高钢级管线钢断裂韧性确定方法研究_骆建武
西气东输二线用X80管线钢热轧卷板的组织与韧性

些经验 可 以为高 韧性要求 的管 线钢 研制 和生 产提
表 1 西 气 东 输 二 线用 X 0钢 不 同状 态 下 ( 炼 和 成 品 ) 8 熔 的化 学 成 分 要 求
1 2 拉 伸 性 能 .
表 3 西气 东输 二 线 用 X8 O卷 板 一 O℃ 夏 比 冲 击试 验 要 求 2
管线 钢材韧 性 的高低是 影响管 线 断裂 的关键 因素 ,因为高 的韧性是 防止 断裂起 始 和阻止 断裂 扩 展 的必 要保证 。为保障 管线 的安全 可靠性 ,在 提 高强 度 的 同时 ,必 须 相应 提 高 管线 钢 的韧 性 ,
即保 证钢 材 的韧 性 高于最低 止裂韧 性 。
摘 要 :研 究 了西 气 东输二 线 用 X 0铜 冲击韧 性 的影 响 因素 ,通过 大量 3 业 化 生产数 据得 8 -
出 . 铜 中 C与 S含 量 对 冲 击 韧 性 有 明 显 影 响 。 为 了 满 足 西 气 东输 二 线 工程 所 需一 0℃ 冲 击 韧 2 性 最 小 2 01 要 求 ,钢 中 () 好 在 00 5 ~00 5 ,并 且 () 超 过 0 0 %。 研 究 结 4 的 C最 . % 3 .6 % S不 .3 0
化 方 式 均会 对 韧性 产生 不 利 影 响 。 同时 随着 壁
厚 的增 加 ,组 织 细 化控 制 的难 度加 大 ,钢 的韧 性也 呈下 降趋 势 。 X 0钢要求 具有 高强 度 、高韧 性 、 良好 的焊 8 接性 和耐腐 蚀性 等 ,其研 制 与生产 代表 了一 个钢 铁企业 的综 合实 力和水平 。 武 钢 在 西 气 东 输 二 线 工 程 用 钢 的 供 货 过 程
o v o sy I r e o s t f h e u r me t f h f i m 4 a - 0 o o eS c n e t oE s Ga ie ie b i u l . n o d rt ai yt e r q i s e n en n mu 2 0J t 2 fr h e o d W s t a t s P p l ot i C t n
基于Master Curve方法的Q345R钢断裂韧性研究

基于Master Curve方法的Q345R钢断裂韧性研究桂乐乐;寿比南;徐彤;朱良【摘要】Tensile test,Charpy impact test and drop-weight test of Q345R steel in the ductile-brittle transi-tion range were carried out.Master Curve method was developed by single-temperature and multiple-tem-perature method respectively,and compared with the empirical equations adopted in ASME,API and BS. Results show that the reference temperature T0 derived from single-temperature and multi-temperature method is basically consistent,and is about -105 ℃.Master Curve can well envelop the fracture tough-ness and temperature curves derived from the empirical equations,and be more economic and flexible than the KIC curve with sufficient conservation.%进行了国产Q345 R钢在韧脆转变区的拉伸试验、夏比冲击试验和落锤试验,分别采用单温度法和多温度法获得1英寸厚CT试样的Master Curve曲线,并和ASME,API以及BS等规范中断裂韧性估算公式进行对比.结果表明,单温度法和多温度法获得的参考温度T0基本一致,大约为-105℃.主曲线法能够很好地包络各种估算公式推断出的断裂韧性与温度关系曲线,并且在足够保守的前提下,比ASME的KIC下包络线更具经济性和灵活性.【期刊名称】《压力容器》【年(卷),期】2016(033)002【总页数】8页(P10-16,66)【关键词】MasterCurve方法;断裂韧性;单温度;多温度;参考温度【作者】桂乐乐;寿比南;徐彤;朱良【作者单位】中国特种设备检测研究院,北京 100029;中国特种设备检测研究院,北京 100029;中国特种设备检测研究院,北京 100029;北京工业大学,北京 100124【正文语种】中文【中图分类】TH142;TG113.25压力容器用钢在韧脆转变区内的断裂韧性随着温度的降低而下降,很小的温度变化也可能导致材料断裂韧性发生剧变。
工程机械用高强钢20MnTiB焊接接头的断裂韧性研究

』些些坐丝兰丝些坐∑=一::=:=一一:=一:一一一:一:墼皇坠=!!一32222=======三兰=============================================竺!兰::!:!!三文章编号:1002-025X(2013)07—0013-03工程机械用高强钢20M nT i B焊接接头的断裂韧性研究李兴霞,崔国明,翟德梅.吴金杰(河南机电高等专科学校材料工程系,河南新乡453002)摘要:本文针对工程机械用高强钢焊接接头有较大断裂倾向的特点.依据英国标准B S7448断裂韧度试验标准.采用熔化极气体保护焊(G M A W)工艺对板厚为14咖的国产高强钢20M nTi B对接焊接接头试样进行了低温裂纹尖端张开位移(CTO D)试验。
结果表明:在本文中所制订的焊接工艺条件下,无需焊后消氢处理20M nT i B高强钢的焊接接头C T O D平均值均大于标准验收值.有较高的断裂韧性值。
关键词:C T O D;断裂韧度;高强钢20M nT i B;焊接接头;工程机械中图分类号:T G407文献标志码:B高强钢焊接接头各区间存在较大强度和塑性差别,其结构有不可避免的组织不均匀性和力学性能不均匀性,使焊接接头在工作环境中不仅会发生全面屈服下的断裂,而且也会发生小范围下的断裂破坏。
为使高强钢能在实际工况中安全使用,就需研究其断裂韧性。
并通过合理选择焊接工艺达到提高焊接结构抗断裂能力。
在以断裂为主的破坏领域中,裂纹或缺陷附近的应力和应变是造成失效的重要原因之~。
在裂纹的尖端处,应力总是超过屈服强度并且将发生塑性变形.最终应变导致失效,实际上就是塑性应变超过某特定极限而引起失效,CT O D方法就是通过试验手段获得该特定值,以评价焊接接头的断裂韧性。
大量试验研究表明,C TO D断裂韧度是评价钢材及焊接接头抗脆断特性的重要参量,通过C T O D试验不仅可以进行材料韧度选择,还可以为评定结构的安全可靠性提供试验依据[1-51。
管线管断裂韧性试验SAMSS-022

材料系统说明01-SAMSS-022 1997年2月26日管线管断裂韧性试验方法Saudi Aramco 案头标准目录1范围 22冲突与分歧 23参考文献 24管线管等级 25测试方法 36夏氏冲击功测试方法 37重力落锤冲击试验 48重新测试 49报告 410标准 4 1/4文件范围:01-SAMSS-022出版日期:年月日计划再版:年月日1 范围本规范规定了适用API 5L管线管的冲击测试方法,当Saudi Aramco工程标准有要求时,名义直径大于或等于6英寸,壁厚为6.3mm到3.8mm(0.25到1.5英寸),对于野外铺设的管线管、流管、干线管,工作条件在0℃以上,应符合本规范要求。
本规范是01-SAMSS-033和01-SAMSS-035的增补要求,并且应附加于相关要求,引用要求和订单之兵团。
本说明不适用于平端管线管。
2 冲突与分歧2.1 当本说明与其它适用的Saudi Aramco材料系统说明(SAMSSs)、工程标准(SAESs)、标准图样(SASDs),或工业标准、代号和形式菜任何冲突时,应由公司或习方代理人写书面材料,通过Saudi Aramco咨询服务部的主管人来解决。
