化工原理天大柴诚敬15-16学时1

合集下载

柴诚敬化工原理答案(第二版)

柴诚敬化工原理答案(第二版)

化工原理(上)-天津大学化工学院-柴诚敬主编绪论从基本单位换算入手,将下列物理量的单位换算为 水的黏度尸0.00856 g/(cm s) 密度 P138.6 kgf ?;2/m 4某物质的比热容 C p =0.24 BTU/(lb T)传质系数 K G =34.2 kmol/(m 2?i?3tm) 表面张力 CF 74 dy n/cm导热系数 入=1 kcal/(m 岔?C)解: (1)1 kg=1000 g , 1 m=100 cm4 I 410 kg/ m s 8.56 10 Pa s基本物理量的换算关系为 1 atm=101.33 kPa(5)表面张力基本物理量的换算关系为1 dyn=1 W -N 1 m=100 cm基本物理量的换算关系为103:J, 1 h=3600 s密度基本物理量的换算关系为 1 kgf=9.81 N , 1 N=1 kg ?n/s 2"cc kgf s 2 9.81N 1kg m s 2138.6 亠」一 ------- y 1kgf 1N1350 kg/m 3从附录二查出有关基本物理量的换算关系为 1 BTU=1.055 kJ , 1o F 5oC9I b=0.4536kg C p 0.24 BTU1.055kJ _11b 1BTU 0.4536kg5 9 C1 F 1.005 kJ kg CK G 34.21h kmol2m h atm 3600s1atm101.33kPa 9.378 10 5 kmol/ m 2s kPaSI 单位。

本题为物理量的单位换算。

水的黏度基本物理量的换算关系为 0.00856丄匹吗cm s 1000g 1m8.56 (4)传质系数1 h=360074也cm迪 7.4 10 2N/m 1dy n」 1m(6)导热系数 1 kcal=4.18681 心"4.1868 10J亠 1.163J m s C 1.163W/m Cm 2h C 1kcal 3600s ‘ Ikcal 2.乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即 H E3.9A2.78 10 4G B 12.01D C 0.3048Z 0 13L式中 H E —等板高度,ft; G —气相质量速度,lb/(ft 2?i); D —塔径,ft ; Zo —每段(即两层液体分布板之间)填料层高度, a-相对挥发度,量纲为一; 丄一液相黏度,cP; P —液相密度,lb/ft 3A 、B 、C 为常数,对25 mm 的拉西环,其数值分别为 试将上面经验公式中各物理量的单位均换算为 SI 单位。

化工原理下册答案柴诚敬

化工原理下册答案柴诚敬

化工原理下册答案柴诚敬引言本文档为化工原理下册的答案,旨在帮助学生更好地理解和掌握化工原理的知识。

化工原理作为化工专业的基础课程,对于学习和理解化工工艺过程和原理有着重要的作用。

在本文档中,我将根据教材的内容,为以下几个问题提供答案:1.笨马反应的速率方程是什么?如何确定速率常数?2.请解释离心机在化工过程中的应用。

3.简要描述蒸馏过程,并解释为什么蒸馏可以分离液体混合物。

4.请解释化工中的离子交换过程及其应用。

笨马反应的速率方程及速率常数确定对于笨马反应,其速率方程可以表示为:r=r[r]r[r]r其中,r是反应速率,[r]和[r]分别是反应物A和B的浓度,r和r分别是A和B的反应级别,r是速率常数。

速率常数的确定可以通过实验来进行。

具体步骤如下:1.确定反应物A和B的浓度范围;2.选择适当的实验条件,如温度、压力等;3.在不同浓度下进行多次实验,记录反应速率的变化;4.将实验数据代入速率方程,通过最小二乘法确定速率常数。

离心机在化工过程中的应用离心机在化工过程中有着广泛的应用。

离心机利用离心力将物料分离,通常用于以下几个方面:1.固液分离:离心机可以将悬浮在溶液中的固体颗粒与溶液分离,常用于澄清污水、分离生物颗粒等;2.液液分离:离心机可以将两种或多种液体分离,根据液体的密度差异选择不同的离心机类型;3.液固分离:离心机可以将悬浮在溶液中的颗粒与溶液分离,常用于从颗粒状物料中提取溶液等;4.浓缩:离心机可以通过离心力将溶液中的水分离,从而实现溶液的浓缩。

