析了实现产业化发展的关键问题,提出了我国在这一领域的战略思考和重点研究方向。
关键词:海藻;生物燃油;能源;减排;1引言随着全球经济的发展,能源将日趋紧张。
传统能源的迅速减少以及严重的污染问题,已经严重危害到全球的经济和环境。
我们必须减少对化石资源的依赖,加大可再生能源的开发和利用。
目前,生物质能生产主要以农作物为原料,对粮食、耕地、水等资源需求巨大,因为资源供给的限制,难以满足市场需求。
海洋生物质能的开发为解决这一问题提供了出路。
2利用海藻发展生物燃料研究的背景和现状生物质能是以生物质为载体,将太阳能以化学能形式贮存其中,能源主要依靠植物的光合作用产生。
生物能可以转化为固态、液态和气态燃料形式,替代传统的化石燃料,具有环保和可再生双重属性。
工程海藻的研究和开发,为生物质能产业提供充足和廉价的原料供给成为可能。
美国从1976年起就启动了微藻能源研究。
目前,美国的科学家已经培育出富油的工程小环藻,这种藻类比自然状态下微藻的脂质含量提高3至12倍。
2006年11月,美国亚利桑那州建立了可与1040兆瓦电厂烟道气相连接的商业化系统,成功地利用烟道气的二氧化碳,大规模光合成培养微藻,并将微藻转化为生物“原油”。
2007年,美国启动“微型曼哈顿计划”,计划实现微藻制备生物柴油的工业化。
美国能源局计划在各项技术全面进展的前提下,将微藻产油的成本于2015年降至2至3美元/加仑。
2007年,日本启动了大型海藻的能源计划项目,利用马尾藻生产汽车用乙醇。
预计到2020年,栽培面积将达1万平方公里,每年可收获6500吨干藻,可以生产约200万升燃料乙醇,相当于现有日本汽车油耗量的三分之一。
今年,我国微藻能源方向首个国家重点基础研究发展计划(“973计划”)项目“微藻能源规模化制备的科学基础”,已经正式启动。
该项目将以推动微藻能源规模化制备中核心技术的重大突破为目标,提高微藻能源规模化制备系统中各单元的效率为主线,研究从藻种选育到微藻能源规模化制备系统构建过程中亟待解决的生物学及工程学方面的关键科学问题。
地沟油回收提炼生物柴油工艺探讨李顺朝

地沟油回收提炼生物柴油工艺探讨李顺朝发布时间:2023-05-29T02:37:44.341Z 来源:《中国科技信息》2023年6期作者:李顺朝[导读] 我国面临着十分严峻的环境问题和资源问题,绿色环保的能源是当前我国备受关注的话题。
我国每天产生的地沟油数量庞大,通过合理地回收和处理可应用于其他行业,其中提炼生物柴油就是非常重要的一个途径。
易高生物化工科技(张家港)有限公司江苏苏州 215600摘要:我国面临着十分严峻的环境问题和资源问题,绿色环保的能源是当前我国备受关注的话题。
我国每天产生的地沟油数量庞大,通过合理地回收和处理可应用于其他行业,其中提炼生物柴油就是非常重要的一个途径。
为了提高地沟油回收提炼生物柴油工艺水平,本文首先明确地沟油对人体产生的危害和地沟油回收相关研究进展,然后重点针对地沟油回收提炼生物柴油工艺进行探讨,希望可以为相关工作者提供参考。
关键词:地沟油;回收提炼;生物柴油1 地沟油的危害1.1 对人体的危害地沟油可以按照来源不同分为三大类别,分别为狭义上的地沟油、屠宰场的动物脂肪油和厨房老油。
地沟油中含有大量的脂肪酸甘油酯,在环境中会逐渐出现酸败、氧化、分解等化学反应,并释放出有毒有害物质,威胁人体健康。
比如释放出的砷在人体中大量集聚后会导致人体出现失眠、头痛、头晕、消化不良等问题;铅含量过高时会导致人体发生剧烈腹痛、贫血、中毒性肝病等问题;黄曲霉素、苯并芘等会引发肾癌、肠癌、胃癌等疾病。
1.2 对环境的污染地沟油中的油脂降解难度大,污水处理厂处理地沟油时需要消耗3-4mg氧才能氧化1mg的油脂,处理负荷较大,处理效率不高。