2.2 将与本规范有偏差的全部要求用书面材料交给公司或买方代理代,他将按公司内部程序SAEP-302处理并将这些要求转交给Dhahram市的Saudi Aramco咨询服务部的主管人。
3 参考文献本规范所涉及的材料、设备、设计、结构、维护和设备及修理的选择应遵从下列参考文献的最新版本,除非人其它通知或这些文件指定的章节有变动。
3.1 Saudi Aramco参考文献Saudi Aramco工程程序SEAP-302 为获得一项Saudi Aramco强制的设计要求的指导 Saudi Aramco材料系统说明01-SAMSS-033,API 5L 电焊管线管01-SAMSS-035,API 管线管3.2 工业代号和标准美国石油学会API 5L-SR 5&6 管线管说明,附加要求5(SR5)和附加要求6(SR6)4 流体管分类符合本说明范围的流体管,在这里根据在不同类型流的条件下服役所要求的冲击强度来分类。
X80管线钢断裂韧性测试方法探讨

X80管线钢断裂韧性测试方法探讨赵天娆;张华;李丽锋;罗金恒;赵新伟【摘要】采用GB/T 21143—2007规定的钝化线方法测试了X80管线钢延性断裂韧度JIC,并与采用微观断口裂纹伸张区方法确定的表观启裂韧性Ji对比。
结果表明: GB/T 21143—2007规定的左边界线判定条件存在数据有效性误判情况,用钝化线方法确定的X80管线钢断裂韧性值偏高,建议在X80管线钢延性断裂韧性测试时保留GB/T 21143—2007中的钝化线形式,左边界线由钝化线偏置量0.1 mm调整为0.03 mm,钝化线偏置量由0.2 mm调整为0.035mm。
%Adopting the blunting line method specified in GB/T 21143—2007 Specification to test the ductile fracture toughness JIC of X80 pipeline steel, and compared with macro fracture crack Ji determined by the micro fracture crack extension zone methods. The results showed that the left border line stipulated in GB/T 21143—2007 misjudged the data, the JIC value of X80 pipeline steel determined by the blunting line method is much higher. It is suggested keep the blunting line form in GB/T 21143—2007 during the ductile fracture toughness test, adjust the left border line offset from 0.1 mm to 0.03 mm, and adjust the blunting line offset 0.2 mm to 0.035 mm.【期刊名称】《焊管》【年(卷),期】2015(000)003【总页数】5页(P11-15)【关键词】管线钢;断裂韧性;阻力曲线;伸张区宽度;钝化线【作者】赵天娆;张华;李丽锋;罗金恒;赵新伟【作者单位】西安石油大学材料科学与工程学院,西安 710065;中国石油集团石油管工程技术研究院,西安 710077;中国石油集团石油管工程技术研究院,西安710077;中国石油集团石油管工程技术研究院,西安 710077;中国石油集团石油管工程技术研究院,西安 710077【正文语种】中文【中图分类】TG113.25近年来,随着天然气管道向着大直径、高压、大壁厚的方向发展,由于裂纹尖端应力应变状态的变化,管道发生断裂的风险也在不断提高,管材的断裂控制就显得至关重要。
氢环境对高钢级管线钢力学性能影响规律研究

◀石油管工程▶氢环境对高钢级管线钢力学性能影响规律研究∗艾红倪1㊀张东1㊀于浩波2㊀彭世垚3㊀欧阳欣3㊀张对红3㊀刘啸奔1(1 中国石油大学(北京)油气管道输送安全国家工程中心㊀2 中国石油大学(北京)油气装备材料失效与腐蚀防护北京市重点实验室㊀3 国家管网科学技术研究总院分公司)艾红倪ꎬ张东ꎬ于浩波ꎬ等.氢环境对高钢级管线钢力学性能影响规律研究[J].石油机械ꎬ2023ꎬ51(12):136-144.AiHongniꎬZhangDongꎬYuHaoboꎬetal.Influenceofhydrogenenvironmentonmechanicalpropertiesofhigh ̄gradepipelinesteel[J].ChinaPetroleumMachineryꎬ2023ꎬ51(12):136-144.摘要:在 双碳 目标背景下ꎬ天然气管道掺氢将成为未来大规模㊁长距离输送氢气的主要方式ꎮ但氢气的掺入将会对现有天然气管道运行㊁安全维护等方面带来新的挑战ꎮ针对纯氢环境下高钢级管道力学性能劣化规律不明确的问题ꎬ通过总结并对比现有试验过程中纯氢环境模拟方法ꎬ优选出高压动态气相充氢作为试验的纯氢环境模拟方法ꎬ并在不同纯氢环境㊁1 01ˑ10-4和1 01ˑ10-5mm/s这2种位移速率下ꎬ针对X80管线钢开展了多组高压慢应变速率拉伸试验ꎬ获得试验数据及试样断口形貌ꎬ分析氢对管线钢力学性能的影响ꎮ分析结果认为:在纯氢环境中X80管线钢的屈服强度㊁极限抗拉强度相对于空气环境中略微增加ꎬ增加程度均小于8%ꎻ在1 01ˑ10-4和1 01ˑ10-5mm/s这2种位移速率的氢环境下ꎬX80管线钢的断后伸长率分别减小了6 04%和14 88%ꎬ表明随着位移速率的减小ꎬ管线钢氢损伤程度增大ꎻ气相缓蚀剂和环己胺对X80管线钢氢损伤均有抑制作用ꎮ研究结果对高压天然气管道掺氢或纯氢管道的设计与评价具有一定的参考价值ꎮ关键词:氢气输送ꎻ高钢级管线ꎻ掺氢ꎻ力学性能ꎻ断口形貌ꎻ相容性试验ꎻ抗拉强度中图分类号:TE832㊀文献标识码:A㊀DOI:10 16082/j cnki issn 1001-4578 2023 12 020InfluenceofHydrogenEnvironmentonMechanicalPropertiesofHigh ̄GradePipelineSteelAiHongni1㊀ZhangDong1㊀YuHaobo2㊀PengShiyao3㊀OuyangXin3㊀ZhangDuihong3㊀LiuXiaoben1(1 NationalEngineeringCenterofOilandGasPipelineTransmissionSafetyꎬChinaUniversityofPetroleum(Beijing)ꎻ2 BeijingKeyLaboratoryofMaterialFailureandCorrosionProtectionforOilandGasEquipmentꎬChinaUniversityofPetroleum(Beijing)ꎻ3 PipeChinaScienceandTechnologyResearchInstitute)Abstract:Underthecontextofcarbonpeakingandcarbonneutralitytargetsꎬhydrogenblendinginnaturalgaspipelineswillbecometheprimarymeansoflarge ̄scaleꎬlong ̄distancehydrogentransportationinthefuture.Howeverꎬtheintroductionofhydrogenwillbringnewchallengestotheoperationandsafetymaintenanceofexistingnaturalgaspipelines.Addressingtheissueofuncleardegradationpatternsofmechanicalpropertiesofhigh ̄gradesteelpipelinesinahydrogenenvironmentꎬbysummarizingandcomparingtheexistingmethodsforsimulatinghy ̄drogenenvironmentduringtestingꎬHigh ̄pressuredynamicgaseoushydrogenationwasoptimallyselectedforsimula ̄631 ㊀㊀㊀石㊀油㊀机㊀械CHINAPETROLEUMMACHINERY㊀2023年㊀第51卷㊀第12期∗基金项目:国家自然科学基金项目 逆断层作用下X80管道屈曲演化与韧性破损机理研究 (52004314)ꎻ国家重点研发计划项目高压力高钢级管道失效机理与全生命周期可靠性评价技术研究 (2022YFC3070101)ꎻ国家管网科学研究与技术开发项目 高钢级管道环焊缝失效机理研究 (WZXGL202105)㊁ 高钢级管道环焊缝缺陷检测评价技术研究 (WZXGL202104)ꎻ北京市科协项目 青年人才托举工程 (BYESS2023145)ꎮtinghydrogenenvironment.Underdifferenthydrogenenvironmentsandtwodisplacementratesꎬ1 01ˑ10-4and1 01ˑ10-5mm/sꎬmultiplesetsofhigh ̄pressureslowstrainratetensiletestswereconductedonX80pipelinesteel.Afterthesetestsꎬexperimentaldataandsamplefracturemorphologieswereobtainedꎬwhichwasthenusedtoana ̄lyzetheinfluenceofhydrogenonthemechanicalpropertiesofpipelinesteel.TheanalysisresultsregardthatinahydrogenenvironmentꎬtheyieldstrengthandultimatetensilestrengthofX80pipelinesteelslightlyincreaserelativetotheairenvironmentꎬwithanincreaseoflessthan8%ꎻunderthetwodisplacementratesof1 01ˑ10-4and1 01ˑ10-5mm/sinthehydrogenenvironmentꎬtheelongationafterfractureofX80pipelinesteeldecreasedby6 04%and14 88%ꎬrespectivelyꎬsuggestingthatasthedisplacementratedecreasesꎬthehydrogendamagetothepipelinesteelincreasesꎻgaseouscorrosioninhibitorsandcyclohexylamineexhibitinhibitoryeffectsonhydrogen ̄in ̄duceddamagetoX80pipelinesteel.Theresearchfindingsprovidevaluablereferencesforthedesignandevaluationofhigh ̄pressurehydrogen ̄blendingnaturalgaspipelinesorpurehydrogenpipelines.Keywords:hydrogentransportationꎻhigh ̄gradesteelpipelinesꎻhydrogenblendingꎻmechanicalpropertyꎻfracturemorphologyꎻcompatibilitytestꎻtensilestrength0㊀引㊀言双碳 目标的提出明确了我国能源系统向低碳化转型的关键时间节点ꎬ而氢能对于 双碳 目标的实现起到了尤为重要的作用[1-2]ꎮ氢能的利用首先要解决大规模㊁安全及高效运输氢气的问题ꎮ利用现有天然气管道输送混氢天然气对降低氢气输送成本㊁扩大输送范围有重要意义ꎬ更有力地促进了西部可再生能源制氢的发展[1]ꎮ进入21世纪后ꎬ多个国家均设立了天然气管道混氢输送示范项目[3-4]ꎬ并且相继开展了在役天然气管道掺氢试验与研究ꎬ取得了一定的研究成果ꎮ在役天然气管道掺入氢气后ꎬ由于氢气与天然气特性存在差异ꎬ将会给掺氢天然气系统的运行与维护带来技术和安全等方面的挑战ꎬ其中氢对管道母材及焊缝的影响是建设掺氢天然气管道需解决的首要问题ꎮ近年来ꎬ我国天然气长输管道正向着长运距㊁大口径㊁高压力及高钢级方向发展ꎬ且输气干线所用钢材以X70和X80管线钢为主ꎬ故相关学者相继以高钢级管道为研究对象ꎬ分别针对设计㊁运行㊁评价及维护等诸多方面开展研究[10-18]ꎮ在目前氢与管道相容性研究中ꎬ所开展的试验主要针对纯氢环境㊁煤制气环境或低掺氢比(体积分数)条件下等级在X70及以下的管线钢力学性能的研究[5-9]ꎬ且由于氢环境试验标准不完善ꎬ导致现有的试验结果不准确ꎬ不同学者得出的研究结论存在显著差异[19-22]ꎮ于是提出接近真实管道服役状态的氢环境模拟方法来完善试验标准ꎬ并探究氢环境下高钢级管道力学性能劣化规律ꎬ是我国高压天然气管道掺氢可行性论证的重要一环ꎮ本文通过总结并对比现有试验过程中氢环境的模拟方法ꎬ得出接近于真实管道服役状态的氢环境模拟方法ꎬ并结合研究需求ꎬ以X80管线钢为主要研究对象ꎬ开展慢应变速率拉伸试验ꎬ获得试验数据及试样断口形貌ꎬ分析氢对管线钢力学性能的影响规律ꎬ以期为掺氢天然气管道完整性评价提供数据基础ꎮ1㊀试验环境与试验标准1 1㊀氢环境模拟方法在已开展的氢与管道相容性试验中ꎬ对于氢环境的模拟主要分为2类:预充氢环境和临氢环境ꎮ所谓预充氢是指在力学试验开始前将试验所用试样置于静态氢环境下ꎬ充氢完成后再进行力学性能测试试验ꎬ主要采用高压气相预充氢㊁电化学预充氢[23]以及高压气相热充氢等方法ꎻ动态充氢则是在力学性能测试试验过程中ꎬ采用液相或气相充氢的方法对试样进行动态充氢操作[24-26]ꎮ统计已发表文献发现ꎬ目前相关试验主要通过电化学充氢和气相充氢2种方式开展ꎮ由于试验条件限制㊁电化学充氢操作简单等ꎬ目前采用电化学充氢方法进行氢与管道相容性试验占有较大比例ꎮ文献[7]㊁[27]及[28]均通过电化学预充氢方法对多种APⅠ级管线钢(X60SS㊁X60㊁X70㊁X80及X100等)的氢脆敏感性进行试验研究ꎬ结果表明:每种管线钢的力学性能都发生了明显下降ꎬ产生了延性损失ꎬ但电化学充氢后的管线钢试样在常温下放置7d后延性损失可恢复ꎬ且充氢后断裂韧度与氢气体积分数呈线性关系降低ꎬ焊缝热影响区表现出较低的冲击性能ꎮ对于气相充氢ꎬ国内多位学者[29-31]分别对X52㊁X60㊁7312023年㊀第51卷㊀第12期艾红倪ꎬ等:氢环境对高钢级管线钢力学性能影响规律研究㊀㊀㊀X65及X70等多种管线钢分别在纯氢㊁低掺氢比的混氢环境中开展慢应变速率拉伸试验ꎬ结果表明:氢环境下材料的屈服强度和抗拉强度变化不大ꎬ但断后伸长率以及断面收缩率显著降低ꎬ且降低程度随材料强度的增加而增大ꎬ并伴随有断口形貌的变化ꎮ国内外研究机构[32-35]在低掺氢比(氢气体积分数为1%)㊁纯氢条件下对X70管线钢开展CTOD(裂纹尖端张开位移)试验ꎬ结果表明:氢降低了管线钢的断裂韧度ꎬ在掺氢比1%㊁10MPa纯氢条件下X70管线钢的断裂韧度从常温下的0 42mm分别降低到0 21和0 11mmꎮ从目前的研究情况来看ꎬ国内外对X80管线钢在氢环境下力学性能影响规律的研究较少ꎬ尤其是在高压气相充氢环境下开展的试验较为匮乏ꎬ应大量开展相关试验ꎬ明确在高压氢气条件下氢对X80管线钢力学性能的劣化规律ꎮ与电化学预充氢相比ꎬ室温高压气相预充氢在充氢的过程中氢原子在试样表面的扩散更加均匀ꎬ可以有效地改善电化学预充氢后氢原子在试样表面与内部之间存在的较大质量分数梯度问题ꎮ由于掺氢或纯氢管道的运行环境为常温高压含氢环境ꎬ所以采用高压气相的方法是试验试样进行预充氢的最佳方法ꎮ高压气相动态充氢过程中ꎬ氢渗入试样所经历的吸附㊁解离㊁扩散和偏聚行为将与管线钢所受的应力状态耦合ꎬ同时满足工况相似㊁应力场相似及氢质量分数扩散场相似原则[36]ꎮ因此ꎬ若开展氢环境下管线钢力学性能试验ꎬ目前最准确㊁最能反映管材真实服役状态的氢环境模拟方法为高压气相预充氢+高压气相动态充氢方法ꎮ1 2㊀试验标准在试验标准方面ꎬ国内外都已颁布关于氢环境下测定材料力学性能的试验标准ꎮ在国外ꎬ美国材料与试验协会颁布的ASTMG142 98(2016)«测定金属在氢气中氢脆敏感性的标准试验方法»中ꎬ规定了在高压或高温2种气态含氢环境中测定金属拉伸性能的方法ꎬ其中包括光滑圆棒试样及缺口试样2种用于测试的试样ꎮ国内与氢环境下测定材料力学性能试验有关的标准是GB/T34542 