北京市2012年中考数学试题(解析版)
2023年北京市中考数学试卷及答案解析

2023年北京市中考数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.(2分)截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为()A.23.9×107B.2.39×108C.2.39×109D.0.239×109 2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为()A.36°B.44°C.54°D.63°4.(2分)已知a﹣1>0,则下列结论正确的是()A.﹣1<﹣a<a<1B.﹣a<﹣1<1<a C.﹣a<﹣1<a<1D.﹣1<﹣a<1<a 5.(2分)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9B.C.D.96.(2分)正十二边形的外角和为()A.30°B.150°C.360°D.1800°7.(2分)先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是()A.B.C.D.8.(2分)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC 同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE =c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③二、填空题(共16分,每题2分)9.(2分)若代数式有意义,则实数x的取值范围是.10.(2分)分解因式:x2y﹣y3=.11.(2分)方程的解为.12.(2分)在平面直角坐标系xOy中,若函数y=(k≠0)的图象经过点A(﹣3,2)和B(m,﹣2),则m的值为.13.(2分)某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命x<10001000≤x<16001600≤x<22002200≤x<2800x≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为_____只.14.(2分)如图,直线AD,BC交于点O,AB∥EF∥CD,若AO=2,OF=1,FD=2,则的值为.15.(2分)如图,OA是⊙O的半径,BC是⊙O的弦,OA⊥BC于点D,AE是⊙O的切线,AE交OC的延长线于点E.若∠AOC=45°,BC=2,则线段AE的长为.16.(2分)学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A,B、C,D、E,F、G七道工序,加工要求如下:①工序C,D须在工序A完成后进行,工序E须在工序B,D都完成后进行,工序F须在工序C,D都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E F G所需时间/分钟99797102在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要______分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要分钟.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)17.(5分)计算:4sin60°+()﹣1+|﹣2|﹣.18.(5分)解不等式组:.19.(5分)已知x+2y﹣1=0,求代数式的值.20.(6分)如图,在▱ABCD中,点E,F分别在BC,AD上,BE=DF,AC=EF.(1)求证:四边形AECF是矩形;(2)若AE=BE,AB=2,tan∠ACB=,求BC的长.21.(6分)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)22.(5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(0,1)和B (1,2),与过点(0,4)且平行于x轴的直线交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<3时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值且小于4,直接写出n的值.23.(5分)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是(填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为和.24.(6分)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC =∠ADB.(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.25.(5分)某小组研究了清洗某种含污物品的节约用水策略,部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800,要求清洗后的清洁度为0.990.方案一:采用一次清洗的方式:结果:当用水量为19个单位质量时,清洗后测得的清洁度为0.990.方案二:采用两次清洗的方式:记第一次用水量为x1个单位质量,第二次用水量为x2个单位质量,总用水量为(x1+x2)个单位质量,两次清洗后测得的清洁度为C.