城市餐饮业排放的废水中含有大量的油脂,这些油脂容易凝结并在管壁上粘附,久而久之粘附杂物形成积年污垢,严重影响城市排水管网的运行效率,尤其是寒冷的冬季难以清除,导致管道流量降低,甚至出现堵死的问题。
如果废油污染了净水,那么会导致水体中COD和BOD大大增高。
strep haba 再生原理

一、简介Strep haba是一种高效的细菌生物转化技术,它可以将再生型烷烃生物柴油生产的成本大幅降低。
该技术利用了一种特殊的酵母菌,它可以将生物质原料转化为高品质的燃料。
在本文中,我们将探讨Strep haba的再生原理以及其在生物柴油生产中的应用。
二、 Strep haba的研究背景Strep haba的研究始于对生物柴油生产成本的调查。
传统的生物柴油生产方法存在着生产成本高、能源利用率低以及生产规模受限等问题。
为了解决这些问题,科学家们开始针对酵母菌的代谢途径进行研究,希望找到一种更加高效的生物柴油生产途径。
三、 Strep haba的再生原理Strep haba是一种特殊的酵母菌,它具有高效的烷烃合成能力。
在Strep haba的代谢途径中,生物质原料首先被分解成简单的碳水化合物,然后通过一系列的酶催化反应,这些碳水化合物会被转化为烷烃化合物。
这些烷烃化合物就是生物柴油的主要成分。
四、 Strep haba在生物柴油生产中的应用Strep haba的再生原理为生物柴油的生产提供了一种新的思路。
通过利用Strep haba这种高效的酵母菌,生产商可以将生物质原料转化为高品质的燃料,从而降低生产成本,提高能源利用率。
目前,已有许多生物柴油生产企业开始使用Strep haba技术,取得了良好的效果。
五、结论与展望Strep haba的再生原理为生物柴油生产开辟了一条新的途径。
随着生物柴油市场的不断扩大,Strep haba技术有望成为生物柴油生产的主流技术之一。
未来,科学家们还将继续深入研究Strep haba的代谢途径,希望能够进一步提高其生物柴油合成效率,从而为实现清洁能源目标做出更大的贡献。
Strep haba的再生原理是一种高效的生物柴油生产技术,它将有望成为生物柴油生产领域的重要技术之一,为降低生产成本、提高能源利用率和减少环境污染做出重要贡献。
六、 Strep haba 技术的优势Strep haba 技术相对于传统的生物柴油生产方法具有诸多优势。
生物质能研究现状及未来发展策略

生物质能研究现状及未来发展策略一、本文概述随着全球能源需求的不断增长,传统化石能源的日益枯竭,以及环境污染问题的日益严重,生物质能作为一种清洁、可再生、可持续的能源形式,受到了广泛关注。
本文旨在全面梳理生物质能的研究现状,深入剖析其在能源转型、环境保护和经济发展等方面的重要作用,同时探讨生物质能未来发展的策略与路径。
我们将从生物质能的定义、特点出发,介绍其在能源领域的应用现状,分析存在的问题与挑战,最后提出针对性的未来发展策略,以期为我国乃至全球的生物质能发展提供参考和借鉴。
通过本文的阐述,我们期望能够增进对生物质能的认识,推动其在全球能源结构中的优化与升级,为构建清洁低碳、安全高效的能源体系贡献力量。
二、生物质能研究现状近年来,生物质能作为一种可再生、低碳的能源形式,已逐渐成为全球能源领域研究的热点。
其在能源结构中的比重逐渐上升,为应对气候变化、推动可持续发展提供了重要途径。
目前,生物质能的研究和应用主要集中在生物质发电、生物质燃料、生物质热化学转化以及生物质生物化学转化等领域。
在生物质发电方面,生物质直燃发电和生物质气化发电技术已相对成熟,广泛应用于农林废弃物、生活垃圾等的能源化利用。
生物质发电不仅可以替代化石燃料,减少碳排放,还能在一定程度上解决废弃物处理的问题,具有环境友好的特性。