2 2018«氢气储存输送系统第2部分:金属材料与氢环境相容性试验方法»ꎬ标准中规定了氢环境下测定材料力学性能的试验方法㊁设备要求㊁试样信息以及注意事项等但是上述标准还没有形成完整的体系[37]ꎬ对于氢环境下材料断裂韧度测定的试验方法及标准还没有明确和详细的规定ꎬ试验过程中一些参数的选取范围㊁操作细节也尚未在标准中体现ꎮ由于缺乏国际统一的金属材料相容性试验标准ꎬ目前各国学者使用气相充氢方法得到的试验结果呈现不同形式的分散性ꎬ甚至还存在试验结论相矛盾的情况[6ꎬ30]ꎮ因此ꎬ亟需进一步开展试验研究ꎬ并制定国际统一的金属材料相容性试验标准体系ꎬ使得试验结果相对准确并呈现可重复性ꎮ2㊀慢应变速率拉伸试验2 1㊀试验准备本文中试验材料选用ø1219mmˑ22mm的X80管线钢ꎬ化学成分(质量分数)如表1所示ꎬ试样如图1所示ꎮ试验开始前ꎬ用1000号砂纸打磨试样以除去试样表面的加工痕迹ꎬ防止其影响试验结果ꎬ之后使用去离子水冲洗试样ꎬ最后将其放置于真空的干燥器皿中备用ꎮ图1㊀试验试样图Fig 1㊀Testsamplediagram表1㊀X80管线钢的质量分数试验选用美国CORTEST公司生产的慢应变速率腐蚀试验拉伸机ꎬ具体试验操作过程参考标准ASTMG142进行ꎮ本文共开展6组试验ꎬ详细工况信息如表2所示ꎮ第1~4组试验可探究氢对管线钢应力应变本构特性的影响ꎬ以及位移速率对管线钢氢致损伤的影响ꎻ第5组试验在氢气环境中加入了气相缓蚀剂ꎬ结合第3㊁4组试验所得的数据831 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第12期可探究缓蚀剂对管线钢氢损伤是否存在抑制作用ꎻ环己胺具有极性基因可作为有机缓蚀剂ꎬ为探究其对管线钢氢损伤的影响ꎬ设置了第6组试验ꎬ结合第3㊁4组试验可探究环己胺对管线钢氢损伤是否存在抑制作用ꎮ表2㊀试验工况信息3㊀氢对管线钢力学性能影响规律3 1㊀应力应变本构特性3 1 1㊀氢环境的影响选用表2中第1~4组试验所得到的数据绘制不同条件下X80管线钢的应力-应变曲线ꎬ如图2所示ꎮ从图2可知ꎬ在氢气环境与空气环境下X80钢弹性阶段无明显差异ꎬ相较于空气环境ꎬ在氢气环境下钢的颈缩点对应的应力和应变值明显增大ꎬ颈缩阶段曲线走势较为陡峭ꎬ且断裂所用时间较短ꎮ在材料力学中描述管线钢拉伸性能的力学性能指标主要包括屈服强度㊁极限抗拉强度㊁试样断后伸长率及断面收缩率[38]等ꎮ其中试样的断后伸长率㊁断面收缩率可作为氢脆敏感性的量化指标ꎬ断后伸长率和断面收缩率越小ꎬ管线钢的脆性越强[39]ꎮ本文选用断后伸长率作为X80管线钢氢损伤程度的评价指标ꎬ其计算公式为:A=[(Lr-L0)/L0]ˑ100%(1)式中:A为断后伸长率ꎬ%ꎻLr为试样断裂后标距段长度ꎬmmꎻL0为标距段原始长度ꎬmmꎮ在氢气环境中ꎬ管线钢断后伸长率相对于空气环境中的降低程度用氢脆指数F表示[40-41]:F=A0-AHA0ˑ100%(2)式中:F为氢脆指数ꎬ%ꎻA0为空气中的断后伸长率ꎬ%ꎻAH为在氢气中的断后伸长率ꎬ%ꎮ利用试验数据以及公式得出每组试验X80管线钢的力学性能指标ꎬ如表3所示ꎮ图2㊀不同条件下X80管线钢的应力-应变曲线Fig 2㊀Stress ̄straincurvesofX80pipelinesteelunderdifferentconditions表3㊀氢气或空气环境下X80管线钢的力学性能-4mm/s时ꎬ在氢气环境中X80管线钢的屈服强度相较于空气环境中增加了3 38%ꎻ对于极限抗拉强度ꎬ在2种位移速率的氢环境下钢的极限抗拉强度相对于空气环境下分别增大了7 23%和3 77%ꎬ氢使X80管线钢的断后伸长率在2种位移速率下分别减小了6 04%和14 88%ꎬ使钢的塑性降低ꎮ3 1 2㊀位移速率的影响将第2㊁4组试验得到数据处理后绘制成如图3所示的曲线ꎮ从图3可以看出:在2种位移速率931 2023年㊀第51卷㊀第12期艾红倪ꎬ等:氢环境对高钢级管线钢力学性能影响规律研究㊀㊀㊀图3㊀不同位移速率的氢气环境下X80管线钢的应力-应变曲线Fig 3㊀Stress ̄straincurvesofX80pipelinesteelinhydrogenenvironmentwithdifferentdisplacementrates的氢气环境下X80钢弹性阶段无明显差异ꎻ对于屈服阶段ꎬ在应变相同的情况下位移速率为1 01ˑ10-4mm/s的氢气环境中钢所对应的应力值略大于位移速率为1 01ˑ10-5mm/s的应力值ꎻ在位移速率为1 01ˑ10-4mm/s的氢气环境下ꎬX80管线钢的颈缩点对应的应力和应变值明显大于位移速率为1 01ˑ10-5mm/s条件下的值ꎬ颈缩阶段的曲线走势较为平缓ꎬ且断裂所用时间较长ꎮ位移速率对X80管线钢氢损伤的影响程度用位移速率变化前后氢脆指数的变化率来表示ꎬ记为Kꎬ计算公式如下:K=FH1-FH2FH1ˑ100%(3)式中:K为影响程度ꎬ%ꎻFH1为试样在较小位移速率条件下的氢脆指数ꎬ%ꎻFH2为试样在较大位移速率条件下的氢脆指数ꎬ%ꎮ利用公式以及试验数据分别得出2组试验X80管线钢的断后伸长率㊁氢脆指数以及位移速率影响程度ꎬ结果如表4所示ꎮ从表4可以看出:随着位移速率的减小ꎬX80管线钢的屈服强度和极限抗拉强度都明显降低ꎬ断后伸长率也随之降低ꎬ导致氢脆指数增大ꎬ使X80管线钢塑性降低ꎻ位移速率从1 01ˑ10-4mm/s降低到1 01ˑ10-5mm/s对钢氢损伤影响程度为59 40%ꎬ说明位移速率对X80管线钢氢损伤程度影响较大ꎮ表4㊀不同位移速率条件下X80管线钢的力学性能图4㊀不同缓蚀剂条件下X80管线钢应力-应变曲线Fig 4㊀Stress ̄straincurvesofX80pipelinesteelunderdifferentcorrosioninhibitorconditions为探究缓蚀剂对X80管线钢氢损伤的抑制作用ꎬ选用表2中第3~6组试验所得到的X80管线钢应力㊁应变值绘制相应的应力-应变曲线ꎬ结果如图4所示ꎮ从图4可以看出ꎬ这4种不同的试验环境对X80管线钢弹性阶段的力学性能无显著影响ꎮ从颈缩点来看ꎬ在纯氢气和氢气+气相缓蚀剂2种环境下ꎬX80管线钢的颈缩点相近ꎬ且颈缩点对应的应力和应变值均大于空气环境中颈缩点对应的值ꎬ而在图4所示的4种环境中ꎬ在氢气+环己胺环境下X80管线钢的颈缩点对应的应力和应变值最大ꎮ对于总应变ꎬ在氢气+气相缓蚀剂环境下X80管线钢的总应变最大ꎬ空气环境下X80管线钢的总应变略小ꎬ而氢气+环己胺环境下X80管线钢的总应变次之ꎬ纯氢气环境下X80管线钢的总应变最小ꎮ缓蚀剂对X80管线钢氢损伤的影响程度用缓蚀剂加入前后氢脆指数的变化率来表示ꎬ记为Iꎬ其计算公式如下:I=FH-FH+LFHˑ100%(4)式中:FH为试样在氢气环境中的氢脆指数ꎬ%ꎻFH+L为试样在氢气+缓蚀剂环境中的氢脆指数ꎬ%ꎮ利用公式以及试验数据分别得出每组试验X80管线钢的断后伸长率㊁氢脆指数以及缓蚀剂影响程度ꎬ结果如表5所示ꎮ通过观察断后伸长率可以得出ꎬ气相缓蚀剂的加入使X80管线钢的断后伸长率相较于纯氢环境增大了27 62%ꎬ甚至高于空气环境中的值ꎬ使管线钢的塑性增强ꎻ环己胺的加入041 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第12期使X80管线钢的断后伸长率增大了3 14%ꎬ但低于空气环境中的值ꎬ使管线钢的塑性较纯氢环境略有增强ꎮ氢环境中加入气相缓蚀剂对X80管线钢氢损伤影响程度为158 00%ꎬ而加入环己胺的影响程度为17 94%ꎬ意味着气相缓蚀剂和环己胺对X80管线钢氢损伤均有抑制作用ꎬ且气相缓蚀剂对其影响程度较大ꎬ环己胺的影响程度较小ꎮ表5㊀不同缓蚀剂条件下X80管线钢的力学性能Table5㊀MechanicalpropertiesofX80pipeline试验完成后ꎬ利用KYKY-EM6200型扫描电子显微镜对断裂后的试样的断口形貌进行观察ꎬ得到各试样在放大不同倍数下的断口形貌图ꎬ如图5㊁图6及图7所示ꎮ图5㊀氢气或空气环境下X80钢试样的断口形貌Fig 