X80管线钢焊缝熔合线开裂问题分析[1]

X80管线钢焊缝熔合线开裂问题分析[1]
X80管线钢焊缝熔合线开裂问题分析[1]

X80管线钢焊缝熔合线开裂问题分析

燕山大学材料科学与工程学院材料检测中心

针对X80管线钢在平整时出现的焊接接头熔合线处开裂问题,进行了全面的分析和总结。采用宏观金相、显微硬度计、扫描透射显微镜及能谱分析系统,对焊接接头的微观组织和显微硬度分布,断口形貌及裂纹扩展路径进行了详细的分析和讨论,并提出了解决此问题的建议。

1.金相分析

图1为焊缝横截面的宏观金相组织。由图可见,没有明显的成型缺陷,焊缝与母材融合良好,未发现未融合问题。里侧焊缝先前于外侧焊缝焊接,但是由于里侧和外侧焊缝凝固成型条件不同,导致焊后的焊缝形状和尺寸略有差异,特别是焊缝的余高尺寸差别最大,可以看到里侧焊缝的余高尺寸明显大于外侧焊缝。余高尺寸过大会带来在焊趾处(焊缝与母材表面的交接处)的截面突变,如果过渡角度过小,不仅会产生高的残余应力,同时也会在随后的受力过程中产生高的应力集中。

图1 焊接接头宏观金相形貌

图1中未断侧焊趾处(图中右箭头所示位置)过渡形状过于尖锐,这也许是校平过程中发生断裂的因素之一。进一步观察断裂侧的形貌可以肯定,起裂位置一定在焊趾处(图中圆圈处)。裂纹产生后在内侧焊缝的粗晶区扩展,而到了外侧焊缝时沿熔合线扩展。与图1中数字标记的各个区域对应的组织如图2和图3所示。从中可以看出,熔合区尺寸和近缝粗晶区的尺寸在热影响区所占的比例很小。1-6号图片中粗大的晶粒尺寸超过了100μm.,这已经远远的超过了母材的晶粒尺寸(<10μm)。组织由先共析铁素体(图中白色块状区域)和粒状贝氏体为主,并伴有大量的碳化物粒子。焊缝的柱状结晶组织清晰可辨,同时在相邻的柱状晶界面存在铁素体。比较特殊的是7号图片组织,可以看到晶粒明显细化,这是因为该区域受到外侧焊缝的再加热并随后冷却(正火组织)所致。从图1中也可判断7号位置正好处于外侧焊缝热影响范围内。

2

1 3

4 5 6

图2 里侧焊缝与母材熔合线处的组织形貌

图3中的9-16号组织是外侧焊缝的金相组织,可以看出,由于内外焊缝经历的焊接工艺参数不同,使得内外焊缝热影响区的组织也存在一定的差别,主要体现为外侧的焊缝的粗晶区晶粒尺寸更大,特别是白色的块状区异常长大(如图片14所示)。上述组织分析表明,焊缝热影响区的粗晶区和熔合线附近的组织是焊接接头的薄弱环节,也是裂纹易于扩展的区域。

7

8 9

11

10

12 13 14

15 16

母材

图3 外侧焊缝与母材熔合线处的组织形貌

图4为图2中1、2号区域的放大图像。图4a中在焊缝表面处,存在咬边的成型缺陷,虽然咬边缺陷的沟槽尺寸不大,目测不容易观察到,但是如果在拉应力状态下,会产生严重的应力集中而导致破坏。咬边缺陷在大规范高速焊时经常出现,必须引起足够的重视。图4b中,箭头所指处为白色的沿相界析出的铁素体,类似于过热组织(魏氏体组织),并从热影响区延伸至焊缝的柱状经区。这个区域也是裂纹易扩展的位置,从下面的图5中22号位置的裂纹可以看到这种裂纹。

图4 内侧焊缝1、2号区域的放大图像

图5为内焊缝断裂后的断口区域金相形貌,可以清楚的看到开裂初期,裂纹主要在近缝粗晶区扩展, 且多以穿晶形式开裂。在主裂纹扩展的同时,伴有二次裂纹产生。而当裂纹扩展到外侧焊缝区域后,基本上是沿着熔合线处开裂(如图6所示)。裂纹扩展途经的变化,也说明在内侧焊缝的开裂主要是由于基体经历了强塑性变形而硬化导致的,在外侧焊缝的开裂则主要是由于焊缝和近缝区基体强度和硬度差异导致的。

图5 内侧焊缝断裂处的金相相貌

17 19 18 20 21 22

24

23 25 26 27 28

图6 外侧焊缝断裂处的金相形貌

为了进一步观察近缝区的组织形貌,采用扫描电镜(SEM )对此区域的组织进行了进一步的观察。图7为观察结果,图中箭头所指图片为高倍观察结果,其与前面观察的金相组织具有对应性。

图7 内侧焊缝熔合线附近的组织形貌(SEM 低倍像)

图8为焊缝表面熔合线附近的组织,从中看到很多孔洞特征,这些孔洞不是焊接气孔,而是在进行金相抛光过程中,把夹杂物或碳化物相粒子抛掉留下的。但是从孔洞的尺寸可以判断,其主要是夹杂物,如图8a 中的大孔洞位置。图8b 中相当较小的孔洞也很有可能是夹杂物留下的。图8c 是a 图中方框内组织的高倍像,从中可以看到很多条束特征,其与校平过程中产生的大塑性变形有关。

图8 内侧焊缝熔合线附近的组织形貌(SEM 高倍像)

对内侧焊缝熔合线附近的组织进行的能谱线分析结果如图9所示。线分析位置为垂直于焊缝的熔合线,长度约150 m 。可以看出,所分析的元素没有明显的偏聚现象。

图9 内侧焊缝熔合线附近组织能谱线分析

Mn Cr Cu Mo V Ti Nb Ni Fe C

2 硬度分布

对熔合线附近区域的显微硬度分布进行了测试,测试结果如图10所示。测试区宽度为6mm ,每个测试点相距0.5mm 。可以看到,在融合线附近区域的硬度几乎都大于280Hv ,最高的硬度值达到320Hv (图10中圆圈区域)。由于试板在校平过程中,在焊缝熔合线靠近表面区域发生了严重的塑性变形,导致这一区域出现加工硬化而使得硬度升高。可以推测在已断裂侧的高硬度点也应该是这样沿着熔合线分布。在外加拉应力作用下,由于在截面突变处存在应力集中,这个应力已经超过了材料的抗拉强度,导致断裂发生。但是裂纹扩展却不一定沿着硬度高的区域进行,从前面金相分析可知,裂纹是沿着粗晶区扩展的,在此图中为靠右侧硬度较低的区域。

图10 硬度分布测试结果

由此可见,出现开裂的原因是:

1) 热影响区硬度和焊缝硬度偏离较多,在校平过程中变形主要集中在焊趾部位,经过试验测

量,焊趾部位微区的变形量达到45% ,已经超过了母材的延伸率,而焊缝的变形量只有15%左右;

2) 由于校平过程中试样表面硬化,表面层塑性急剧下降,使材料内外层塑性变形不匹配,在

加大变形时,裂纹无沿厚度方向发展

3)