记录的部分实验数据如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0 x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5 x1+x211.810.010.38.98.17.77.87.08.09.112.5 C0.9900.9890.9900.9900.9900.9900.9900.9880.9900.9900.990对以上实验数据进行分析,补充完成以下内容.(Ⅰ)选出C是0.990的所有数据组,并划“√”;(Ⅱ)通过分析(Ⅰ)中选出的数据,发现可以用函数刻画第一次用水量x1和总用水量x1+x2之间的关系,在平面直角坐标系xOy中画出此函数的图象;结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C0.990(填“>”“=”或”<”).26.(6分)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c(a >0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.27.(7分)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC 上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.28.(7分)在平面直角坐标系xOy中,⊙O的半径为1.对于⊙O的弦AB和⊙O外一点C 给出如下定义:若直线CA,CB中一条经过点O,另一条是⊙O的切线,则称点C是弦AB的“关联点”.(1)如图,点A(﹣1,0),B1(,),B2(,).①在点C1(﹣1,1),C2(,0),C3(0,)中,弦AB1的“关联点”是;②若点C是弦AB2的“关联点”,直接写出OC的长;(2)已知点M(0,3),N(,0),对于线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”.记PQ的长为t,当点S在线段MN上运动时,直接写出t 的取值范围.2023年北京市中考数学试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.【分析】用科学记数法表示绝对值较大的数时,一般形式为a×10n,其中1≤|a|<10,n 为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:239000000=2.39×108,故选:B.【点评】本题考查了科学记数法的表示方法,用科学记数法表示绝对值较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,解题的关键是要正确确定a和n的值.2.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、原图既是中心对称图形,又是轴对称图形,故此选项符合题意;B、原图是中心对称图形,不是轴对称图形,故此选项不合题意;C、原图是轴对称图形,不是中心对称图形,故此选项不合题意;D、原图是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.【分析】先求出∠COD的度数,然后根据∠BOC=∠BOD﹣∠COD,即可得出答案.【解答】解:∵∠AOC=90°,∠AOD=126°,∴∠COD=∠AOD﹣∠AOC=36°,∵∠BOD=90°,∴∠BOC=∠BOD﹣∠COD=90°﹣36°=54°.故选:C.【点评】本题考查了余角和补角的知识,解答本题的关键是仔细观察图形,根据角的和差首先求出∠COD的度数.4.【分析】根据不等式的性质,进行计算即可解答.【解答】解:∵a﹣1>0,∴a>1,∴﹣a<﹣1,∴﹣a<﹣1<1<a,故选:B.【点评】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.5.【分析】若一元二次方程有两个相等的实数根,则根的判别式Δ=b2﹣4ac,建立关于m 的等式,即可求解.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4m=0,解得m=.故选:C.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.6.【分析】本题考查多边形的外角和问题,多边形外角和定理:任意多边形的外角和都等于360°.【解答】解:因为多边形的外角和为360°,所以正十二边形的外角和为:360°.故选:C.【点评】本题考查多边形的外角和定理,解题的关键是指出定理即可求出正十二边行的外角和度数.7.【分析】根据概率的意义,即可解答.【解答】解:先后两次抛掷同一枚质地均匀的硬币,总共有四种等可能结果,分别是:(正,正)、(正,反)、(反,正)、(反,反),则第一次正面向上、第二次反面向上的概率是,故选:A.【点评】本题考查了概率的意义,本题考查了概率的意义是解题的关键.8.【分析】①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将c用a和b表示出来,再进行比较.【解答】解:①过点D作DF∥AC,交AE于点F;过点B作BG⊥FD,交FD于点G.∵DF∥AC,AC⊥AE,∴DF⊥AE.又∵BG⊥FD,∴BG∥AE,∴四边形ABGF为矩形.同理可得,四边形BCDG也为矩形.∴FD=FG+GD=a+b.∴在Rt△EFD中,斜边c>直角边a+b.故①正确.②∵△EAB≌△BCD,∴AE=BC=b,∴在Rt△EAB中,BE==.