5㊀FracturemorphologiesofX80steelspecimeninhydrogenorairenvironment观察图5可以得到:在空气环境中试样断口有明显的颈缩现象ꎬ且收缩面积较大㊁断口面积较小ꎻ在纯氢气环境中试样断口也存在颈缩现象ꎬ但相对于空气环境收缩面积较小㊁断口面积较大ꎬ此现象表明在空气环境中X80管线钢试样相对于纯氢环境塑性变形较大ꎻ在空气环境中试样的断口形貌包括中心纤维区和边缘的剪切区ꎮ图5a中用红色标记成Ⅰ的区域为中心纤维区ꎬ标记成Ⅱ的区域为剪切区ꎮ剪切区相对平整ꎬ与断面成45ʎꎮ而在纯氢环境中试样的断口形貌不存在相对平整的剪切区ꎬ只具有中心纤维区ꎬ且出现明显的裂纹ꎬ这意味着氢会导致X80管线钢母材的塑性降低ꎮ观察图6中放大1000倍的X80管线钢试样在空气环境中的断口形貌可得ꎬ在空气环境下试样断口形貌以韧窝为主ꎮ其中半径大㊁深度较深的韧窝称为大韧窝(如图6b和图6d中用红色方形标记的区域)ꎬ同时大韧窝周围会夹杂着较小而密集且均匀分布的韧窝称为小韧窝(如图6b和图6d中用红色椭圆形标记的区域)ꎬ此类断口形貌具有典型的韧性断裂特征ꎮ当试验环境为位移速率1 01ˑ10-4mm/s的纯氢环境时ꎬ观察放大200倍的试样的断口形貌发现ꎬ在纯氢环境下X80管线钢试样出现图6㊀不同位移速率条件下X80钢试样的断口形貌Fig 6㊀FracturemorphologyofX80steelsamplesunderdifferentdisplacementrates明显的裂纹ꎬ如图6e中蓝色椭圆形标记的区域ꎮ在放大1000倍的试样断口形貌中大韧窝(红色方形标记的区域)的数量相较于空气中明显减少ꎬ半径变小ꎬ深度变浅ꎬ且小韧窝(红色椭圆形标记的区域)的分布较为稀疏ꎻ同时在韧窝周围出现较小且平滑的过渡区域ꎬ呈现出准解理特征ꎬ如图6f中蓝色方形标记的区域ꎬ此类断口形貌特征为典型的脆性断裂特征ꎮ在其余条件不变的条件下ꎬ将位移速率减小至1 01ˑ10-5mm/s后ꎬ放大200倍的试样断口形貌中裂纹尺寸变大ꎬ几乎贯穿整个断面ꎬ如图6g所示ꎮ进一步观察放大1000倍的试样断口形貌发现ꎬ大韧窝逐渐消失ꎬ小韧窝数量也随之减少且尺寸极为窄小㊁分布更加稀疏ꎬ同时断面较为平滑ꎬ出现较大的准解理平面ꎬ如图1412023年㊀第51卷㊀第12期艾红倪ꎬ等:氢环境对高钢级管线钢力学性能影响规律研究㊀㊀㊀6h所示ꎮ这表明随着位移速率的减小ꎬX80管线钢的塑性损失增大ꎬ且内部出现明显裂纹ꎬ氢脆现象加剧ꎬ失效风险增大ꎮ图7㊀不同环境下X80钢试样断口形貌Fig 7㊀FracturemorphologiesofX80steelsamplesunderdifferentenvironments对比图7中位移速率为1 01ˑ10-5mm/s㊁不同环境下进行试验得到的X80管线钢母材试样的断口形貌可以得到ꎬ在氢气+气相缓蚀剂环境下放大200倍的试样断口形貌中裂纹消失ꎬ断面特征主要以韧窝为主ꎬ如图7e所示ꎮ进一步观察放大1000倍的试样断口形貌发现ꎬ大韧窝的数量㊁半径及深度均大于纯氢环境中的值ꎬ但小于空气环境中的值ꎬ如图7f所示ꎬ其断裂形式为韧性断裂ꎮ而在氢气+100mL环己胺环境下放大200倍的试样断口形貌中仍然存在细小的裂纹ꎬ断面特征同样以韧窝为主ꎬ如图7g所示ꎮ进一步观察放大1000倍的试样断口形貌发现ꎬ大韧窝的数量㊁半径及深度均大于纯氢环境中的值ꎬ但小于氢气+气相缓蚀剂环境中的值ꎬ如图7h所示ꎬ其断裂形式为韧性断裂ꎮ上述现象说明ꎬ气相缓蚀剂与环己胺均有降低在纯氢环境下X80管线钢塑性损失㊁减轻X80钢氢损伤程度㊁抑制氢脆的作用ꎬ但气相缓蚀剂对X80管线钢氢损伤的影响程度更大ꎬ抑制氢脆作用更强ꎮ4㊀结㊀论(1)高压气相预充氢+高压气相动态充氢是目前最能反映管材实际服役工况的氢环境相容试验方法ꎮ(2)氢会使管线钢的屈服强度㊁极限抗拉强度略微增加ꎬ在1 01ˑ10-4和1 01ˑ10-5mm/s这2种位移速率的纯氢环境下分别增大了7 23%和3 77%ꎬ断后伸长率分别减小了6 04%和14 88%ꎻ且位移速率对X80管线钢氢损伤程度影响较大ꎬ位移速率从1 01ˑ10-4mm/s降低到1 01ˑ10-5mm/s对X80管线钢氢损伤影响程度为59 40%ꎬ随着位移速率的减小ꎬ管线钢氢损伤程度增加ꎮ(3)氢会降低管线钢的断裂韧度ꎬ在纯氢环境中的试样断口存在颈缩现象ꎬ但相对于空气环境收缩面积较小㊁断口面积较大ꎬ产生一定的塑性损失ꎬ且断口形貌特征为典型的脆性断裂特征ꎮ同时随着位移速率的减小ꎬ管线钢的塑性损失增大ꎬ且内部出现明显裂纹ꎮ(4)气相缓蚀剂和环己胺对X80管线钢氢损伤均有抑制作用ꎬ且气相缓蚀剂对其影响程度较大ꎬ环己胺的影响程度较小ꎮ在抑制管线钢氢损伤的措施中ꎬ可以考虑采用气相缓蚀剂作为氢损伤的抑制剂ꎮ参㊀考㊀文㊀献[1]㊀黄晓勇ꎬ陈卫东ꎬ王永中ꎬ等.世界能源蓝皮书:世界能源发展报告(2021)[M].北京:社会科学文献出版社ꎬ2021.HUANGXYꎬCHENWDꎬWANGYZꎬetal.Bluebookofworldenergy:annualdevelopmentreportonworldenergy(2021)[M].Beijing:SocialSciencesAcademicPress(China)ꎬ2021.[2]㊀朱珠ꎬ廖绮ꎬ邱睿ꎬ等.长距离氢气管道运输的技术经济分析[J].石油科学通报ꎬ2023ꎬ8(1):112-124.ZHUZꎬLIAOQꎬQIURꎬetal.Technicalandeconom ̄icanalysisonlong ̄distancehydrogenpipelinetranspor ̄tation[J].PetroleumScienceBulletinꎬ2023ꎬ8(1):112-124.[3]㊀DEMIRMEꎬDINCERI.costassessmentandevalua ̄tionofvarioushydrogendeliveryscenarios[J].Interna ̄tionalJournalofHydrogenEnergyꎬ2018ꎬ43(22):10420-10430.[4]㊀ISAACT.HyDeploy:theUK sfirsthydrogenblendingdeploymentproject[J].CleanEnergyꎬ2019ꎬ3(2):114-125.241 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第12期[5]㊀BAEKUBꎬLEEHMꎬBAEKSWꎬetal.HydrogenembrittlementforX-70pipelinesteelinhighpressurehydrogengas[C]ʊASME2015PressureVesselsandPipingConference.BostonꎬMassachusettsꎬUSA:ASMEꎬ2015:V06BT06A018.[6]㊀HUANGGꎬZHENGJYꎬMENGBꎬetal.MechanicalpropertiesofX70weldedjointinhigh ̄pressurenaturalgas/hydrogenmixtures[J].JournalofMaterialsEngi ̄neeringandPerformanceꎬ2020ꎬ29(3):1589-1599. [7]㊀MOSTAFIJURRKMꎬMOHTADI ̄BONABMAꎬOUELLETRꎬetal.AcomparativestudyoftheroleofhydrogenondegradationofthemechanicalpropertiesofAPIX60ꎬX60SSꎬandX70pipelinesteels[J].SteelResearchInternationalꎬ2019ꎬ90(8):1900078. [8]㊀NGUYENTTꎬPARKJꎬKIMWSꎬetal.Effectoflowpartialhydrogeninamixturewithmethaneontheme ̄chanicalpropertiesofX70pipelinesteel[J].Interna ̄tionalJournalofHydrogenEnergyꎬ2020ꎬ45(3):2368-2381.[9]㊀SONGEJꎬBAEKSWꎬNAHMSHꎬetal.Notched ̄tensilepropertiesunderhigh ̄pressuregaseoushydrogen:comparisonofpipelinesteelX70andausteniticstainlesstype304Lꎬ316Lsteels[J].InternationalJournalofHydrogenEnergyꎬ2017ꎬ42(12):8075-8082. [10]㊀郑伟ꎬ张宏ꎬ刘啸奔ꎬ等.