离心机的应用范围非常广泛,可以满足化工过程中不同物料的分离和浓缩需求。

蒸馏过程及其分离液体混合物机制蒸馏是一种用于分离液体混合物的常用方法。

简而言之,蒸馏是通过升温液体混合物,使其中一个或多个组分转变为气体,然后再将气体冷凝回液体,从而实现组分的分离。

具体的蒸馏过程如下:1.升温:将液体混合物进行加热,使其达到沸点,使其中的组分转变为气体状态;2.凝聚:将气体通过冷却装置冷凝为液体,此时液体中的组分已经被分离出来;3.收集:将分离出的液体收集起来,即可得到纯度较高的组分。

化工原理(下)课后习题解答 天津大学化工学院 柴诚敬

化工原理(下)课后习题解答 天津大学化工学院 柴诚敬

化工原理(下)课后习题解答天津大学化工学院柴诚敬第七章传质与分离过程概论1.在吸收塔中用水吸收混于空气中的氨。

已知入塔混合气中氨含量为5.5%(质量分数,下同),吸收后出塔气体中氨含量为0.2%,试计算进、出塔气体中氨的摩尔比Y1、Y2。

解:先计算进、出塔气体中氨的摩尔分数y1和y2。

y1?0.055/170.055/17?0.945/290.002/17?0.0903?0.00340.002/17?0.998/29 进、出塔气体中氨的摩尔比Y1、Y2为Y1? Y2?y2?0.09031?0.09030.0034?0.0993?0.00341?0.0034 由计算可知,当混合物中某组分的摩尔分数很小时,摩尔比近似等于摩尔分数。

2. 试证明由组分A和B组成的双组分混合物系统,下列关系式成立:MAMBdxAdw? (1) A2(xAMA?xBMB)(2)dxA?MAMB(dwAwAMA?wBMB)2解:(1) wA?MAxAxAMA?xBMB?MAxAxAMA?(1?xA)MBdwM(xM?xBMB)?xAMA(MA?MB)MAMB(xA?xB)A?AAA?dx22(xAMA?xBMB)(xAMA?xBMB)A由于xA?xB?1 故 dwA?MAMBdxA(xAMA?xBMB)2wA (2) x?AwAMA?wBMBwAMA11(wA?wB)MMAB?ww2(A?B)MAMB?1ww2MAMB(A?B)MAMB故 dxA?MAMB(dwAwAMA?wBMB)23. 在直径为0.012 m、长度为0.35 m的圆管中,CO气体通过N2进行稳态分子扩散。

管内N2的温度为373 K,总压为101.3 kPa,管两端CO的分压分别为70.0 kPa和7.0 kPa,试计算CO的扩散通量。

解:设 A-CO; B-N2 查附录一得 DAB?0.318?10?4m2s?31.3k Pa pB1?p总?pA1??101.3?70?kPapB2?p总?pA2??101.3?7.0?kPa?94.3kPap?pB194.3?31.3?kPa?57.12kPa pBM ?B2pB294.3lnln31.3pB1DPNA?AB?pA1?pA2?RTzpBM0.318?10?4?101.3???70.0-7.0?kmol?m2?s??3.273?10?6kmol?m2?s?8.314?373?0.35?57.124. 在总压为101.3 kPa,温度为273 K下,组分A自气相主体通过厚度为0.015 m的气膜扩散到催化剂表面,发生瞬态化学反应A?3B。

化工原理第1章课件PPT

化工原理第1章课件PPT

贾绍义 《化工原理》(下册)授课课件 在本课件制作过程中,得到天津大学化工学院化工系的有关教师的 指导和帮助,在此致以诚挚的感谢!由于制作者水平所限, 本课件不妥之处甚至错误在所难免,恳请用户批评指正。 制作者 2008年12月
1
学时安排
总学时48
绪论 第1章 流体流动 第2章 流体输送机械
1学时 13学时 8学时
m pM V RT
T0 pM 22.4Tp0
24
流体的密度
(2)混合物的密度 液体混合物,混合前后体积不变
1
组分的 质量分 数 组分的体 积分数
m