焊趾和母材过渡不平滑也是造成应力集中形成裂纹的主要原因,本试样存在咬边缺陷,更

加剧了这种影响。

经上述分析认为,由于焊缝、热影响区、母材的塑性及硬度差异,使熔合线两侧的变形量不同,容易造成焊缝熔合线上的开裂。因此,应适当调整焊接工艺参数,使焊缝、热影响区、母材的硬度相匹配。在螺旋埋弧焊管焊接过程中,焊缝较宽时边缘冷却速度相对较快,焊缝较窄时边缘冷却速度相对较慢。较慢的冷却速度有利于降低焊缝边缘的硬度,提高该区域硬度的匹配性,因此,控制焊缝宽度有利于减少这种开裂情况的出现,但是要完全消除这种问题,恐怕还有很多工作要做。

3 断口分析

发现试样断口面上存在“自由面”,应是在校平前已经形成的表面裂纹,裂纹深度小于1mm,如图11中的底部区域。裂纹的产生很可能与此处的高的应力有关。这个高应力来自于残余应力在此处出现的应力集中。由于残余应力在焊缝长度方向的分布不均匀性,导致在整个焊管焊缝上会出现时断时续的微裂纹。这也可以解释为什么这种开裂问题在整体焊缝上出现的偶然性。图12为内侧焊缝裂纹扩展区断口形貌,可以看出,裂纹扩展区为典型的脆性解理特征,这和前面断口边缘金相观察有很好的一致性。而在外侧焊缝断口区(图13),其断裂特征也是以解理为主,并可以看到一些撕裂棱,但是总体断裂仍然是脆性的。

图11 内侧焊缝断口观察(起裂区)

开裂方向

图 12 内侧焊缝断口观察(扩展区)

开裂方向

图13 外侧焊缝裂纹扩展区形貌

结论

1. 从焊缝截面形状分析可以看出,内侧焊缝焊趾处过渡不平滑,进一步观察看到有咬边缺陷,这是造成试板校平时出现开裂的主要原因之一;

2.焊缝与母材热影响区之间的强度和硬度差异,也对开裂产生影响;

3.未发现焊缝熔合线附近存在成分偏析问题以及因夹杂物产生的开裂问题。

4.从断口分析可知,裂纹起源于内侧焊缝的焊趾处,此处存在“自由面”说明在校平前已存在裂纹。之后裂纹在内侧焊缝区沿粗晶区扩展,在外侧焊缝区沿熔合线扩展;断口均为脆性解理特征。

管线钢综述

综述 管线钢指用于输送石油、天然气等的大口径焊接钢管用热轧卷板或宽厚板。管线钢在使用过程中,除要求具有较高的耐压强度外,还要求具有较高的低温韧性和优良的焊接性能。随着石油、天然气消费量的增长,其输送的重要性显越发突出,尤其是长距离输送。而提高输送效率,提高输送的经济效益就要通过加大输送管道口径,提高输送压力来解决。从而提高了对高级别、高性能管线钢的需求。 国外高级别管线钢呈现强劲的发展趋势,从20世纪70年代初期X65管线钢开始投入使用,80年代X70级管线钢逐渐被引入工程建设,1985年API标准中增加了X80钢级,随后X80开始部分在一些管线工程中使用,并很快就投入到X100和X120管线钢的开发试制工作。有关X100最早的研究报告发表于1988年,通过大量工作已形成很好的技术体系。高级别管线钢概述我国管道建设正处于大力发展阶段,因此管线钢的发展也非常迅速。20世纪50~70年代管线钢主要采用A3钢和16Mn钢;70年代后期和80年代采用从日本进口的TS52K钢(相当于X52级钢);90年代,管线钢主要采用的X52、X60、X65级热轧板卷主要由宝钢和武钢生产供应。“八五”期间成功研制和开发了X52~X70级高韧性管线钢,并逐步得到广泛应用。西气东输工程采用了X70级管线钢并逐渐向X80过度。国内管线钢生产技术现状分析由于市场要求单管输气量不断提高。我国早期四川、西北地区的天然气管道采用X52及以下钢级、426mm以下管径的管线钢管,设计年输气量在10亿m3/a以下;陕京一线第一次采用了X60钢级、

D660mm管线钢管设计年输量提高到33亿m3/a;西气东输一线采用X70钢级、D1016mm管线钢管,设计年输量提高到170亿m3/a;最近建设的西气东输二线管道,采用X80钢级、D1219 mm管线钢管,设计年输量提高到300亿m3/a。 这种单管输气量不断提高的趋势仍在持续。当前国际上新一轮巨型天然气长输管道,单管输气量将达到450亿-500亿m3/a的水平。干线一般采用X80钢级,具有输送距离长、采用更高工作压力和大管径输送的特点。 一个具有代表性的项目是正在建设的俄罗斯巴甫年科沃-乌恰天然气管道。管线长度1100km,采用1420mm管径和K65(类似于X80)钢级,输送压力11.8MPa,单管设计输气量约500亿m3/a,计划于2012年第三季度进行系统调试。 另一个有代表性的项目是拟在北美建设的阿拉斯加北坡天然气外输管道,管道的输送能力约465亿m3/a,管线长度2737km,采用1219mm管径和X80钢级,将阿拉斯加北坡丰富的天然气资源输送到加拿大和北美市场。 我国也已在规划研究未来多条西气东输管道(西三线~西八线)的方案。包括将单管输气量提高到400亿~500亿m3/a的多种方案都在研究之中。 由于西气东输二线采用的X80钢级、管径1219mm,12MPa工作压力的方案只能达到300亿m3/a的输气能力,要将输气能力进一步提高到400亿-500亿m3/a,只能进一步提高输送压力和管径。

工艺管道焊接方案(最终版)

编号:FA(赤)J480-焊-002 国电赤峰 30·52 煤制尿素项目 A标段气化备煤、B标段净化空分 工艺管道焊接方案 编制: 审核: 批准: 标准化员: 中国化学工程第十一建设有限公司 国电赤峰工程项目经理部 2010年6月

目录 1.编制说明 (2) 2.编制依据 (2) 3.工程概况 (2) 4.通用要求 (2) 5.焊接工艺 (5) 6.焊缝检验及返修 (7) 7.焊接质量保证措施 (9) 8.焊接施工安全风险意识识别 (12) 9.焊接文明施工措施 (12)

1.编制说明 本方案仅适用于国电赤峰3052煤制尿素项目A标段气化备煤、B标段净化空分工艺管道碳钢、合金钢和不锈钢焊接施工作业。合金钢热处理方案及空分装置铝镁合金焊接方案详见专业方案。 在焊接过程中,将以焊接工艺卡的形式对本方案进行进一步细化,下发作业班组并进行技术交底,针对性指导现场焊接施工。 2.编制依据 1)评定合格的焊接工艺评定报告 2)赛鼎工程有限公司设计的技术文件及施工图纸 3)GB50236-2009 现场设备、工业管道焊接工程施工及验收规范 4)GB50235-1997 工业金属管道工程施工及验收规范 3.工程概况 本工程管道除空分装置冷箱外涉及以下材质:碳钢(20#、L245、Q235A)、低温钢(A333 Gr.6、A671 CC.60)、不锈钢(304、304L、316、1Cr18Ni9Ti)、铬钼合金钢(15CrMoG、12Cr1MoV)等。总焊接量约为25万DIN,分布于空分装置、低温甲醇洗、煤气水分离。变换煤气冷却、酚回收各工段。 4.通用要求 4.1.现场管线材质选用及焊材烘干一览表 钢号焊条牌号焊丝烘干温度(℃) 恒温时间(分)碳钢管(20#、L245、Q235A)J426 J427 H08Mn2SiA 350~400 60 低温管(A333 Gr.6、A671 CC.60)W707 TGS-1N 350~400 60 15CrMoG R307 H13CrMoA 350~400 60 铬钼合金钢管 12Cr1MoVG R317 H08CrMoVA 350~400 60