∵AB+AE>BE,∴a+b>.故②正确.③∵△EAB≌△BCD,∴∠AEB=∠CBD,又∵∠AEB+∠ABE=90°,∴∠CBD+∠ABE=90°,∴∠EBD=90°.∵BE=BD,∴∠BED=∠BDE=45°,∴BE==c•sin45°=c.∴c=.∵=2(a2+2ab+b2)=2(a2+b2)+4ab>2(a2+b2),∴>,∴>c.故③正确.故选:D.【点评】本题考查全等三角形的性质.虽然是选择题,但计算量不小,比较繁琐,需要细心、耐心.二、填空题(共16分,每题2分)9.【分析】根据分式的分母不为零列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】本题考查的是分式有意义的条件,熟记分式的分母不为零是解题的关键.10.【分析】先提取公因式y,再利用平方差公式进行二次分解.【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为:y(x+y)(x﹣y).【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用平方差公式进行二次因式分解是解题的关键,分解要彻底.11.【分析】依据题意,由分式方程的解法即可得解.【解答】解:方程两边同时乘以2x(5x+1)得,3×2x=5x+1,∴x=1.检验:把x=1代入2x(5x+1)=12≠0,且方程左边=右边.∴原分式方程的解为x=1.【点评】本题主要考查了分式方程的解法,解题时要熟练掌握并灵活运用.12.【分析】将点A(﹣3,2)代入反比例函数y=可求出k的值,进而确定反比例函数关系式,再把点B(m,﹣2)代入计算即可.【解答】解:∵函数y=(k≠0)的图象经过点A(﹣3,2),∴k=﹣3×2=﹣6,∴反比例函数的关系式为y=﹣,又∵B(m,﹣2)在反比例函数的关系式为y=﹣的图象上,∴m==3,故答案为:3.【点评】本题考查反比例函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.13.【分析】用1000乘以使用寿命不小于2200小时的百分比即可.【解答】解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为1000×=460(只).故答案为:460.【点评】本题考查了频数(率)分布表和用样本估计总体,解题的关键是利用样本估计总体思想的运用.14.【分析】根据题意求出AF,再根据平行线分线段成比例定理计算即可.【解答】解:∵AO=2,OF=1,∴AF=AO+OF=2+1=3,∵AB∥EF∥CD,∴==,故答案为:.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.15.【分析】根据切线的性质得到∠A=90°,根据等腰直角三角形的性质得到OD=CD,OA=AE,根据垂径定理得到CD=,于是得到结论.【解答】解:∵OA是⊙O的半径,AE是⊙O的切线,∴∠A=90°,∵∠AOC=45°,OA⊥BC,∴△CDO和△EAO是等腰直角三角形,∴OD=CD,OA=AE,∴CD=,∴OD=CD=1,∴OC=OD=,∴AE=OA=OC=,故答案为:.【点评】本题考查了切线的性质,垂径定理,等腰直角三角形的判定和性质,熟练掌握等腰直角三角形的判定和性质定理是解题的关键.16.【分析】将所有工序需要的时间相加即可得出由一名学生单独完成需要的时间;假设这两名学生为甲、乙,根据加工要求可知甲学生做工序A,乙学生同时做工序B;然后甲学生做工序D,乙学生同时做工序C,乙学生工序C完成后接着做工序G;最后甲学生做工序E,乙学生同时做工序F,然后可得答案.【解答】解:由题意得:9+9+7+9+7+10+2=53(分钟),即由一名学生单独完成此木艺艺术品的加工,需要53分钟;假设这两名学生为甲、乙,∵工序C,D须在工序A完成后进行,工序E须在工序B,D都完成后进行,且工序A,B都需要9分钟完成,∴甲学生做工序A,乙学生同时做工序B,需要9分钟,然后甲学生做工序D,乙学生同时做工序C,乙学生工序C完成后接着做工序G,需要9分钟,最后甲学生做工序E,乙学生同时做工序F,需要10分钟,∴若由两名学生合作完成此木艺艺术品的加工,最少需要9+9+10=28(分钟),故答案为:53,28.【点评】本题考查了逻辑推理与时间统筹,根据加工要求得出加工顺序是解题的关键.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)17.【分析】根据特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质、二次根式的性质计算.【解答】解:原式=4×+3+2﹣2=5.【点评】本题考查的是实数的运算,熟记特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质、二次根式的性质是解题的关键.18.【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:,解不等式①得:x>1,解不等式②得:x<2,∴原不等式组的解集为:1<x<2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.19.【分析】根据已知可得x+2y=1,然后利用分式的基本性质化简分式,再把x+2y=1代入化简后的式子进行计算即可解答.【解答】解:∵x+2y﹣1=0,∴x+2y=1,∴====2,∴的值为2.【点评】本题考查了分式的值,熟练掌握因式分解是解题的关键.20.