断层作用下管道应变计算有限元模型对比研究[J].石油机械ꎬ2015ꎬ43(12):109-113.ZHENGWꎬZHANGHꎬLIUXBꎬetal.ComparativestudyontheFEMmodelsofburiedpipelineunderfaultmovement[J].ChinaPetroleumMachineryꎬ2015ꎬ43(12):109-113.[11]㊀杨辉ꎬ王富祥ꎬ钟婷ꎬ等.基于应变的高钢级管道环焊缝适用性评价[J].石油机械ꎬ2022ꎬ50(5):150-156.YANGHꎬWANGFXꎬZHONGTꎬetal.Strain ̄basedapplicabilityevaluationofgirthweldsonhigh ̄gradesteelpipeline[J].ChinaPetroleumMachineryꎬ2022ꎬ50(5):150-156.[12]㊀赵新威ꎬ曾祥国ꎬ姚安林ꎬ等.地震载荷作用下埋地输气管道的数值模拟[J].石油机械ꎬ2014ꎬ42(3):104-109.ZHAOXWꎬZENGXGꎬYAOALꎬetal.Numericalsimulationofthedynamicresponseofburiedgaspipe ̄lineunderseismicload[J].ChinaPetroleumMachin ̄eryꎬ2014ꎬ42(3):104-109.[13]㊀张宏ꎬ吴锴ꎬ冯庆善ꎬ等.高钢级管道环焊缝断裂韧性与裂尖拘束关系[J].石油学报ꎬ2023ꎬ44(2):385-393.ZHANGHꎬWUKꎬFENGQSꎬetal.Relationshipbe ̄tweenfracturetoughnessandcracktipconstraintofhigh ̄strengthpipegirthwelds[J].ActaPetroleisini ̄caꎬ2023ꎬ44(2):385-393.[14]㊀JIANGJXꎬZHANGHꎬZHANGDꎬetal.Fracturere ̄sponseofmitredX70pipelinewithcrackdefectinbuttweld:experimentalandnumericalinvestigation[J].Thin ̄WalledStructuresꎬ2022ꎬ177:109420. [15]㊀张宏ꎬ吴锴ꎬ冯庆善ꎬ等.高钢级管道环焊接头力学性能与适用性评价研究进展[J].油气储运ꎬ2022ꎬ41(5):481-497.ZHANGHꎬWUKꎬFENGQSꎬetal.Stateoftheartonmechanicalpropertiesandfitness ̄for ̄serviceassess ̄mentofhigh ̄gradepipelinegirthweld[J].Oil&GasStorageandTransportationꎬ2022ꎬ41(5):481-497. [16]㊀刘啸奔ꎬ房茂立ꎬ郑倩ꎬ等.基于PFDHA的X80管道应变失效可靠度计算方法[J].应用力学学报ꎬ2022ꎬ39(1):148-154.LIUXBꎬFANGMLꎬZHENGQꎬetal.ReliabilitycalculationmethodforX80pipeline sstrainfailurebasedonPFDHA[J].ChineseJournalofAppliedMe ̄chanicsꎬ2022ꎬ39(1):148-154.[17]㊀WUKꎬZHANGDꎬFENGQSꎬetal.Improvementoffractureassessmentmethodforpipegirthweldbasedonfailureassessmentdiagram[J].InternationalJournalofPressureVesselsandPipingꎬ2023ꎬ204:104950. [18]㊀李燕ꎬ帅健ꎬ隋永莉ꎬ等.含气孔缺陷的管道环焊缝应力分析[J].石油科学通报ꎬ2016ꎬ1(3):417-424.LIYꎬSHUAIJꎬSUIYLꎬetal.Stressanalysisofcir ̄cumferentialpipelineweldseamswithporedefects[J].PetroleumScienceBulletinꎬ2016ꎬ1(3):417-424. [19]㊀HALLJEꎬHOOKERPꎬJEFFREYKE.Gasdetec ̄tionofhydrogen/naturalgasblendsinthegasindustry[J].InternationalJournalofHydrogenEnergyꎬ2021ꎬ46(23):12555-12565.[20]㊀YILDIRIMA.NATURALHY(thepotentialofexistingnaturalgasnetworkforhydrogendelivery)projectob ̄jectivesandsomeresults[C]ʊ18thInternationalPe ̄troleumandNaturalGasCongressandExhibitionofTurkey.AnkaraꎬTurkey:EuropeanAssociationofGeo ̄scientists&Engineersꎬ2011:cp-377-00155. [21]㊀ANON.GDFSuezꎬMcPhyinFrenchGRHYDprojectonmethaneꎬhydrogen[J].FuelCellsBulletinꎬ2012ꎬ2012(12):10.[22]㊀KIPPERSMJꎬDELAATJCꎬHERMKENSRJMꎬetal.Pilotprojectonhydrogeninjectioninnaturalgasonis ̄landofAmelandintheNetherlands[C]ʊInternationalGasUnionResearchConference2011(IGRC2011).SeoulꎬKorea:InternationalGasUnionRepresentedbytheSecretaryGeneral(IGU)ꎬ2011:1163-1177. [23]㊀张士欢ꎬ王荣.X80管线钢电化学充氢后的断裂特3412023年㊀第51卷㊀第12期艾红倪ꎬ等:氢环境对高钢级管线钢力学性能影响规律研究㊀㊀㊀性研究[J].石油机械ꎬ2008ꎬ36(1):16-18.ZHANGSHꎬWANGR.StudyoffracturetoughnessofX80pipelinesteelafterelectrochemicalhydrogenchar ̄ging[J].ChinaPetroleumMachineryꎬ2008ꎬ36(1):16-18.[24]㊀李守英ꎬ胡瑞松ꎬ赵卫民ꎬ等.氢在钢铁表面吸附以及扩散的研究现状[J].表面技术ꎬ2020ꎬ49(8):15-21.LISYꎬHURSꎬZHAOWMꎬetal.Hydrogenad ̄sorptionanddiffusiononsteelsurface[J].SurfaceTechnologyꎬ2020ꎬ49(8):15-21.[25]㊀POUNDBG.Theapplicationofadiffusion/trappingmodelforhydrogeningressinhigh ̄strengthalloys[J].Corrosionꎬ1989ꎬ45(1):18-25.[26]㊀ZHANGTYꎬZHENGYPꎬWUQY.Onthebounda ̄ryconditionsofelectrochemicalhydrogenpermeationthroughiron[J].JournaloftheElectrochemicalSocie ̄tyꎬ1999ꎬ146(5):1741.[27]㊀WANGR.EffectsofhydrogenonthefracturetoughnessofaX70pipelinesteel[J].CorrosionScienceꎬ2009ꎬ51(12):2803-2810.