管道焊接技术标准[汇编]

管道焊接技术标准 金属管道种类繁多、数量大 ,使用工况千差万别。我国不同行业采用不同的应用标准体系 ,标准之间差别很大。当然 ,由于金属管道的工况 ,如温度、压力、介质、环境等不同 ,标准有差距是客观存在的。例如 ,电力电站管道高压、高温、蒸汽介质居多;石化、石油管道受压、腐蚀介质居多;化工行业管道还有剧毒介质(如氯气);机械行业压力容器 ,按使用情况及工况分成低压、中压、高压、超高压 ,按容器类别分成第一类压力容器、第二类压力容器、第三类压力容器。船舶管道有高压的蒸汽管道、主机冷却的海水管道(承压及受腐蚀)、污水管道(承压及受高温)、燃油输送管道、压缩空气管道等 ,在不同的工况条件下运行。以下择要介绍一些基本标准。 一、压力管道分类 1. 压力管道的定义 压力管道是指在生产、生活中使用的可能引爆或中毒等危险性较大的特种设备及管道。 ①输送GB5044①《职业性接触毒物性危害程度分级》中规定的毒性程度为极度危害介质的管道。 ②输送GB5016②《石油化工企业设计防火规范》及GBJ16《建筑设计防火规范》中规定的火灾危险性为甲、乙类介质的管道。 ③最高工作压力不小于0.1MPa(表压 ,下同) ,输送介质为气(汽)体及液化气体的管道。 ④最高工作压力不小于0.1MPa ,输送介质为可燃、易焊、有毒以及有腐蚀性或高温工作温度不小于标准沸点的液体管道。 ⑤上述四项规定管道的附属设施(弯头、大小头、三能、管帽、加强管接头、异径短管、管箍、仪表管、嘴、漏斗、快速接头等管件;法兰、垫片、螺栓、螺母、限流孔板、盲板、法兰盖等连接件;各类阀门、过滤器、流水器、视镜等管道设备 ,还包括管道支架以及安装在压力管道上的其他设施)。 ① GB5044分为四级(与99容规相同):极度危害(1级)<0.1mg/m3;高度危害(2级)0.1~1mg/m3;中度危害(3级)1.0~10mg/m3;轻度危害(4级)>10mg/m3。 ② GB5016标准对可燃气体火灾危险性分甲、乙两类 ,甲类气体为可燃气体与空气混合物的爆炸下限不大于10%(体积) ,乙类气体为可燃气体与空气混合物的爆炸下限不小于10%(体积)。 GB5016标准对液态烃、可燃液体的火灾危险性按如下分类: 甲A类 15℃的蒸汽压力大于0.1MPa的烃类液体及其他类似的液体; 甲B类甲A类以外的可燃液体 ,闪点小于28℃;

X80管线钢研发过程及焊接工艺种类

X80管线钢研发过程及焊接工艺种类 早期的管线钢一直采用C、Mn、Si型的普通碳素钢,在冶金上侧重于性能,对化学成分没有严格的规定。自60年代开始,随着输油、气管道输送压力和管径的增大,开始采用低合金高强钢(HSLA),主要以热轧及正火状态供货。这类钢的化学成分:C≤0.2%,合金元素≤3~5%。 随着管线钢的进一步发展,到60年代末70年代初,美国石油组织在API 5LX和API 5LS标准中提出了微合金控轧钢X56、X60、X65三种钢。这种钢突破了传统钢的观念,碳含量为0.1-0.14%,在钢中加入≤0.2%的Nb、V、Ti等合金元素,并通过控轧工艺使钢的力学性能得到显著改善。到1973年API标 准增加了X70,1985年,API标准又相继增加了X80钢。 X80钢的化学成分(wt%)是:C 0.035;Si 0.25;Mn 1.84;P 0.013 ;Mo 1.84;Ni 0.33;Nb 0.065;Cr<0.02;V<0.02。X80钢添加有较多Mo,Ni,Nb等微合金元素,起到细化晶粒作用,在控制碳含量较低的情况下,可有效提高X80钢强度和韧性。 X80钢属于高度的洁净钢,通过形变强化而使材料具有很高的强韧性,因 而该钢种对焊接加工提出了特殊要求,主要表现在:选择合适的焊接工艺来防

止焊接热影响区的晶粒粗化、局部软化与脆化,实现焊缝金属的纯净化与晶粒细化,消除焊接缺陷,提高焊缝强度,确保焊接质量。 根据X80钢的性能和化学成分,目前开发出几种焊接工艺: 1、采用全自动焊工艺。 2、采用半自动焊根焊+自保护药芯焊丝半自动焊填充盖面工艺。 3、采用碱性焊条电弧焊根焊+自保护药芯半自动焊填充盖面工艺。 几种方法中全自动焊工艺施工效率最高,适用于平原及开阔地带的焊接施工;半自动焊方法效率次之,但适用于各种地形的施工,是目前主要的施工方法;焊条电弧焊根焊的工艺方法效率最低,在目前采用的大口径管线施工中仅用于地形特别受限处、连头施工或返修焊施工。

焊接施工方案及工艺措施

第一节焊接施工方案及工艺措施 (一) 焊接专业施工总体安排 1、工程主要特点 1.1 焊接作业主要特点 本机组为1000MW超超临界机组,焊接工程量大(受监焊口数量);中高合金焊口比例大;T/P91、T/P92焊口量相当大;结构焊接合金件较多,密封焊接量大,要求严格。T/P92钢材在本机组的大量使用,这种钢材属马氏体热强钢,其焊接性较差,对焊接工艺要求极高。 1.2 热处理作业主要特点 机组中需要经焊后热处理的焊口多,壁厚大,所涉及的部件的焊口遍布机组炉、机的各个部位,所以在焊接热处理的施工上一定要调度合理、施工过程有序、规范,做到机械、材料的利用率上升、耗损率下降,确保焊接工程的顺利施工。 2、焊接施工原则 (1) 焊接时尽量减少热输出量和尽量减少填充金属; (2) 地面组合焊接应合理分配各个组对单元,并进行合理组对焊接; (3) 密集管排及中大径管道采用双人对称焊接; (4) 位于构件刚性最大的部位最后焊接; (5) 由中间向两侧对称焊接; (6) 结构焊接先焊短焊缝,后焊长焊缝; (7) 当存在焊接应力时,先焊拉应力区,后焊剪应力和压应力区; (8) 膜式壁焊接采用分段退焊法。 3、总体工程安排 焊接专业独立管理,主要配合锅炉、汽机等专业焊接施工需求。针对焊接专业特点,拟采取以下安排。 (1) 建立健全焊接质量管理机构,制定质检人员岗位责任制。焊接、热处理施工按照公司质量体系文件规定的程序、有关规程规范、合同文件及监理的要求进行施工、检查验收。