x wA
A

x wB
B
...
x wn
n
气体混合物,混合前后质量不变
m A x VA B xVB ... n x Vn
29
一、牛顿黏性定律
牛顿型流体(Newtonian fluid)
遵循牛顿黏性定律的流体为牛顿型流体。
所有气体和大多数低分子量液体均属牛顿 型流体,如水、空气等。
30
一、牛顿黏性定律
非牛顿型流体(non-Newtonian fluid)
凡不遵循牛顿黏性定律的流体为非牛顿型 流体(non-Newtonian fluid)。
13
三、课程的学习要求
①单元操作设备的选择能力。 ②工程设计能力。
③操作和调节生产过程的能力。
④过程开发或科学研究能力。
14
绪 论
0.1 化工原理课程的性质和基本内容 0.2 单位制和单位换算
15
一、 物理量的单位
1.基本单位和导出单位 基本单位:质量、长度、时间和温度。 导出单位:速度、密度、加速度。 2.绝对单位制和重力单位制 绝对单位制:长度、质量、时间。 重力单位制:长度、时间和力。

化工原理(下)课后习题解答

化工原理(下)课后习题解答

由于 1B A =+x x 故 2 B B A A B A A (d A d M x M x x M M w += (2 B B A A AA A M w M w M w x += 2 ( ( AdAdB BAAB AAA BB AA A1 1 ( 1 M w M w M M M w M w M w M w x +-
代入式(7-25,得 AA AAA AA AB A 2d d 2d d N p p z RT p N N y z c D N 总-=-= 分离变量,并积分得 总 总总 p p p z RT p D N A1 AB A 2ln 21+∆= 52521 1.8510101.3101.3222.5ln kmol/(m s 1.01210 kmol/(m s28.3142730.015101.3 --⨯⨯+⨯=⨯⋅ =⨯⋅ ⨯⨯ 5 2 5 2 B A 33 1.01210kmol/(m s 3.03610kmol/(m s N N --=-=-⨯⨯⋅ =-⨯⋅
0.2002 .99233S ⋅ =⋅ ⨯= = EM H ρ 2. 在温度为 25 ℃及总压为 101.3 kPa 的条件下,使含二氧化碳为 3.0%(体积分数的混合空气与含二氧化碳为 350 g/m 3 的水溶液接触。试判断二 氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。已知操作条件 下,亨利系数 5 1066.1⨯=E kPa ,水溶液3350/1000 kmol/m 0.008kmol/m 44 c= = 对于稀水溶液,总浓度为 3t 997.8 k m o l /m 55.4318 c= =kmol/m 3 水溶液中 CO 2 的摩尔分数为
解:设 A -NH 3;B -H 2O 离界面 5 mm 处为点 1、两相界面处为点 2,则氨的摩尔分数为 085.0A1=x ,022.0A2=x 915.0085.01A1 1B1=-=-=x x 978.0022.01A2 1B2=-=-=x x 946.0915.0978 .0ln 915 .0978.0ln B1 B2B1B2 BM =-=-= x x x x x 点 1、点 2 处溶液的平均摩尔质量为 (kmol kg 92.17kmol kg 18915.01785.01=⨯+⨯=M (kmol kg 98.17kmol kg 18978.017022.02=⨯+⨯=M 溶液的平均总物质的量浓度为

化工原理下课后习题解答天津大学化工学院柴诚敬

化工原理下课后习题解答天津大学化工学院柴诚敬

第七章传质与分离过程概论1.在吸收塔中用水吸收混于空气中的氨。

已知入塔混合气中氨含量为5.5%(质量分数,下同),吸收后出塔气体中氨含量为0.2%,试计算进、出塔气体中氨的摩尔比1Y 、2Y 。

解:先计算进、出塔气体中氨的摩尔分数1y 和2y 。

120.055/170.09030.055/170.945/290.002/170.00340.002/170.998/29y y ==+==+进、出塔气体中氨的摩尔比1Y 、2Y 为10.09030.099310.0903Y ==-20.00340.003410.0034Y ==-由计算可知,当混合物中某组分的摩尔分数很小时,摩尔比近似等于摩尔分数。