[28]㊀LEEJAꎬLEEDHꎬSEOKMYꎬetal.Hydrogen ̄in ̄ducedtoughnessdropinweldcoarse ̄grainedheat ̄af ̄fectedzonesoflinepipesteel[J].MaterialsCharacter ̄izationꎬ2013ꎬ82:17-22.[29]㊀NANNINGANEꎬLEVYYSꎬDREXLERESꎬetal.Comparisonofhydrogenembrittlementinthreepipelinesteelsinhighpressuregaseoushydrogenenvironments[J].CorrosionScienceꎬ2012ꎬ59:1-9.[30]㊀BAEDSꎬSUNGCEꎬBANGHJꎬetal.Effectofhighlypressurizedhydrogengaschargingonthehydro ̄genembrittlementofAPIX70steel[J].MetalsandMaterialsInternationalꎬ2014ꎬ20(4):653-658. [31]㊀张体明ꎬ王勇ꎬ赵卫民ꎬ等.高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J].金属学报ꎬ2015ꎬ51(9):1101-1110.ZHANGTMꎬWANGYꎬZHAOWMꎬetal.Hydro ̄genpermeationparametersofX80steelandweldingHazunderhighpressurecoalgasenvironment[J].ActaMetallurgicasinicaꎬ2015ꎬ51(9):1101-1110. [32]㊀BAEKUBꎬLEEHMꎬBAEKSWꎬetal.HydrogenembrittlementforX-70pipelinesteelinhighpressurehydrogengas[C]ʊASME2015PressureVesselsandPipingConference.BostonꎬMassachusettsꎬUSA:ASMEꎬ2015:V06BT06A018.[33]㊀NGUYENTTꎬPARKJSꎬKIMWSꎬetal.Environ ̄menthydrogenembrittlementofpipelinesteelX70un ̄dervariousgasmixtureconditionswithinsitusmallpunchtests[J].MaterialsScienceandEngineering:Aꎬ2020ꎬ781:139114.[34]㊀SHANGJꎬWANGJZꎬCHENWFꎬetal.Differenteffectsofpurehydrogenvs.hydrogen/naturalgasmix ̄tureonfracturetoughnessdegradationoftwocarbonsteels[J].MaterialsLettersꎬ2021ꎬ296:129924. [35]㊀SHANGJꎬZHENGJYꎬHUAZLꎬetal.EffectsofstressconcentrationonthemechanicalpropertiesofX70inhigh ̄pressurehydrogen ̄containinggasmixtures[J].InternationalJournalofHydrogenEnergyꎬ2020ꎬ45(52):28204-28215.[36]㊀郑津洋ꎬ周池楼ꎬ徐平ꎬ等.高压氢环境材料耐久性测试装置的研究进展[J].太阳能学报ꎬ2013ꎬ34(8):1477-1483.ZHENGJYꎬZHOUCLꎬXUPꎬetal.R&Dofmaterialstestingequipmentinhigh ̄pressurehydrogen[J].ActaEnergiaeSolarissinicaꎬ2013ꎬ34(8):1477-1483. [37]㊀张来斌ꎬ胡瑾秋ꎬ张曦月ꎬ等.氢能制-储-运安全与应急保障技术现状与发展趋势[J].石油科学通报ꎬ2021ꎬ6(2):167-180.ZHANGLBꎬHUJQꎬZHANGXYꎬetal.Researchstatusanddevelopmenttrendsofsafetyandemergencyguaranteetechnologyforproductionꎬstorageandtrans ̄portationofhydrogen[J].PetroleumScienceBulletinꎬ2021ꎬ6(2):167-180.[38]㊀CHENGYF.Analysisofelectrochemicalhydrogenper ̄meationthroughX-65pipelinesteelanditsimplica ̄tionsonpipelinestresscorrosioncracking[J].Inter ̄nationalJournalofHydrogenEnergyꎬ2007ꎬ32(9):1269-1276.[39]㊀褚武扬ꎬ乔利杰ꎬ李金许ꎬ等.氢脆和应力腐蚀[M].北京:科学出版社ꎬ2013:243-246. [40]㊀MOROIꎬBRIOTTETLꎬLEMOINEPꎬetal.Hydro ̄genembrittlementsusceptibilityofahighstrengthsteelX80[J].MaterialsScienceandEngineering:Aꎬ2010ꎬ527(27/28):7252-7260.[41]㊀TAKASAWAKꎬIKEDARꎬISHIKAWANꎬetal.Effectsofgrainsizeanddislocationdensityonthesus ̄ceptibilitytohigh ̄pressurehydrogenenvironmentem ̄brittlementofhigh ̄strengthlow ̄alloysteels[J].Inter ̄nationalJournalofHydrogenEnergyꎬ2012ꎬ37(3):2669-2675.㊀㊀第一作者简介:艾红倪ꎬ女ꎬ生于2000年ꎬ2022年毕业于中国石油大学(北京)油气储运工程专业ꎬ现为在读硕士研究生ꎬ研究方向为油气储运设施结构强度ꎮ地址: (102249)北京市昌平区ꎮemail:AHN_246@163 comꎮ通信作者:刘啸奔ꎬ电话:(010)89731239ꎮemail:xiaobenliu@cup edu cnꎮ㊀收稿日期:2023-06-06(本文编辑㊀王刚庆)441 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第12期。
XI00高钢级管线钢的组织特征及其对强韧性性能的影响

般来 说 , 随着 奥 氏体 晶粒增 大 , 氏体转 变孕 育 贝
期 增长 , 变 速度减 慢 . 2 示是 高碳 锰钢 奥 氏体 晶 转 图 所
2 1 组 织特征 .
粒 大小 和形 成 一定 量 贝 氏体 所 需 时 间 的 关 系. 由图 2 可知 , 随着奥 氏体 晶粒 增大 , 成一 定量 贝 氏体 所需 的 形
以看 出 , #试 样 中 MA 岛数 量 较 多 , 界 线 较 为 模 1 晶
随着 奥 氏体温 度升 高 , 贝氏体转 变速 度先 降后 增.
奥 氏体 化 时间对 贝 氏体 转 变也 有 类 似 影 响 , 即 时 间 亦
延 长 先降后 增.
糊, MA 岛多数处 于 晶界 内 , 且分 布均 匀 ; #试 样 中 晶 2 界 明显 , MA 岛数 量 较 少 , 典 型 的 针状 铁 素 体 存 在 , 有
8 0℃~4 0℃的 系列温 度 下进 行 夏 比 冲击 功 的测 试 利用 金相 显 微 电镜 、 E T M 和先 进 的 E S S M、 E BD
试验 , 评定各 试样 断 口剪切 面积 . 并
技术 进行 组织 研究 . 于 组 织研 究 的样 品 取 自管 体 横 用
向垂 直 于扎制 方 向. 品经机 械抛 光 、 样 腐蚀 后 进行金 相
预制 疲 劳裂 纹 的三 点弯 曲试样 ; 用摆锤 、 利 落锤 等装 置
MA 岛多数处 于 晶界或 晶界 汇聚之 处.
进 行 动 态 加 载 , 定 金 属 材 料 在 冲击 载 荷 作 用 下 的 测
C VN 值 , 型 缺 口 的 缺 口 方 向 为 沿 厚 度 方 向 , V 在
一
个点 , 步长 为 0 3 m. .