(2) 焊接施工前,工程技术人员对焊接施工基础资料的前期准备,对现场焊接人员资质的认证和焊前考核,以及对现场将投入使用的焊接机械及热处理设备等的检查、校验及标定。 (3) 焊接施工前,建立二级焊条库,库内设置的烘干箱、恒温箱数量满足工程使用、并配备除湿器、电暖器、空调等设施。地面铺设防潮材料,保持库内温湿度在标准范围内。 (4) 本工程受热面管子全部采用GTAW或GTAW+SMAW方法焊接,视管子规格和位置难易程度并结合焊接工艺评定决定使用哪一种焊接方法。 (5) 本工程中大口径管道采用GTAW+SMAW方法焊接,焊接时应特别注意根部打底质量,确保熔透,层间清理应干净。中径管焊接时,为确保表面工艺质量,宜选用φ3.2焊条盖面。需预热和热处理的应及时进行预热和焊后热处理。 (6) 主蒸汽、再热热段管道材质为SA-335P92,焊接要求比较高,施焊焊工必须严格按照作业指导书和焊接工艺卡规定焊接。焊丝和焊条按工艺评定上的材料选用。焊接过程中应控制焊接线能量,防止线能量过大。 (7) 中低压管道及二次门后焊口采用氩弧焊打底(主要是汽机房内的管道),汽轮机、发电机的冷却、润滑系统管道及燃油管道必须进行氩弧焊打底。 (8) 凝汽器与低压缸连接由6名以上焊工对称施焊,采用分段退焊法。施焊过程中,在下汽缸四侧台板处,应装设监视变形的千分表,并设专人监视。 (9) 仪表、压力测点、温度测点、取样等管道的直径都在25mm以下,焊接方法为GTAW。壁厚≤2mm的管道焊接可采用一道成型,壁厚>2mm的管道焊接应焊至2~3层,以保证焊缝有规定的余高。 (10) 铝母线焊接场所允许的环境温度应在0℃以上,如环境温度过低时,应采取有效方法提高环境温度。焊接铝锰合金时,选用铝锰焊丝(丝321)或铝硅焊丝(丝311)。 (11) 锅炉密封采用手工电弧焊方法进行施工,焊接前应将坡口边缘的油、漆、锈、垢等清理干净。锅炉密封焊接应采用分段跳焊,采用合理顺序、消除焊接应力变形焊接引起的变形,超出规定尺寸时,应采用火焰或锤击等方法校正。 (12) 本工程热处理的用电加热方式,温度曲线用打点式自动温度记录仪记录。热处理参数(如加热温度、升降温速率、恒温温度、恒温时间等)按《火力发电厂焊接热处理技术规程》(DL/T819-2010)中的有关规定执行。

管道焊接常用标准

管道焊接常用标准 金属管道种类繁多、数量大,使用工况千差万别。我国不同行业采用不同的应用标准体系,标准之间差别很大。当然,由于金属管道的工况,如温度、压力、介质、环境等不同,标 准有差距是客观存在的。例如,电力电站管道高压、高温、蒸汽介质居多;石化、石油管道受压、腐蚀介质居多;化工行业管道还有剧毒介质(如氯气);机械行业压力容器,按使 用情况及工况分成低压、中压、高压、超高压,按容器类别分成第一类压力容器、第二类压力容器、第三类压力容器。船舶管道有高压的蒸汽管道、主机冷却的海水管道(承压及受 腐蚀)、污水管道(承压及受高温)、燃油输送管道、压缩空气管道等,在不同的工况条件下运行。以下择要介绍一些基本标准。 一、压力管道分类 1. 压力管道的定义 压力管道是指在生产、生活中使用的可能引爆或中毒等危险性较大的特种设备及管道。 ① 输送GB5044① 《职业性接触毒物性危害程度分级》中规定的毒性程度为极度危害介质的管道。 ② 输送GB5016②《石油化工企业设计防火规范》及GBJ16《建筑设计防火规范》中规定的火灾危险性为甲、乙类介质的管道。 ③ 最高工作压力不小于(表压,下同),输送介质为气(汽)体及液化气体的管道。 ④最高工作压力不小于,输送介质为可燃、易焊、有毒以及有腐蚀性或高温工作温度不小于标 准沸点的液体管道。 ⑤ 上述四项规定管道的附属设施(弯头、大小头、三能、管帽、加强管接头、异径短管、管箍、仪表管、嘴、漏斗、快速接头等管件;法兰、垫片、螺栓、螺母、限流孔板、盲板、法 兰盖等连接件;各类阀门、过滤器、流水器、视镜等管道设备,还包括管道支架以及安装在压力管道上的其他设施)。 ① GB5044分为四级(与99容规相同):极度危害(1级) 10mg/m3。 ② GB5016 标准对可燃气体火灾危险性分甲、乙两类,甲类气体为可燃气体与空气混合物的爆炸下限不大于10 %(体积),乙类气体为可燃气体与空气混合物的爆炸下限不小于

管线钢综述

管线钢综述 欧阳高凤 摘要:本文对管线钢的大概发展历程、成分冶金、显微组织、力学性能、轧制工艺、焊接性及焊接工艺进行了论述,从而能够了解管线钢的发展,为课题研究打下基础。 关键词:管线钢成分显微组织力学性能生产工艺焊接工艺发展 1 管线钢的大概发展历程 半个多世纪以来,随着石油和天然气的开发和需求量的增加,从而带动了管线钢的发展。由于管道运输具有经济、方便、安全等特点,进入二十一世纪以来,管线钢呈现蓬勃发展的趋势。我国管线钢的应用和起步较晚,过去已铺设的油、气管线大部分采用Q235和16Mn钢。我国开始按照API标准研制X60、X65管线钢,并成功地与进口钢管一起用于管线铺设。90年代初宝钢、武钢又相继开发了高强高韧性的X70管线钢,随后成功研制了X80管线钢,X70和X80管线钢已大量应用于油气管道运输中。近几年开发的高强韧的X100和X120管线钢还处在试验阶段,应用方面还比较少。 在我国,石油、天然气的运输基本上已经实现了管道运输。但是与世界上工业发达国家相比,国内的管道运输在质量上和数量上都存在很大差距。中国虽然为世界的主要石油出产国之一,但输油输气的管道不足世界管线总长度的百分之一,而且普遍存在输送压力低、管径小的缺点。随着我国油气资源的进一步开发利用,西气东输的工程实施,油气管线向长距离、大口径发展是必然趋势。下面从管线钢的冶金成分、显微组织、力学性能、生产工艺及焊接工艺等方面,进一步较详细的介绍管线钢的发展。 2 管线钢的冶金成分的发展 管线钢和其他的微合金钢一样,都是在传统的C-Mn钢的基础上加上合金元素。合金元素主要以Nb、Ti、V或少量的Mo、Cu、Ni、Cr及B为主,以这些合金元素来对管线钢进行合金设计,以达到不同的强度等级及性能要求。 管线钢的冶金成分的发展大致经历三个阶段。第一阶段为1950年以前,是以C-Mn和C-Mn-Si钢为主的普通碳钢,强度级别在X52以下。第二阶段为1950-1972年,在C-Mn钢的基础上引入微量的Nb、Ti、V,通过相应的热轧和轧后处理工艺,提高了钢的综合性能,生产出X60及X65级别的钢。第三阶段为1972年至今,这一阶段合金化的发展特点为微合金的多元化,相继又加入少量的Mo、Cu、Ni、Cr及B,结合控轧控冷的新工艺,生产出综合性能优异的管线钢,主要以X70和X80管线钢为主,X100和X120管线钢在试验研究阶段。 下面具体论述以下管线钢中这些合金元素或微合金元素的作用及添加量。2.1 碳 碳是最传统的合金元素、强化元素,而且也是最经济的元素,但它对钢的可焊性影响很大。碳是影响焊接性能最敏感的一个元素,所以20多年来管线钢的碳含量是逐步趋向于低碳或超低碳方向发展。而且随着含碳量的增加,韧性下降,偏析加剧,抗HIC和SSC的能力下降。因此,随着管线钢级别的提高,碳含量应逐渐降低。管线钢的含碳量从开始的1.0%左右逐步降低,最低可达到0.01%。