生物质燃料的研究与应用也日益广泛,生物柴油、生物质成型燃料等已成为替代传统化石燃料的重要选择。
这些燃料具有可再生、低污染的特性,在交通、工业等领域有着广阔的应用前景。
生物质热化学转化技术,如生物质热解、生物质气化等,能够将生物质转化为高品质的气体或液体燃料,提高生物质能的利用效率。
目前,这些技术仍处于研究和示范阶段,但其在未来能源领域的应用潜力巨大。
生物质生物化学转化技术,如生物质发酵产乙醇、生物质酶解产糖等,是生物质能利用的另一重要方向。
这些技术能够将生物质转化为高附加值的化学品或生物燃料,对于推动生物质能的深度利用具有重要意义。
生物柴油——可再生能源
生物柴油——可再生能源-maChemicals生物柴油可再生能源◆潘鹤林,徐志珍,杨锦梁2施荣荐2(1华东理工大学化工学院上海200237;2丹阳市河海植物油厂江苏丹阳212000) 摘要:生物柴油是一种绿色可再生,可生物降解,无毒性的新型清洁能源,已经逐渐引起人们的关注.文章综述了生物柴油的发展历程,性能,制造方法以及国内外推广应用?itt-~.关键词:生物柴油;可再生能源Biodiesel,AKindOfRenewableEnergyResourcePanHelin',XuZhizhen',Y angJinliang.ShiRongjian(1ECUST;2HeHaiPlantOilFactory,DanY ang,JiangSuProvince)Abstract:Biodiesel,asakindofgreenrenewable,biodegradableandnontoxicenergyresourc ehasattractedconsiderableattentionrecently.Inthispaper,it'Scurrentsituation,developmentprogre ss,pr oductionmethodsareintroducedbothinforeignandchina.Keywords:Biodiesel;RenewableEnergyResource寻求能源多元化和清洁绿色可再生能源已经成为世界发展的大趋势.生物质能源是可再生能源中切实可行的能源种类之一,而生物柴油正是以油料作物,野生油料植物和工业藻类等水生植物油脂,动物油脂,以及餐饮废油等为原料,通过酯交换反应制成的脂肪酸甲酯或乙酯类化合物.它不仅可替代化石柴油能源,还是燃料石油化工产品的优良替代品,同时具有环境友好,可再生及资源丰富的独特优势.1生物柴油的发展历程生物柴油的概念最早是由德国热机工程师RudoffDiesel于1895年提出的,1900年在巴黎世界博览会上,Rudolf Diesel展示了用花生油作燃料的发动机.生物柴油及其生产技术的深入研究始于20世纪50年代末60年代初,发展于20世纪70年代,20世纪80年代以后迅速发展.1980年美国开始研究以豆油代替柴油作燃料,1983年美国科学家GrahamQuick首先把亚麻油甲酯用于发动机,并将可再生的脂肪酸甲酯定义为生物柴油"Biodiesel".这是狭义上的生物柴油.1984年,美国,德国等国家的科学家研究了用脂肪酸甲酯或乙酯代替化石柴油作燃料,形成了更广意义上的生物柴油内涵.20世纪80年代中期,美,法,意大利等国相继成立了专门的生物柴油研究机构,同时投入大量的人力,物力,进行生物柴油的研究开发.同时,政府采用各种优惠政策,鼓励生物柴油的研究,生产和应用.到目前为止,生物柴油的生产技术已经基本成熟,大规模的生产已出现, 因对环境友好,正逐渐应用到各个生产领域.2生物柴油的性能美国生物柴油协会对生物柴油作了定义,指以植物,动物油脂等可再生生物质资源生产的,可用于压燃式发动机的清洁燃料.