2. 试证明由组分A 和B 组成的双组分混合物系统,下列关系式成立: (1)2)B A A B A B A A (d d M x M x x M M w +=(2)2A )(d d BB AA B A A M w M w M M w x +=解:(1)BB A A A AA M x M x x M w +=BA A A)1(A A M x M x x M -+=2)B B A )B A )B B A (A A (A (A A A d A d M x M x M M M x M x M x M x w +-+=-2)B B A )B A (B A A (M x M x x x M M +=+由于 1B A =+x x 故2)B B A A B A A (d A d M x M x x M M w +=(2)BB AAA AA M w M w M w x+=2)()(Ad A d BB A A BAA ABB AA A 11)(1M w M w M M M w M w M w M w x+-+=-2)(BA 1(BB A A )B A M w M w M M w w ++=2)(BB AA B A 1M w M w M M +=故 2)(d A d BB AA B A A M w M w M M w x +=3. 在直径为0.012 m 、长度为0.35 m 的圆管中,CO 气体通过N 2进行稳态分子扩散。

化工原理答案(第二版)高等教育出版社 柴诚敬主编资料

第一章 流体流动流体的重要性质1.某气柜的容积为6 000 m 3,若气柜内的表压力为5.5 kPa ,温度为40 ℃。

已知各组分气体的体积分数为:H 2 40%、 N 2 20%、CO 32%、CO 2 7%、C H 4 1%,大气压力为 101.3 kPa ,试计算气柜满载时各组分的质量。

解:气柜满载时各气体的总摩尔数()mol 4.246245mol 313314.860000.10005.53.101t =⨯⨯⨯+==RT pV n 各组分的质量:kg 197kg 24.246245%40%4022H t H =⨯⨯=⨯=M n m kg 97.1378kg 284.246245%20%2022N t N =⨯⨯=⨯=M n m kg 36.2206kg 284.246245%32%32C O t C O =⨯⨯=⨯=M n mkg 44.758kg 444.246245%7%722C O t C O =⨯⨯=⨯=M n m kg 4.39kg 164.246245%1%144C H t C H =⨯⨯=⨯=M n m2.若将密度为830 kg/ m 3的油与密度为710 kg/ m 3的油各60 kg 混在一起,试求混合油的密度。

设混合油为理想溶液。

解: ()kg 120kg 606021t =+=+=m m m331221121t m 157.0m 7106083060=⎪⎪⎭⎫ ⎝⎛+=+=+=ρρm m V V V 33t t m m kg 33.764m kg 157.0120===V m ρ 流体静力学3.已知甲地区的平均大气压力为85.3 kPa ,乙地区的平均大气压力为101.33 kPa ,在甲地区的某真空设备上装有一个真空表,其读数为20 kPa 。

若改在乙地区操作,真空表的读数为多少才能维持该设备的的绝对压力与甲地区操作时相同? 解:(1)设备内绝对压力 绝压=大气压-真空度= ()kPa 3.65Pa 1020103.8533=⨯-⨯ (2)真空表读数真空度=大气压-绝压=()kPa 03.36Pa 103.651033.10133=⨯-⨯4.某储油罐中盛有密度为960 kg/m 3的重油(如附图所示),油面最高时离罐底9.5 m ,油面上方与大气相通。

化工原理课件(天大版)

综合计算
涉及多个物理过程和化学反应的复杂传质过程的计算,需要对各个过程进行分别 处理,并综合考虑各过程之间的相互影响。
分子扩散传质及传质过程的计算
分子扩散
物质分子在运动过程中,从高浓度区 域向低浓度区域的定向迁移,产生物 质传递现象。
传质过程计算
根据分子扩散定律,通过求解浓度场 和扩散系数等参数,实现对传质过程 的模拟和预测。
01
流体的密度、压强、黏度等物理 性质的定义和测量方法。
02
流体静力学基本方程的推导和应 用,包括压力、重力和惯性力对 流体平衡状态的影响。
流体流动的基本方程及流量测量仪表
流体流动的基本方程,如质量守恒、 动量守恒和能量守恒方程。
流量测量仪表的工作原理和应用,如 节流式、涡轮式、电磁式和超声波式 流量计等。
化工原理课件(天大版)
汇报人:
2023-12-10
目录
• 化工原理绪论 • 流体流动 • 传热学 • 传质学 • 化工设备 • 化学反应工程 • 化工过程的控制与优化
01
化工原理绪论
化工原理的研究对象和内容
化工原理研究对象
以化学工程中各种单元操作(动 量传递、热量传递和质量传递) 为研究对象,研究其原理、方法 和过程。
05
化工设备
化工设备的基本类型及结构特点
分离设备
用于将混合物中的不同组分分 离出来的设备,如离心机、过 滤器等。
储罐和容器
用于储存和容纳液体的设备, 如储罐、水池等。
反应设备
用于化学反应的设备,如反应 釜、反应塔等。
换热设备
用于将热能从一个物质传递到 另一个物质的设备ห้องสมุดไป่ตู้如热交换 器、蒸发器等。
输送设备