工艺管道安装、焊接施工方案(图)

宁波万华H12MDI中试工程 工艺管道焊接、安装施工方案 编制: 审核: 审批: 中国化学工程第六建设公司宁波项目经理部

2008年8月26日 目录 1 编制说明 2 编制依据 3 施工程序 4 管道安装的一般技术要求 5 焊接及焊接检验 6 管道系统压力试验 7 管道系统吹洗 8 安全技术措施 9 施工组织措施 10 工、机具及手段材料计划 11 检验、测量器具配备表 1 编制说明 1.1 我单位所承担的宁波万华H12MDI中试工程分为:管廊夹套管及其伴热管线、装置材质为316L的管线。其中:管廊夹套及伴热管线总长为3660米,夹套内管材质为16Mn,管子壁厚为SCH80,装置材质为316L的管线总长为800米,管件983个。由于以上夹套管线施工周期长,而夹套内管及316L材质管道焊口要求100%射线检测,大部分316L管径都在DN40以下,因此焊接、施工难

度大,对施工技术和施工组织均提出了较高要求。 2 编制依据 2.1 《工业金属管道工程施工及验收规范》GB50235-97 2.2 《现场设备、工业管道焊接工程施工及验收规范》GB50236-97 2.3 《工业安装工程质量检验评定统一标准》GB51252-94 2.4 《工业管道工程质量检验评定标准》GB50184-94 2.5 《石油化工剧毒、易燃、可燃介质管道施工验收规范》SH3501-2002 2.6 《石油化工企业设备与管道涂料防腐蚀设计与施工规范》SH3022-1999 2.7 《石油化工钢制通用阀门选用、检验及验收》SH3064-1994 3 施工程序 3.1 管道安装的施工程序见图3-1 3.2 现场管道安装应遵循下列原则: 3.2.1 先地下后地上,先“工艺”后“辅助”,先大后小,并与其它专业工程施工协调配合,合理交叉,做到安全文明施工,科学管理。 3.2.2 管廊夹套管线与伴热管线同时施工。 3.2.3 管道系统试压应在焊缝检验合格后进行。 3.2.4 管道系统试压完毕后,进行吹扫工作。 4 管道安装的技术要求 4.1 管道安装前具备下列条件: 4.1.1 与管道有关的土建工程经检查合格,满足安装要求。 4.1.2 设计及其它相应技术文件齐全,施工图纸已会审完成。

工艺管道焊接工艺要求

5、6 工艺管道焊接工艺要求 一、管道焊接施工要求 1、管道切口质量应符合下列规定: ⑴切口表面应平整、无裂纹、重皮、毛刺、凹凸、缩口、熔渣、氧化物、 铁屑等; ⑵切口端面倾斜偏差不应大于管子外径得1%,且不得超过3mm; ⑶有坡口加工要求得,坡口加工形式按焊接方案规定进行. 2、管道预制时应按单线图规定得数量、规格、材质等选配管道组成件,并按单线图标明管道得系统号与按预制顺序标明各组成件得顺序号. 3、管道预制时,自由管段与封闭管段得选择应合理,封闭段必须按现场实测尺寸加工,预制完毕应检查内部洁净度,封闭管口,并按顺序合理堆放。 4、管道对接焊缝位置应符合下列规定: ⑴管道位置距离弯管得弯曲起点不得小于管子外径或不小于100mm; ⑵管子两个对接焊缝间得距离不大于5mm、 ⑶支吊架管部位置不得与管子对接焊缝重合,焊缝距离支吊架边缘不得小于50mm; ⑷管子接口应避开疏放水、放空及仪表管得开孔位置,距开孔边缘不应小于50mm,且不应小于孔径。 5、管道支架得形式、材质、加工尺寸及精度应严格按照相关图集进行制作,滑动支架得工作面应平滑灵活,无卡涩现象。 6、制作合格得支吊架应进行防腐处理,并妥善分类保管.支架生根结构上得孔应采用机械钻孔。 二、管道安装 1、管道安装前应具备下列条件: ⑴与管道有关工程经检验合格,满足安装要求; ⑵管子、管件、管道附件等已检验合格,具有相关证件; ⑶管道组成件及预制件已按设计核对无误,内部已清理干净无杂物。 2、管道安装应按单线图所示,按管道系统号与预制顺序号安装。安装组合件时,组合件应具备足够刚性,吊装后不应产生永久变形,临时固定应牢固可靠。

WC_钢基复合材料断裂韧性与断口形貌特征

收稿日期:1998-08-29 第一作者:男,1946年生,硕士,教授*甘肃省自然科学基金资助项目 WC -钢基复合材料断裂韧性与断口形貌特征* 杨瑞成 王军民 车 骥 (甘肃工业大学材料工程系,兰州 730050) 摘 要 采用单边切口梁法(SENB)测试了12种工艺状态的WC 增强钢基复合材料的断裂韧性K c ,并用扫描电镜观察了其断口形貌.试验表明SENB 法对于WC-钢基合金的断裂韧性测试适用可行,数据稳定.研究发现数量众多(40%左右)的硬质相对材料的断裂韧性起决定性作用,细化硬质相及加强硬质相-基体交互作用有利于材料断裂韧性的提高.断口的主要特征为WC 解理、基体准解理及部分分散韧窝和韧窝带. 关键词 复合材料 断裂韧性 断口 WC 硬质相 钢基体 分类号 TG407 碳化物-钢基复合材料已成为一种新型工程材料,不仅在机械工程,而且在其它行业如冶金、矿山和能源等行业,展示了其广阔的应用前景.作为一种能承受繁重负荷、高磨损工况的特殊结构材料,其常规力学性能已有较多研究[1~3],但是关于断裂韧性及断口形貌的报道甚少[4~5].究其原因,一般认为此类材料介于钢铁材料与陶瓷材料之间.钢铁材料的断裂韧性测试早已成熟,常用三点弯曲及紧凑拉伸的试验方法;陶瓷材料则鉴于其高脆性及工程需求,其不同于塑性材料(如软钢)的断裂韧性测试方法正在研究之中[6~8].碳化物-钢基复合材料从化学组成及制作方法上,更近于陶瓷材料,但目前尚无公认的、可靠的断裂韧性试验方法.本文结合材料性质,通过分析对比,尝试用单边切口梁法(SENB )[6]测试并考察了不同状态下WC -钢基复合材料的断裂韧性,以及扫描电镜下的断口微观形貌特征. 1 实验方法 1.1 材料和试样 试验材料为WC-CrNiMo 钢基合金,WC 粒子为硬质相,中碳CrN iMo 合金为基体相,WC 粒子约占35%~45%.此类材料是将原料混粉,经特殊工艺烧结成型(烧结态),有的再锻造(锻打态),然后经不同工艺的热处理,加工成40mm ×8mm ×4mm 的扁平试样,横向一侧用<0.11的钼丝线切割,开一定深度的切口. 1.2 材料的工艺及热处理状态 试样淬火温度和回火温度分别为960℃,1000℃,1040℃和200℃,250℃,300℃,原始状态为烧结态和锻打退火态,共12种工艺状态. 第24卷第4期 1998年12月甘 肃 工 业 大 学 学 报Journal of Gansu University of Technology Vol.24No.4Dec.1998