基于W型试样确定A508-Ⅲ钢参考温度T_(0)的方法研究

及1C(T)试样的预制疲劳裂纹长度为1. 5 ——$
断裂韧性试验在MTS CMT5504电子万
能试验机(精度等级为0.5级,图3)上开展$
利用Epsilon 3541高低温COD引伸计(精度等
级为0.5%)测量施力点位移$低温试验在
MTS GDX300环境箱中开展,采用液氮喷淋方
式制冷,温度控制偏差为士 2°$
反应堆压力容器(RPV)包容着堆芯燃料 及堆内构件,它既是压水反应堆一回路冷却剂 压力边界的重要组成部分,也是压水反应堆中第 三道安全屏障,同时也是保证反应堆安全的不可 更换的重要部件$因此,保证其结构完整性是核 电厂运行及延寿时需重点关注的问题之一$
辐照脆化是RPV结构完整性评估时需要 考虑的重要因素$目前常用的辐照脆化评估方 法有基于冲击试样的间接法和基于断裂韧性试 样的直接法,其中后者具有数据可靠、裕度 适中、可充分发挥电站经济性的优势$为此,核 电厂反应堆监督管内均放置有断裂韧性试样 $ 但受限于监督管内部空间,辐照监督用断裂韧 性试样一般采用较小尺寸试样$中国第一座核 电机组秦山核电站320 MW机组辐照监督管 内断裂韧性样品放置了较特殊的W型试样,该 试样体积是1/2C(T)试样的1/2,由中国原子 能科学研究院于20世纪80年代研制+4,$开发 W型试样的目的是获得上平台的断裂韧性,但 受韧带宽度等形状因素限制,该试样难以获得 符合ASTM E1820要求的有效数据$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线钢的断裂韧性估算 ,其偏差较大 ,尤其是对于高 强度高韧性的管线钢 ,这个偏差会显著影响断裂 韧性评估结果的可靠性 。因此 ,有必要研究建立 适用于 X80 级管线钢的断裂韧性和夏比冲击功 的经验关系式 。
1 研究现状
1. 1 CTOD 法估算 X80级管线钢管断裂韧性 裂纹尖端张开位移 (CTOD )法是测试金属材
3 基金项目 :中国石油天然气集团公司 2007年应用基础研究计划项目 (07A40401) © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
δ0. 2 / mm 0. 406 0. 196 0. 385 0. 189 0. 524 0. 228 0. 497 0. 191 0. 469 0. 202 0. 524 0. 209 0. 198 0. 225 0. 255 0. 210 0. 255 0. 203 0. 369 0. 213 0. 416 0. 202 0. 382 0. 183
分别对表 2中的夏比冲击功和断裂韧性值取 对数 ,并将其结果绘制成图 ,如图 3所示 。
图 3 冲击功与断裂韧性对数关系图
从图 3中可以看出 ,当夏比冲击功的对数值
增加时 ,断裂韧性的对数值也随之增加 ,其值大致
分布在某一直线附近 ,但又不完全在同一条直线
上 。由此说明 ,断裂韧性的对数值与夏比冲击功
算的 X80级管线钢管的断裂韧性值绘制成图 ,如
图 2所示 。
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
第 32卷第 7期 骆建武等 :高钢级管线钢断裂韧性确定方法研究
图 2 两种方法估算的断裂韧性值对比
从图 2可以看出 ,用 CVN 法估算的 X80级管 线钢的断裂韧性值与试验观测值偏差较大 ,且 CVN 法估算值全部小于试验观测值 。
2 经验关系式建立
2. 1 回归模型的建立 本研究的主要目的是建立 X80 级管线钢夏
比冲击功与其断裂韧性之间的经验关系 ,这里将 夏比冲击功作为随机变量处理 ,相应的断裂韧性 作为因变量处理 ,由于两者关系是非确定的 ,因而 不能简单地用一个函数表达式来描述 。
0 ℃和 20 ℃三 个 温 度 下 的 裂 纹 尖 端 张 开 位 移
(CTOD ) ,并采用式 (1)计算样管的断裂韧性。
图 1 CTOD 试样尺寸示意图
1. 1. 2 试验结果
4家管厂 X80级管线钢管的 CTOD 数据取裂
纹扩展量为
0.
2 mm
时的值
,即
δ 0.
2
,按公式
( 1 )计
算钢管的断裂韧性 ,结果见表 1,并以此值作为断
表 1 不同温度不同取样位置 CTOD 法 X80级管线钢管断裂韧性
管厂 A B C D
试验温度 / ℃ - 20 0 20 - 20 0 20 - 20 0 20 - 20 0 20
取样 位置 母材 焊缝 母材 焊缝 母材 焊缝 母材 焊缝 母材 焊缝 母材 焊缝 母材 焊缝 母材 焊缝 母材 焊缝 母材 焊缝 母材 焊缝 母材 焊缝
材料的断裂韧性是进行管道断裂评估必要的 性能参数。根据材料弹塑性断裂理论 ,材料的断裂 韧性数据可通过测量裂纹尖端位移换算得到 ,但是 这种方法采用的试样加工起来较为繁琐 ,试验过程 也很耗时。实际上 ,断裂韧性的确定通常是利用 V 形夏比冲击功 ,通过经验公式换算得到。
西气东输二线大量采用 X80高钢级管线钢 , 而目前在断裂评估中广泛采用的几个断裂韧性和 夏比冲击功的经验关系式都不是专门针对管线钢 研究提出的 。研究发现 ,这些经验公式应用于管
2. Q ingha i O il F ield P ipeline T ransm itting Poin t, Geerm u 816000, Q ingha i, Ch ina) Abstract: Fracture toughness of p ipeline steel p ipe is an important parameter to evaluate p ipeline fracture, and inspec2 ting fracture toughness data is verbose. According to emp irical equation between the Charpy impact energy and fracture toughness to estimate is common method. U sing mathematical statistics method, a new emp irical equation between the fracture toughness and Charpy impact energy of X80 high grade p ipeline steel was developed on the basis of experi2 ment samp le data. And the theory of statistical test was used to inspect emp irical equation. The inspection result indi2 cated that the new emp irical equation has high correlation w ith the samp le data. Comparing the emp irical equation w ith that of existing, the emp irical equation developed here was more suitable for the X80 high grade p ipeline steel, and can make better estimation for its fracture toughness. Key words: high grade p ipeline steel; fracture toughness; Charpy impact energy
Research on the D eterm ina tion M ethod of Fracture Toughness for H igh Strength P ipeline Steel
LUO J ian2wu1, 2 , Q IN Hai2tao1, 2
( 1. X i’an S h iyou U n iversity, X i’an 720021, Ch ina;
KIC = 14. 6 ( CVN ) 1 /2 。
(2)
按照 ASTM E23—2005 的试验方法 ,测定各
试样的冲击功 ,并按公式 ( 2 )计算钢管的断裂韧
性 ,结果见表 2。
1. 3 现状分析
根据表 1 和表 2 中的相关数据 , 将采用
CTOD 法 (公式 (1) )和 CVN 法 (公式 ( 2) )分别估
σf —流变应力 ,σf
=
1 2
(σy
+σu )
,M Pa;
σy —材料屈服强度 ,M Pa; σu —材料抗拉强度 ,M Pa; δcrit —极限 CTOD 值 , mm;
Ey —弹性模量 ,取值 2. 06 ×105 M Pa; υ—泊松比 ,取值 0. 3。
1. 1. 1 试验材料和试验方法
的对数值存在着某种线性关系 ,某些点与直线的
偏离是由于试验过程中的随机因素影响而造成
的 。因此 ,可以假设断裂韧性 KIC的对数值与夏比
冲击功的对数 = lna +β1 ln (CVN ) + e ,
(3)
令 y = lnKIC ,β0 = lna , x = ln (CVN ) ,则有
断裂韧性 / (M Pa·m1 /2 )
287 200 279 196 326 216 312 200 303 206 320 209 208 223 236 216 236 212 271 207 288 202 276 192
件在冲击破坏过程中的耗散功 ,即用夏比冲击功
来评价材料的断裂韧性 。
本研究中夏比冲击试验材料与断裂韧性测试
·34·
焊 管 2009年 7月
料断裂韧性的主要方法之一 。在平面应变状态
下 ,根据线弹性断裂力学 ,金属材料的断裂韧性可 以依据公式 (1)计算 [ 1 - 2 ] 。
KIC =
σδ m CTOD E f crit y 1 - υ2
,
(1)
式中 : mCTOD —转换常数 ,取值 1. 4;
冲击功 / J
298 162 282 174 302 190 343 146 338 175 348 181 124 144 227 177 225 181 297 165 326 165 328 158
断裂韧性 / (M Pa·m1 /2 )
252 186 245 193 254 201 163 175 220 194 219 196 270 176 268 193 272 196 252 188 264 188 264 184
用的材料取自同一根钢管 。在管体和焊缝处取管
体横向和焊缝夏比 V 形缺口冲击试样 ,靠近钢管
外表面加工成 10mm ×10mm ×55mm 冲击试样 , V
形缺口垂直钢管表面 。试验设备型号为 JB - 800。
1. 2. 2 试验结果
美国石油协会出版的管道适用性评价规范提
出 ,金属材料的断裂韧性 KIC可以利用夏比冲击功 CVN 采用公式 (2)估算 。 [ 2 ]
·35·