而生物柴油的化学组成是长链脂肪酸甲酯.天然油脂多为脂肪酸的甘油三酯,经过化学过程(酯交换)后,分子量降低至与柴油接近,同时具有柴油的各种性能,因而生物柴油是一种可代替柴油使用的环境友好的绿色清洁能源. 生物柴油具有优异的性能:(1)具有优良的环保特性.生物柴油和化石柴油相比含硫量低,使用后可使二氧化硫和硫化物排放大大减少.权威数据显示,二氧化硫和硫化物的排放量可降低约30%.生物柴油不含有对环境造成污染的芳香族化合物,燃烧尾气对人体的损害低于化石柴油,同时具有良好的生物降解特性.和化石柴油相比,柴油车尾气中有毒有机物排放量仅为1/10, 颗粒物为20%,二氧化碳和一氧化碳的排放量仅为10%,排放尾气指标可达到欧洲II号和…号排放标准.(2)低温启动性能.和化石柴油相比,生物柴油具有良好的发动机低温启动性能,冷滤点达到?20℃.(3)具有良好的润滑性能.使用生物柴油可降低喷油泵,发动机缸体和连杆的磨损率,延长其使用寿命.(4)具有良好的安全性能.生物柴油的闪点高于化石柴油, 它不属于危险燃料,在运输,储存,使用等方面的优点明显.(5)具有优良的燃烧性能.生物柴油的十六烷值比化石柴油高,燃烧性能好于化石柴油.燃烧残留物呈微弱酸性, 使发动机油和催化剂的寿命延长.化工文摘2007年5期ChinaC(6)具有可再生性.生物柴油是一种可再生能源,其资源不会象石油,煤炭那样会枯竭.(7)使用生物柴油的系统投资少.原用柴油的引擎,加油设备,储存设备和保养设备无需改动.(8)可调和性.生物柴油可按一定的比例与化石柴油配伍使用,可降低油耗,提高动力,降低尾气污染.3生物柴油的制造方法生物柴油的制备方法比较多,主要包括以下各种方法.3.1直接混合法这是2O世纪80年代初出现的最简单的生物柴油的制造方法.采用天然油脂与化石柴油,溶剂或醇类混合而成,是一种物理方法.天然植物油因其粘度过高,如直接应用于发动机,会带来较多的问题,主要是其燃烧特性和低温启动性能等方面.加入化石柴油,溶剂的主要目的是降低植物油的粘度和密度.这种制备生物柴油的方法虽然工艺比较简单, 但是产品质量不高.这种产品使用过程中燃烧不完全,易引起结焦,并使燃油喷嘴堵塞,润滑油也容易变质.3.2微发乳化法该方法采用动,植物油和低碳醇类等溶剂,在乳化剂的作用下,混合成为微乳状的生物柴油产品,该方法也是一种物理方法.该方法制备的生物柴油燃烧特性比较差,十六烷值较低,使用过程中存在破乳现象,燃烧过程中也会出现结焦和使润滑油变质等问题.3.3热裂解法借助于催化剂,高温下对植物油进行热裂解,制得生物柴油.该方法生产的生物柴油和化石柴油性能接近,但是粘度略显高.该方法工艺过程虽然比较简单,也不会污染环境,但裂解反应在高温下进行,裂解反应设备要求比较高, 裂解反应难以控制.另外,该方法单位原料量下生物柴油的产量比较低.3.4酯交换法该方法是工业上生产生物柴油的主要方法.原料为油料和低碳链醇,在催化剂作用下发生酯交换反应,得到脂肪酸甲酯和甘油.低碳链的醇包括甲醇乙醇丙醇和丁醇等.工业上一般使用甲醇,因为甲醇市场价格比较便宜,碳链最短,极性又较强,能够较快地和脂肪酸甘油酯进行酯交换反应,而且酸,碱催化剂相对容易溶解于甲醇.酯交换反应是平衡可逆反应,控制甲醇过量,可以使得平衡向生成脂肪酸甲酯方向移动,所以工业上采用甲醇为原料时,甲醇的实际用量比理论用量高.酯交换反应是一系列串联反应组成,甘油三酯分步转化成甘油二酯,甘油单酯和甘油,每一步反应产生一分子脂肪酸甲酯.酯交换反应采用的催化剂主要包括:酸性催化剂,碱性催化剂,生物酶催化剂等.也可以控制酯交换反应在超临界条件下进行.3,4.1酸性催化剂酯交换反应的酸性催化剂主要为硫酸等无机强酸,固体强酸,酸型离子交换树脂等.