管线管断裂韧性试验SAMSS-022

材料系统说明01-SAMSS-022 1997年2月26日管线管断裂韧性试验方法 Saudi Aramco 案头标准 目录 1范围 2 2冲突与分歧 2 3参考文献 2 4管线管等级 2 5测试方法 3 6夏氏冲击功测试方法 3 7重力落锤冲击试验 4 8重新测试 4 9报告 4 10标准 4 1/4

文件范围:01-SAMSS-022 出版日期:年月日 计划再版:年月日 1 范围 本规范规定了适用API 5L管线管的冲击测试方法,当Saudi Aramco工程标准有要求时,名义直径大于或等于6英寸,壁厚为6.3mm到3.8mm(0.25到1.5英寸),对于野外铺设的管线管、流管、干线管,工作条件在0℃以上,应符合本规范要求。 本规范是01-SAMSS-033和01-SAMSS-035的增补要求,并且应附加于相关要求,引用要求和订单之兵团。本说明不适用于平端管线管。 2 冲突与分歧 2.1 当本说明与其它适用的Saudi Aramco材料系统说明(SAMSSs)、工程标准 (SAESs)、标准图样(SASDs),或工业标准、代号和形式菜任何冲突时,应 由公司或习方代理人写书面材料,通过Saudi Aramco咨询服务部的主管 人来解决。 2.2 将与本规范有偏差的全部要求用书面材料交给公司或买方代理代,他将按 公司内部程序SAEP-302处理并将这些要求转交给Dhahram市的Saudi Aramco咨询服务部的主管人。 3 参考文献 本规范所涉及的材料、设备、设计、结构、维护和设备及修理的选择应遵从下列参考文献的最新版本,除非人其它通知或这些文件指定的章节有变动。 3.1 Saudi Aramco参考文献 Saudi Aramco工程程序 SEAP-302 为获得一项Saudi Aramco强制的设计要求的指导 Saudi Aramco材料系统说明 01-SAMSS-033,API 5L 电焊管线管 01-SAMSS-035,API 管线管 3.2 工业代号和标准 美国石油学会 API 5L-SR 5&6 管线管说明,附加要求5(SR5)和附加要求6(SR6) 4 流体管分类 符合本说明范围的流体管,在这里根据在不同类型流的条件下服役所要求的冲击强度来分类。 2/4

管道焊接施工工艺标准(精)

管道焊接施工工艺标准 1. 适用范围 本工艺标准适用于工厂管道预制加工和野外现场管道安装工程的焊接施工作业指导。 2. 引用标准 2.1《特种设备焊接工艺评定》JB4708-2008 2.2《工业金属管道工程施工及验收规范》GB50235-97 2.3《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 2.4《电力建设施工及技术验收规范》(火力发电厂管道篇DL5031-1994 2.5《电力建设施工及技术验收规范》(火力发电厂焊接篇)DL5007-1992 2.6《化工金属管道工程施工及验收规范》HG20225-95 2.7《石油化工剧毒、可燃介质管道施工及验收规范》SH3501-2001 2.8《西气东输管道工程焊接施工及验收规范》1(2010年6月4日) 2.9《石油天然气站内工艺管道焊接工程施工及验收规范》SY0402-2000 2.10《石油和天然气管道穿越工程施工及验收规范》SY/T4079-1995 2.11《钢质管道焊接及验收》SY/T 4103-2005 2.12《输油输气管道线路工程施工技术规范》Q/CVNP 59-2001

2.13《工业设备及管道绝热工程施工及验收规范》GBJ126-89 2.14《给水排水管道工程施工及验收规范》GB50268-2008 2.15《钢制压力容器焊接工艺评定》JB4708-2000 2.16《焊接工艺评定规程》(电力行业)DL/T868-2004 2.17《火力发电厂锅炉压力容器焊接工艺评定规程》(电力行业)SD340-1989 2.18《核电厂相关焊接工艺标准》(ASME ,RCC-M) 2.19《核电厂常规岛焊接工艺评定规程》(核电)DL/T868-2004 2.20《锅炉焊接工艺评定》JB4420-1989 2.21《蒸汽锅炉安全技术监察规程》附录I (锅炉安装施工焊接工艺评定)(1999版) 2.22《石油天然气金属管道焊接工艺评定》SY/T0452-2002 2.23《工业金属管道工程质量检查评定标准》GB50184-93 2.24《锅炉压力容器焊接考试管理规则》(国家质监总疫局2002版) 2.25《承压设备无损检测》JB4730-2005.1,2,3,4,5各分册 3. 术语. 3.1焊接电弧焊:指用手工操作电焊条的一种电弧焊焊接方法。管道焊接常用 上向焊和下向焊两种。 3.2自动焊:指用焊接机械操作焊丝的一种电弧焊焊接方法。管道焊接常用热 丝熔化极氩弧焊、涂层焊丝氩弧焊、药芯焊丝富氩二氧化碳焊混、(半)自动下向 焊、二氧化碳(半)自动焊、埋弧自动焊等焊六种。

管道焊接施工工艺标准...