【分析】(1)先证四边形AECF是平行四边形,再由矩形的判定即可得出结论;(2)由矩形的性质得∠AEC=∠AEB=90°,再证△ABE是等腰直角三角形,得AE=BE=,然后由锐角三角函数定义得EC=2AE=2,即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AD﹣DF=BC﹣BE,即AF=EC,∴四边形AECF是平行四边形,∵AC=EF,∴平行四边形AECF是矩形;(2)解:∵四边形AECF是矩形,∴∠AEC=∠AEB=90°,∵AE=BE,AB=2,∴△ABE是等腰直角三角形,∴AE=BE=AB=,∵tan∠ACB==,∴EC=2AE=2,∴BC=BE+EC=+2=3,即BC的长为3.【点评】本题考查了矩形的判定与性质、平行四边形的判定与性质、等腰直角三角形的判定与性质以及锐角三角函数定义等知识,熟练掌握矩形的判定与性质是解题的关键.21.【分析】若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.【解答】解:设天头长为6x,地头长为4x,则左、右边的宽为x,根据题意得,100+10x=4×(27+2x),解得x=4,答:边的宽为4cm,天头长为24cm.【点评】本题考查了一元一次方程的应用,正确地理解题意列出方程是解题的关键.22.【分析】(1)利用待定系数法可求出函数解析式,由题意知点C的纵坐标为4,代入函数解析式求出点C的横坐标即可;(2)根据函数图象得出当y=x+n过点(3,4)时满足题意,代入(3,4)求出n的值即可.【解答】解:(1)把点A(0,1),B(1,2)代入y=kx+b(k≠0)得:b=1,k+b=2,解得:k=1,b=1,∴该函数的解析式为y=x+1,由题意知点C的纵坐标为4,当y=x+1=4时,解得:x=3,∴C(3,4);(2)由(1)知:当x=3时,y=x+1=4,因为当x<3时,函数y=x+n的值大于函数y=x+1的值且小于4,所以当y=x+n过点(3,4)时满足题意,代入(3,4)得:4=×3+n,解得:n=2.【点评】本题考查了一次函数的图象和性质,待定系数法的应用,一次函数图象上点的坐标特征,熟练掌握数形结合思想的应用是解题的关键.23.【分析】(1)根据众数和中位数的定义进行计算;(2)根据方差的计算式计算方差,然后根据方差的意义进行比较;(3)根据方差进行比较.【解答】解:(1)数据按由小到大的顺序排序:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,则舞蹈队16名学生的中位数为m==166,众数为n=165;(2)甲组学生身高的平均值是:=164.8,甲组学生身高的方差是:×[(164.8﹣162)2+(164.8﹣165)2+(164.8﹣165)2+(164.8﹣166)2+(164.8﹣166)2]=2.16,乙组学生身高的平均值是:=165.4,乙组学生身高的方差是:×[(165.4﹣161)2+(165.4﹣162)2+(165.4﹣164)2+(165.4﹣165)2+(165.4﹣175)2]=25.04,∵25.04>2.6,∴甲组舞台呈现效果更好.故答案为:甲组;(3)∵168,168,172的平均数为(168+168+172)=169,且所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,∴数据的差别较小,可供选择的有170,172,平均数为:(168+168+170+172+172)=170,方差为:[(168﹣170)2+(168﹣170)2+(170﹣170)2+(172﹣170)2+(172﹣170)2]=3.2<,∴选出的另外两名学生的身高分别为170和172.故答案为:170,172.【点评】本题考查了平均数、众数、中位数和方差,熟记方差的计算公式以及方差的意义是解题的关键.24.【分析】(1)由圆周角定理得到∠BAC=∠CDB,而∠BAC=∠ADB,因此∠ADB=∠CDB,得到BD平分∠ADC,由圆内接四边形的性质得到∠ABD+∠ADB=90°,即可求出∠BAD=90°;(2)由垂径定理推出△ACD是等边三角形,得到∠ADC=60°由BD⊥AC,得到∠BDC =∠ADC=30°,由平行线的性质求出∠F=90°,由圆内接四边形的性质求出∠FBC =∠ADC=60°,得到BC=2BF=4,由直角三角形的性质得到BC=BD,因为BD是圆的直径,即可得到圆半径的长是4.【解答】(1)证明:∵∠BAC=∠ADB,∠BAC=∠CDB,∴∠ADB=∠CDB,∴BD平分∠ADC,∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∴∠ABD+∠CBD+∠ADB+∠CDB=180°,∴2(∠ABD+∠ADB)=180°,∴∠ABD+∠ADB=90°,∴∠BAD=180°﹣90°=90°;(2)解:∵∠BAE+∠DAE=90°,∠BAE=∠ADE,∴∠ADE+∠DAE=90°,∴∠AED=90°,∵∠BAD=90°,∴BD是圆的直径,∴BD垂直平分AC,∴AD=CD,∵AC=AD,∴△ACD是等边三角形,∴∠ADC=60°∵BD⊥AC,∴∠BDC=∠ADC=30°,∵CF∥AD,∴∠F+∠BAD=90°,∴∠F=90°,∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,∵∠FBC+∠ABC=180°,∴∠FBC=∠ADC=60°,∴BC=2BF=4,∵∠BCD=90°,∠BDC=30°,∴BC=BD,∵BD是圆的直径,∴圆的半径长是4.【点评】本题考查圆内接四边形的性质,圆周角定理,平行线的性质,等边三角形的判定和性质,关键是由圆内接四边形的性质得到∠ABD+∠ADB=90°,由垂径定理推出△ACD是等边三角形.25.