在酸性催化剂存在下,甲醇与油脂中游离的脂肪酸能够发生酯化反应,所以工业上的预酯化工文摘2007年5期化反应一般也采用酸性催化剂.酸性催化剂尤其适用于原料含游离脂肪酸,水量稍高的场合.酯化反应进行的同时,甲醇和甘油三酯的酯交换反应也同时进行.3.4.2碱性催化剂酯交换反应的碱性催化剂主要包括:强碱性化合物如氢氧化钠,氢氧化钾等,金属醇盐如甲醇钠,甲醇钾等,有机胺碱类化合物等.对这些催化剂,可以控制一定的条件,使其溶解于甲醇,酯交换反应在均相催化作用下进行.酯交换反应还可在非均相催化剂作用下进行,非均相的碱性催化剂主要是固体碱碱型离子交换树脂等.和酸性催化剂相比,碱性催化剂反应速率,收率都比较高,因此,酯交换反应的催化剂多用碱性催化剂.但是,碱性催化剂对油料中游离脂肪酸及含水量有较高的要求,因为游离脂肪酸的存在会与碱性物质发生皂化反应,同时水分的存在会引起酯类化合物的水解.当然工业上一般可以采取对油脂原料进行脱水预酯化处理措施,从而避免使用碱性催化剂时存在的问题.3.4.3生物酶催化剂生物酶为脂肪酶,其催化油脂和低碳醇之间的酯交换反应得到相应的脂肪酸酯.脂肪酶主要包括酵母脂肪酶,胰脂肪酶等.这些生物酶催化低碳醇与油脂之间的酯交换反应效率一般比较低,主要因为低碳醇对生物酶有毒性,其催化寿命也短.生物酶的价格高,生产成本比较高,这些限制了生物酶在生物柴油生产方面的应用.尽管采用生物酶固定化技术来提高其稳定性及循环使用,但到目前为止,尚未真正应用到生物柴油的工业化生产上.3.5超临界法超临界条件下制备生物柴油技术是近年来发展起来的新型方法.超临界条件和传统催化过程相比较,反应机理相同,但超临界反应是在高温高压下进行的.超临界法不需要催化剂,反应速率比较快,可以连续操作,并且可以避免酯交换过程中皂化现象.因此,超临界法比传统方法具有优势,但超临界高温高压条件会引起生产操作费用和能耗的大幅度增加,所以超临界法工业化目前尚有困难.3.6其他方法上述方法的基础上,多种新的技术手段应用到酯交换反应制备生物柴油的过程中,例如超声波,微波,离子液体等, 这些手段的应用强化了酯交化反应.4生物柴油的推广利用进展由于生物柴油的优越性能,对环境友好以及可再生性,其发展受到世界各国的重视,生物柴油已成为新型生物质能源的研究开发热点.美国是较早研究生物柴油的国家之一.由于美国是石油进口国,2O世纪9O年代,美国政府制定了国家能源政策, 鼓励生物柴油等可再生资源的发展.同时,美国又是大豆生产大国,大豆产量保证了生物柴油的原料供给.早在1992 年,美国宝洁公司已经开始生产生物柴油,后来陆续有Interchem公司,AgEnvironmentalProducts公司,Twin第48页45inaChemicals璐制琳tl觚m进,使用过程中有些仅考虑到效果而忽略了经济效益;有些只考虑到实用性而未注重合理性.因此,化学固沙研究应开辟新的途径,而发展新型,多用途的化学固沙材料,考虑固沙的综合效应,将成为当今重要的研究内容.石油大学化学化工学院范维玉主持完成的"新型多功能液膜固沙材料及其应用技术"已经通过了山东省科技厅组织的专家鉴定.该项成果以重油(渣油,沥青),膨润土,水玻璃等为主要原料,并复合多种功能添加剂,具有较好的渗透性和胶结性.其他研究者X,t~L化沥青,水泥掺加少量聚丙烯酸钠晦】,水玻璃掺加乙酸乙酯乳液【17】的研究表明,有机材料和无机材料的复合,优势互补,提高了材料的性能.有机一无机复合化学固沙材料不仅能使沙面表层固结达到稳定沙丘,防止沙害的目的,而且由于固沙材料的施用和表层沙固结的影响也改变了沙丘内部温度,水分的关系,有利于固沙植物的生长,将会是一种有效的固沙材料,也是今后固沙材料的主要研究方向.参考文献1王银梅,韩文峰,谌文武.对在沙漠地区应用化学固沙材料固沙的探讨[J】_灾害学,20032包亦望,苏盛彪.