管道焊接施工工艺标准 1.适用范围 本工艺标准适用于工厂管道预制加工和野外现场管道安装工程的焊接施工作业指导。 2.引用标准 2.1《特种设备焊接工艺评定》JB4708-2008 2.2《工业金属管道工程施工及验收规范》GB50235-97 2.3《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 2.4《电力建设施工及技术验收规范》(火力发电厂管道篇)DL5031-1994 2.5《电力建设施工及技术验收规范》(火力发电厂焊接篇)DL5007-1992 2.6《化工金属管道工程施工及验收规范》HG20225-95 2.7《石油化工剧毒、可燃介质管道施工及验收规范》SH3501-2001 2.8《西气东输管道工程焊接施工及验收规范》1(2010年6月4日)2.9《石油天然气站内工艺管道焊接工程施工及验收规范》SY0402-2000 2.10《石油和天然气管道穿越工程施工及验收规范》SY/T4079-1995 2.11《钢质管道焊接及验收》SY/T 4103-2005 2.12《输油输气管道线路工程施工技术规范》Q/CVNP 59-2001 2.13《工业设备及管道绝热工程施工及验收规范》GBJ126-89 2.14《给水排水管道工程施工及验收规范》GB50268-2008

2.15《钢制压力容器焊接工艺评定》JB4708-2000 2.16《焊接工艺评定规程》(电力行业)DL/T868-2004 2.17《火力发电厂锅炉压力容器焊接工艺评定规程》(电力行业)SD340-1989 2.18《核电厂相关焊接工艺标准》(ASME ,RCC-M) 2.19《核电厂常规岛焊接工艺评定规程》(核电)DL/T868-2004 2.20《锅炉焊接工艺评定》JB4420-1989 2.21《蒸汽锅炉安全技术监察规程》附录I(锅炉安装施工焊接工艺评定)(1999版) 2.22《石油天然气金属管道焊接工艺评定》SY/T0452-2002 2.23《工业金属管道工程质量检查评定标准》GB50184-93 2.24《锅炉压力容器焊接考试管理规则》(国家质监总疫局2002版) 2.25《承压设备无损检测》JB4730-2005.1,2,3,4,5各分册 3.术语. 3.1焊接电弧焊:指用手工操作电焊条的一种电弧焊焊接方法。管道焊接常用上向焊和下向焊两种。 3.2自动焊:指用焊接机械操作焊丝的一种电弧焊焊接方法。管道焊接常用热丝熔化极氩弧焊、涂层焊丝氩弧焊、药芯焊丝富氩二氧化碳焊混、(半)自动下向焊、二氧化碳(半)自动焊、埋弧自动焊等焊六种。 3.3钨极氩弧焊:指用手工操作焊丝的一种惰性气体保护焊焊接方法。

国内X80管线钢的发展及研究方向

国内X80管线钢的发展及研究方向 大口径、高压输送及采用高钢级管材是国际管道工程发展的一个重要趋势,国际上X80高钢级管材的生产技术已经成熟,并得到了较大的发展和成功应用。 近年来,国内石油与冶金行业联合攻关,相继成功开发了符合质量技术要求的x80热轧板卷、宽厚钢板及X80螺旋缝埋弧焊管和直缝埋弧焊管,实施X80管线钢应用工程的条件已经成熟。 为确保X80管道的安全可靠性,在借鉴国际上先进成功经验的基础上,应进一步加强X80管线钢的应用基础研究和相关技术攻关。 一、油气管道及高钢级管材的发展 作为一种经济、安全、不间断的长距离输送石油和天然气的工具,油气输送管道在近四十年取得了巨大发展。目前,全世界石油、天然气管道的总长度已超过230万公里,并以每年2 万-3万公里的速度增加。在近10年内,我国已建成陕京管线、涩宁兰管线、兰成渝管线以及西气东输管线等十几条重大长输

管线,预计今后10-15年内,我国共需各类油气输送干线用钢管约1000万吨。 随着管道输送压力的不断提高,油气输送钢管也相应迅速向高钢级发展。20世纪60年代一般采用X52钢级,70年代普遍采用X60-X65钢级,近年来以X70为主。X80也已开始大量使用。在国外,如德国、加拿大、日本和意大利在X80乃至更高钢级管线钢的研究应用方面已经有很多实践经验。世界著名的大石油公司积极开展X80及X80以上钢级管道钢的开发和应用研究:德国Ruhr Gas公司在1992和1993年采用Europipe生产的X80钢管分别建成了两条100多公里的输气管道。加拿大Trans Canada管道公司(TCPL)一直积极推动高钢级管道钢的应用,X80钢管已成功应用到几条管线中,其中包括Alberta省北部永久冻土地区管线,2002年TCPL在加拿大建成了一条管径 1219mm、壁厚14.3mm的X100钢级的1公里试验段,同年,新版CSZ245-1-2002首次将Grade690(X100)列入加拿大国家标准。意大利SNAM公司用Europipe公司生产的X100、X80与X70钢级进行对比试验,认为X80的现场焊接可以采用与X70相近的工艺,而X100则有所不同,但只要采取适当措施也可获得满意结果。 挪威STATOIL公司对新日铁、住友金属、NKK和Europipe 等公司提供的X80钢级钢管进行了用于海底管道的可行性研究,

高强钢断裂韧性与裂纹扩展机制研究

高强钢断裂韧性与裂纹扩展机制研究 凭借优异的综合力学性能,高强钢成为目前应用最广泛的金属结构材料,在当今及未来工业发展中占据重要的地位。高强钢在服役过程中长期经受循环载荷作用,其疲劳与断裂问题成为高强钢的重点研究方向。 随着断裂力学发展,损伤容限设计成为航空、航天等国防重要工业领域的关键构件疲劳断裂控制方法。材料的疲劳裂纹扩展性能与断裂韧性是构件损伤容限设计基础,然而目前对高强钢疲劳裂纹扩展及断裂韧性的研究仍不完善。 因此,本研究选取一种典型AISI 4340高强钢为研究对象,基于能量原理深入探讨断裂韧性的评价方法及裂纹扩展微观机制;以Paris公式为基础,建立了改进的疲劳裂纹扩展速率公式,并提出一种快速预估疲劳性能的判据;通过深入探究疲劳裂纹扩展微观机制,由此形成疲劳裂纹扩展三阶段的宏观力学模型。本文试图通过对高强钢中疲劳裂纹扩展及断裂韧性等相关问题的理解,尝试将所研究理论直观地应用到工程领域,为工程优化选材及关键构件可靠性设计提供具有一定价值的参考依据。 提出了三种评价金属材料平面应变断裂韧性KIC的方法。1)基于裂纹扩展初始阶段到临界失稳状态消耗能量的分配,建立了试样厚度B与断裂韧性KIC的定量关系,借助此公式可以实现小尺寸试样估算断裂韧性KIC,此项工作可应用于高韧性金属材料的断裂韧性评价。 2)以试样整体断裂过程中的能量消耗,推导出断裂能密度WF与剪切唇宽度s 的定量关系。其中WF在最大剪切唇宽度处达到最低,此时处于正断与切断的竞争平衡,揭示了裂纹扩展过程中遵循最低能量密度原理,并以此建立了剪切唇宽度与断裂韧性的定量关系。