化工原理课件_天大版

第一章流体流动•学习指导•一、基本要求:•了解流体流动的基本规律,要求熟练掌握流体静力学基本方程、连续性方程、柏努利方程的内容及应用,并在此基础上解决流体输送的管路计算问题。

•二、掌握的内容•流体的密度和粘度的定义、单位、影响因素及数据的求取;•压强的定义、表示法及单位换算;•流体静力学基本方程、连续性方程、柏努利方程的内容及应用;•流动型态及其判断,雷诺准数的物理意义及计算;•流动阻力产生的原因,流体在管内流动时流动阻力(直管阻力和局部阻力)的计算;•简单管路的设计计算及输送能力的核算;•管路中流体的压力、流速及流量的测量:液柱压差计、测速管(毕托管)、孔板流量计、转子流量计的工作原理、基本结构及计算;•因次分析法的原理、依据、结果及应用。

•3、了解的内容•牛顿型流体与非牛顿型流体;•层流内层与边界层,边界层的分离。

第一节流体的重要性质• 1.1.1连续介质假定把流体视为由无数个流体微团(或流体质点)所组成,这些流体微团紧密接触,彼此没有间隙。

这就是连续介质模型。

流体微团(或流体质点):宏观上足够小,以致于可以将其看成一个几何上没有维度的点;同时微观上足够大,它里面包含着许许多多的分子,其行为已经表现出大量分子的统计学性质。

u⎩⎨⎧液体气体流体密度——单位体积流体的质量。

Vm =ρkg/m31.单组分密度),(T p f =ρ液体密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。

1.1.2 流体的密度气体当压力不太高、温度不太低时,可按理想气体状态方程计算:RTpM =ρ注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。

2.混合物的密度混合气体各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= ——气体混合物中各组分的体积分数。

n 21,φφφ 或RTpM mm =ρmM ——混合气体的平均摩尔质量;nn 2211m y M y M y M M +++= n 21,y y y ——气体混合物中各组分的摩尔(体积)分数。

化工原理完整(天大版)PPT课件

解:首先根据题意画出过程的物料流程图
.
返回 16 2020/5/23
F=1000 20%
W, 0.0%
蒸发器 422K
S 50%
冷却结晶器 311K
R, 37.5%
P 1-0.04
解题思路:题求三个量,如何列物料衡算式。
首先考虑划定适宜的物衡范围以利于解题。
1.求KNO3结晶产品量P
按虚线框作为物料衡算范围,只涉及两个未知量。
GI=GO+GA .
返回 17 2020/5/23
KNO3 组分的物料衡算: F20% = W 0% + P (100 - 4) % 1000 20% = 0 + P 96 % 则:P = 208.3 kg/h
2.水分蒸发量W (物衡范围同1.) 总物料衡算式: F = W + P 则:W = F-P = 1000-208.3 = 791.7 kg/h
.
返回 12 2020/5/23
0.3 物料衡算与能量衡算
☆ 稳定操作
以单位时间为基准, 如 : h , min , s 。 参数=f(x,y,z)
非稳定操作
以每批生产周期所用 的时间为基准。参数 =f(x,y,z,)
=0
=
uA恒定
.
uB 返回 13
2020/5/23
dy
dz
三维
微分衡算(非稳态)
.
返回 15 2020/5/23
例1(清华版,P6):稳态时的总物料衡算及组分物料衡算
生产KNO3的过程中,质量分率为0.2的KNO3水溶液, 以 F = 1000 kg/h 的流量送入蒸发器,在422K下蒸发 出部分水得到50%的浓KNO3溶液。然后送入冷却结晶器, 在311K下结晶,得到含水0.04 的KNO3结晶和含KNO3 0.375的饱和溶液。前者作为产品取出, 后者循环回到 蒸发器。过程为稳定操作,试计算KNO3结晶产品量P、 水分蒸发量W和循环的饱和溶液量R。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档