利用白色污染废料研制开发固沙胶结材料治理沙漠化[J】_中国建材,2001,6(9):55~583吴玉英,张力平.流沙合半流沙化学法固沙的研究[J】_北京林业大学,1998,20(5):42~464李臻,王宗玉.新型化学固沙材料的试验研究【J].石油工程建设,1997(2):3~65丁庆军,许祥俊,陈友治,等.化学固沙材料研究进展[J】_武汉理工大学,20036胡英娣.固定沙丘的石油覆盖技术【J】.世界沙漠研究,1993 (4):20~227嵩凤延.高分子环保固沙材料的研究.环境科学与管理, 2005,30(5):46~478LahalihS.Aprocessforthesynthesisofhighlystable suffonatedmelamine—formaldehydecondensatesas super—plasticizingadmixturesinconcrete[P].EurPAppl, 0219132A1.1987—04—22.9LahalihSM.Devlopmentandevaluationofnewmulti—purposesoiladditives[J].IndEngChemRes,1998,37(2):420~42610杨明,张丽丹,郭洪猷,等.固沙材料的合成与水溶性研究[J】. 固沙材料的合成与水溶性研究,2003,30(4):81—8411韩致文,胡英娣,陈广庭.化学工程固沙在塔里木沙漠公路沙害防治中的适宜性[J】.环境科学.2000,(9):86—8812王银梅l孑4,冠平,谌文武.SH固沙材料固化沙体的强度特征[J】.岩石力学与工程,2003,22(增2):2883—288713ZASLA VSKYD.eta1.Lignosulfonate—basedgraftpoly—merstheirpreparationandusesUS,4276077[P].198114王丹,宋湛谦,商士斌.改性木质素磺酸盐固沙材料的性能及应用研究[J】_林产化学与工业,200515LiJian—fa,SongZhan—qian,ShangShi—bi.Studyongraft—copolymerizationofcrudelignOsulfOnatesWithacrylic monomers[J】.ChemistryandlndustryofForestProducts,2004,24(3):1—616黄伟,田原宇,乔英云,等.以腐植酸和造纸黑液为原料的多功能可降解黑色液态地膜的研制与应用[J】_腐植酸,2005,4:21—2617葛学贵,等.环境矿物,SAP,化学固沙浆材综合治理荒漠初探【J】,岩石矿物学杂志,2001,20(4):511—514..一第45页RiversTech公司投入生物柴油生产.目前,生物柴油在多数州已经推广应用,生物柴油产量逐年增加.欧洲是使用生物柴油最多的地区,约占生物柴油市场的5%一10%.欧洲生产生物柴油的原料主要为油菜籽.德国和奥地利在1982年已经开始使用生物柴油.1985年奥地利建立了生物柴油的中试装置,从1990年开始规模化生产生物柴油,并于1991年首次发布生物柴油标准.1996年德国和法国相继建立了生物柴油工业化装置,至今德国拥有近10家生物柴油生产厂家,产量近30万t/a.法国有生物柴油生产厂家约8家,产量约25万t/a.意大利是生物柴油使用最广的欧洲国家,国内有9家生物柴油生产厂家.此外, 捷克,瑞典等国也蓬勃发展.亚洲地区的日本20世纪90年代中期开始研制生物柴油,目前,日本生物柴油产量已经达到45万t/a,主要原料是废弃的食用油.