3)从冲击韧性与断裂韧性的能量消耗方式及共同遵循的能量原理出发,提出两种韧性剪切唇宽度之间的线性关系,由此获得高强钢中冲击韧性与断裂韧性的定量关系式。探讨了不同强韧性钢中裂纹扩展微观机制的转变过程。 发现随着韧性提高,AISI 4340钢微观断裂特征从解理-韧窝混合型断口向韧窝连续转变,三维XRT图像显示裂纹扩展方式由跳跃性向连续性逐步演化。低韧性钢中,裂纹在应力控制下以解理断裂方式连接其尖端附近的微裂纹,裂纹扩展速率加快;高韧性钢中,裂纹在应变主导下钝化扩展,且与附近聚合长大的微孔连接形成新的裂纹尖端;上述两种裂纹扩展微观机制可同时出现中等韧性钢中,此时应力应变存在竞争平衡,裂纹以交替方式向前扩展。 高强钢的断口微观形貌可分为三种典型特征,其形貌特征的形成过程与能量消耗有关,基于此建立了高强钢断裂韧性与断口微观形貌特征之间的定量关系。建立了具有预测性的疲劳裂纹扩展速率公式及疲劳性能优化判据。 以Paris公式为基础,引入强韧性参量,推导出改进的疲劳裂纹扩展速率公式。阐述影响材料疲劳裂纹扩展性能的两大因素,疲劳裂纹扩展的变化过程取决于断裂韧性,疲劳裂纹失稳扩展的临界速率由抗拉强度控制。 凭借该公式可以由材料的静态力学性能预测疲劳裂纹扩展性能,这在高强钢中得到了验证。此外,提出一种疲劳裂纹扩展性能与材料强韧性的定量判据,基于该判据可以在强韧性倒置关系曲线中选出最优疲劳性能的材料,并能够阐述材料同步强韧化可提高疲劳性能的本质。 该公式与判据在合金钢、钛合金及铝合金中都得到准确的验证,为材料的疲劳性能优化提供理论依据。探索了疲劳裂纹扩展微观机制及宏观力学模型。 在断口微观形貌中发现,疲劳裂纹扩展稳态阶段出现疲劳辉纹与韧窝特征共

工业管道检验案例

工业管道检验案例1. 引言 1.1 管道检验检测概述 失效机制 影响因素 外在表征如何在一定时间内有效无损地检测发现? 发展规律 预防措施 检验人员应当根据压力管道的使用情况、失效模式制定检验方案。改变机械地使用检验规则规定的习惯做法。 失效模式分析 检测方法检测时机 管道检验目的:发现并预防管道的不正常状态,避免管道失效,发生事故。 失效案例 典型失效模式

API 给出的腐蚀失效模式(63种) 氢致损伤:氢腐蚀、氢脆(微裂纹)、堆焊层的氢致剥离 爆炸 断裂 泄漏 形过量变 表面损伤、金属损失 材料性能退化 物理爆炸:物理原因(温度、内压)使应力超过强度 化学爆炸:异常化学反应使压力急剧增加超过强度 脆性断裂:应力腐蚀、氢致开裂、持久(蠕变)断裂、低温脆断 韧性断裂 疲劳断裂:应力疲劳、应变疲劳、高温疲劳、热疲劳、腐蚀疲劳、蠕变疲劳 密封泄漏:充装过量(冒顶) 腐蚀穿孔、穿透的裂纹或冶金、焊接缺陷(满足LBB 条件) 过热、过载引起的鼓胀、屈曲、伸长、凹坑(dent) 蠕变、亚稳定相的相变 电化学腐蚀:均匀腐蚀、点腐蚀、缝隙腐蚀、晶间腐蚀、沉积物下腐蚀、溶解氧腐蚀、碱腐蚀、硫化物腐蚀、氯化物腐蚀、硝酸盐腐蚀 冲蚀、气蚀 高温氧化腐蚀、金属尘化或灾难性渗碳腐蚀、环烷酸腐蚀 外来机械损伤:油气长输管线的主要失效模式之一 辐照损伤脆化 金相组织变化:珠光体球化、石墨化、S 相析出长大、渗碳、渗氮、脱碳、回火 脆化与敏化、应变时效 压力 容 器 与 管 道

1.2 压力管道的失效 压力管道是具有潜在泄漏和爆炸危险的特种设备,对国家支柱产业有重要影响,其特点是: ●量大面广:截止2009年底,我国在用固定式压力容器217.5万台,锅炉60.9万台,在用气瓶1.3 亿只,压力管道68.5万公里,与承压设备相关的生产企业2万多家,年产值超过5000亿元。 ●服役环境极端化:逐渐向高温、低温(液化天然气集输,-196℃)、复杂腐蚀(高硫、高酸原油炼制)、 大型化等极端方向发展。 石化企业Ⅰ、Ⅱ、Ⅲ类管道事故原因:管理不善、安装原因、腐蚀与冲蚀、设计原因、制造原因 失效分析的主要技术手段

工艺管道焊接方案

VCM装置-工艺管道焊接施工方案 1编制说明 本方案针对于新疆圣雄50万吨/年PVC项目(二)-VCM装置工艺管道的焊接。 2编制依据 施工图纸 《工业金属管道工程施工及验收规范》GB50235-2010 《现场设备、工业管道焊接工程施工及验收规范》GB50236-2010 《石油化工剧毒、可燃介质管道工程施工及验收规范》SH3501-2002 《石油化工铬镍奥氏体钢、铁镍合金和镍合金管道焊接规程》SH/T3525-1999 《压力管道安全技术监察规程—工业管道》TGS D0001-2009 3工程概况及焊接特点分析 VCM装置工艺管道主要介质包括乙炔、12度冷冻水回水、7度冷冻水上水、除氧剂、任基苯酚、化学污水、冷冻盐水、冷却循环回水、冷却循环上水、脱盐水、盐酸、超低压蒸汽、低压蒸汽、混合气、氮气、稀碱液、工厂空气、氯乙烯、真空气、放空气等多种介质,其中高温、高压、有毒介质管道对焊接的要求较高,应严格按照焊接工艺施工。 20#、20G、Q235B、L245、16Mn是低碳钢,焊接性能较好,但是容易出结晶裂纹、高温液化裂纹、多边化裂纹,其发生部位大多在(焊缝、HAZ区、多层焊层间)、且还会出现内凹、咬边、气孔等缺陷,焊接过程中应严格按照焊接工艺施焊(工艺参数、接头形式、预热、焊接顺序)。 0Cr18Ni9、00Cr17Ni14Mo2是奥氏体不锈钢,碳当量低,焊接性能良好,但是容易出现晶间裂纹和应力腐蚀裂纹(沿晶开裂和穿晶开裂)、气孔、咬边等缺陷。所以在焊接过程中,除应严格按照焊接工艺施焊外,在焊接过程中还应注意对根部和焊缝的保护。在焊后应对焊缝进行钝化处理。 4焊接材料的选择 母材材质焊条焊丝 烘干温度 (℃) 恒温时间 (分) Q235B、20G、L245、20#J426 J427 HO8Mn2SiA350—40060 16Mn J507HO8Mn2SiA350—40060 0Cr18Ni9A102H0Cr21Ni10150—20060 00Cr17Ni14Mo2A022 H00Cr19Ni12 Mo2 150—20060 若以上烘烤温度与焊条生产厂家的烘烤温度不符,要以焊条生产厂家规定的烘烤温度进行烘烤。 5焊接方法的选择 为保证焊接质量和管内清洁,对接焊缝一律采用氩弧焊打底的焊接方法。 管径≤80mm,壁厚≤6mm的对接焊口采用全氩弧焊接;其它对接焊口采用氩弧焊打底、手工电弧焊填充并盖面的氩电联焊的焊接方法, 角焊缝采用手工电弧焊。 6电焊机选择 采用目前国内较先进的、性能稳定、质量可靠、节能型的ZX7-400ST型逆变直流焊机或者硅整流焊机。 7焊材烘烤、发放及使用管理

相关文档
最新文档