南美洲地区的巴西早在20世纪80年代就推出"生物柴油计划",因成本原因中断了20年,2003年,政府重新启动生物柴油计划,一度该国生物柴油产量超过美国和欧洲,由于需求原因,后维持在10万一15万t/a左右. 目前,生物柴油的生产遍布世界各地.除上述国家外,加拿大,西班牙,马来西亚,印度尼西亚,比利时等国都已建有生物柴油生产装置.国内为解决能源与环保问题,制定了一系列政策和措施,一些有识之士早致力于生物柴油的研究与开发,一些高等学府,研究所以及企业对生物柴油项目进行大力研究. 国内华东理工大学等早期对生物柴油进行了实验室研究, 并进行小试规模工艺开发.2006年华东理工大学与江苏省丹阳市河海植物油厂进行协同攻关,以酸化油为原料,建成年产万吨的生物柴油生产装置,生物柴油产品经过上海石油商品应用研究所石油产品分析评定中心,上海石化产品检测检验站的分析测试,测试结果达到欧盟,美国等生物柴油产品检验标准,产品价格与石化柴油相比,具有较强的市场竞争力.参考文献(略)化工文摘200'7年5期。
生物柴油的工艺技术简介pdf
除此之外,国内外还在开发有机碱催化剂,比如胺类等。当以有机 胺为催化剂时,在常压低温下经过 6~10h 的反应,可以达到比较高的 转化率,但产物中甘油单酯和二酯的含量很高,而甘油的量很低,难 以工业应用;当提高反应压力和温度时,反应过程中又有可能生成酰 胺,降低产品质量。因此,以有机碱为酯交换催化剂还需要有做大量 的研究工作来证明其可行性。 G,R
0.020
0.020
总甘油含量(质量分数)/ % 不大于
0.240
0.240
90%回收温度/ ℃
不高于
360
360
一价金属含量(mg/l)
不ቤተ መጻሕፍቲ ባይዱ于
5
5
酯含量(%)
不小于
96.5
96.5
1、工艺基础 1.1 酸碱催化酯交换的反应机理:
脂肪酸甲酯主要是由甘油三酯与甲醇通过酯交换制备,其反应方 程式如下:
德国(Lurgi)鲁奇工艺:该工艺以精制油脂为原料,采用二
段酯交换和二段甘油回炼工艺,催化剂消耗低,是目前世界上应 用最多的技术。鲁奇公司两级连续醇解工艺与常用二段酯交换工 艺的区别和优势在于:第二段酯交换后分离出的含有较高浓度甲 醇和含液碱催化剂的甘油一起作为原料直接进入第一段酯交换反 应器参与反应,从而减少催化剂用量。该工艺的缺点是对原料要 求苛刻,生产过程中废液排放较多。至今 Lurgi 生物柴油生产工艺 是目前世界上销售最多的技术,也是工业化装置最成熟的技术。
生物柴油工艺技术简介
摘要: 随着油脂化工产品市场的迅猛发展,与之相关的核心生
产技术应用与研发必将成为业内企业关注的焦点。工艺与装 备技术,是衡量一个企业是否具有先进性,是否具备市场竞 争力,是否能不断领先于竞争者的重要技术经济指标。通过 了解研究国内外油脂化工生产核心技术,提升产品技术升级 换代,进一步提高产品市场核心竞争力。地沟油的价格越来 越高,生物柴油企业的利润空间越来越小,许多企业甚至到 了亏损的边缘,在死亡线上争扎,而有的企业还有较好的收 益,过着高收益的好日子。这是为什么呢?很多人想不明白 其中的奥秘。生物柴油的主要成本是原料地沟油,市场经济 条件下,按质论价,同等地沟油的价格相差无几,同样地沟 油原料,产品品质的优劣,消耗的多少,得率的高低对成本 有着重要影响。下面介绍本人拥有独立自主知识产权的,与 众不同的,具备了先进技术优势,高品质优势,低能耗优势, 高转化率优势,低甲醇消耗优势,低综合成本优势,环保绿 色优势的绿色,环保,低耗,高效生物柴油生产线。
生物柴油是以动物油脂和植物油脂为原料
生物柴油是以动物油脂和植物油脂为原料,通过与甲醇乙醇等低碳醇进行酯互换反映取得的长链脂肪酸单烷基酯目前生物柴油大多采用均相酯互换反映制备,用于酯互换生产生物柴油的催化剂主如果酸和碱。
随着经济的不断发展,人类对于能源的需求逐渐增加,能源危机问题日趋加重。
生物柴油作为新型的环境友好燃料受到了普遍的关注。
生物柴油是以餐厨废油,动、植物油脂等通过酯互换反映取得的可代替石化柴油的再生燃料。
与传统燃料相较,生物柴油燃烧后产生的废物更少,对环境的污染更小。
目前,工业制备生物柴油多采用均相催化法。
Rafael Guzatto[14]以大豆油、餐饮废油为原料,采用TDSP—两步催化的方式制备生物柴油。
此法大大减少了催化剂的用量,也降低了因催化剂引发的环境污染。
Manop[15]以餐饮废油为原料,利用两步催化的方式(第一步,以硫酸为催化剂;第二步,以KOH为催化剂),研究表明,第一步催化时,醇油比6:1,硫酸用量%,反映温度51℃,反映时间60min;第二步催化时,甲醇与第一步反映所得产物的摩尔比:1,KOH用量1%,反映温度55℃,反映时间60min,则此时,生物柴油的转化率可达%左右。
虽然,均相催化法利用的催化剂价钱低廉,且两步催化时可降低催化剂的利用量,但此法对原料的要求很高,反映后产物不易分离,后续操作污染较大[16]。
生物柴油的制备方式包括均相催化、非均相催化和不利用催化剂的超临界流体法〔一〕。
均相催化法包括均相酸、碱催化,该方式工艺成熟,转化率高,可是后期催化剂分离困难,产生大量废水,且对原料要求高。
非均相催化法包括固定脂肪酶催化、固体酸和固体碱催化,该方式后期分离简单,可是由于酶的利用条件苛刻和价钱昂贵,工业上很少利用,固体酸、固体碱催化两相接触不如均相充分,转化率低。
超临界流体法则很好地解决了上述问题。
超临界流体法制备生物柴油的优势、存在的问题及其应用展望综上所述可以看出,超临界流体酷互换反映制备生物柴油相对于均相酸、碱催化法的优势主要有以下几个方面表列举了超临界流体法与均相碱催化法的比较。
生物柴油生产技术的研究进展
生物柴油生产技术的研究进展赖红星;万霞;江木兰【摘要】生物柴油作为一种新兴的生物能源,以其可降解性、可再生性等优良品性受到人们极大的关注.生物柴油生产技术从最初的直接使用法、稀释混合法等到后来的酸/碱催化法、生物酶法、超临界法,经历了漫长的发展过程.综述了国内外生物柴油生产技术的优缺点及其研究进展.【期刊名称】《化学与生物工程》【年(卷),期】2010(027)005【总页数】6页(P11-15,20)【关键词】生物柴油;生产技术;物理法;化学法;生物酶法;超临界法【作者】赖红星;万霞;江木兰【作者单位】中国农业科学院油料作物研究所,湖北,武汉,430062;中国农业科学院研究生院,北京,100062;中国农业科学院油料作物研究所,湖北,武汉,430062;湖北省能源油料作物与生物柴油研究中心,湖北,武汉,430062;中国农业科学院油料作物研究所,湖北,武汉,430062;湖北省能源油料作物与生物柴油研究中心,湖北,武汉,430062【正文语种】中文【中图分类】TQ914.3生物柴油是指动植物油脂、餐饮废油等与低碳醇反应所得的脂肪酸甲酯(或乙酯)。
近年来,由于石油价格持续飚升和生物柴油的环境友好性,生物柴油的价值日益凸显。
制备生物柴油的方法可以归为四类:物理法、化学法、生物酶法以及超临界法。
作者在此简要概述了国内外生物柴油生产技术的优缺点及其研究进展。
1 物理法物理法是指通过物理机械的作用,将动植物油脂与石化柴油按比例混合,得到的油品因掺入了一定的动植物油脂而被称为生物柴油。
根据混合方式的不同,物理法分为直接使用法、稀释混合法和微乳化法三种。
1.1 直接使用法直接使用法迄今已有100多年的历史,柴油机的发明者Rudolph Diesel当初就是用花生油为燃料做测试的[1]。
1981年,Bartholomew提出了用食物作燃料的概念,并且指出植物油和酒精必将取代石油,可再生能源一定会取代不可再生能源。