【分析】(Ⅰ)直接在表格中标记即可;(Ⅱ)根据表格中数据描点连线即可做出函数图象,再结合函数图象找到最低点,可得第一次用水量约为4个单位质量时,总用水量最小;(1)根据表格可得,用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,计算即可;(2)根据表格可得当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到0.990,若总用水量为7.5个单位质量,则清洁度达不到0.990.【解答】解:(Ⅰ)表格如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5 x1+x211.810.010.38.98.17.77.87.08.09.112.5C0.990√0.9890.990√0.990√0.990√0.990√0.990√0.9880.990√0.990√0.990√(Ⅱ)函数图象如下:由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小.故答案为:4;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19﹣7.7=11.3,即可节水约11.3个单位质量.故答案为:11.3;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到C<0.990,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度,故答案为:<.【点评】本题考查了函数图象,根据数据描绘函数图象、从函数图象获取信息是解题的关键.26.【分析】(1)根据二次函数的性质求得对称轴即可,(2)根据题意判断出离对称轴更近的点,从而得出(x1,y1)与(x2,y2)的中点在对称轴的右侧,再根据对称性即可解答.【解答】解:(1)∵对于x1=1,x2=2,有y1=y2,∴a+b+c=4a+2b+c,∴3a+b=0,∴=﹣3.∵对称轴为x=﹣=,∴t=.(2)∵0<x1<1,1<x2<2,∴,x1<x2,∵y1<y2,a>0,∴(x1,y1)离对称轴更近,x1<x2,则(x1,y1)与(x2,y2)的中点在对称轴的右侧,∴>t,即t≤.【点评】本题考查二次函数的性质,熟练掌握二次函数的对称性是解题关键.27.【分析】(1)由旋转的性质得DM=DE,∠MDE=2a,利用三角形外角的性质求出∠DEC =a=∠C,可得DE=DC,等量代换得到DM=DC即可;(2)延长FE到H使FE=EH,连接CH,AH,可得DE是△FCH的中位线,然后求出∠B=∠ACH,设DM=DE=m,CD=n,求出BF=2m=CH,证明△ABF≌ACH(SAS),得到AF=AH,再根据等腰三角形三线合一证明AE⊥FH即可.【解答】(1)证明:由旋转的性质得:DM=DE,∠MDE=2a,∵∠C=a,∴∠DEC=∠MDE﹣∠C=a,∴∠C=∠DEC,∴DE=DC,∴DM=DC,即D是MC的中点;(2)∠AEF=90°,证明:如图,延长FE到H使FE=EH,连接CH,AH,∵DF=DC,∴DE是FCH的中位线,∴DE∥CH,CH=2DE,由旋转的性质得:DM=DE,∠MDE=2a,∴∠FCH=2a,∵∠B=∠C=a,∴∠ACH=a,△ABC是等腰三角形,∴∠B=∠ACH,AB=AC设DM=DE=m,CD=n,则CH=2m,CM=m+n,.DF=CD=n,∴FM=DF﹣DM=n﹣m,∵AM⊥BC,∴BM=CM=m+n,∴BF=BM﹣FM=m+n﹣(n﹣m)=2m,∴CH=BF,在△ABF和△ACH中,,∴△ABF≌△ACH(SAS),∴AF=AH,∵FE=EH,∴AE⊥FH,即∠AEF=90°,【点评】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.28.【分析】(1)根据题目中关联点的定义分情况讨论即可;(2)根据M(0,3),N(,0)两点来求最值情况,共有两种情况,分别位于点M 和经过点O的MN的垂直平分线上,根据相似三角形的判定和性质即可得到结论.【解答】解:(1)①由关联定义可知,若直线CA、CB中一条经过点O,另一条是⊙O 的切线,则称点C是弦AB的“关联点”,∵点A(﹣1,0),B1(,),点C1(﹣1,1),C2(,0),C3(0,),∴直线AC2经过点O,且B1C2与⊙O相切,∴C2是弦AB1的“关联点”,∵C1(﹣1,1),A(﹣1,0)的横坐标相同,与B1(,)都位于直线y=﹣x 上,∴AC1与⊙O相切,B1C1经过点O,∴C1是弦AB1的“关联点”;故答案为:C1,C2;②∵A(﹣1,0),B2(,),设C(a,b),如图所示,共有两种情况,a、若C1B2与⊙O相切,AC经过点O,则C1B2,AC1所在直线为,解得,∴C1(,0),∴OC1=,b、若AC2与⊙O相切,C2B2经过点O,则直线C2B2,AC2所在直线为,解得,∴C2(﹣1,1),∴OC2=,综上所述,OC=;(2)∵线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”,∵弦PQ随着S的变动在一定范围内变动,且M(0,3),N(,0),OM>ON,∴S共有2种情况,分别位于点M和经过点O的MN的垂直平分线上,如图所示,①当S位于点M(0,3)时,MP为⊙O的切线,作PJ⊥OM,∵M(0,3),⊙O的半径为1,且MP是⊙O的切线,∴OP⊥MP,∵PJ⊥OM,∴△MPO∽△POJ,∴,即,解得OJ=,∴PJ==,Q1J=,∴PQ1==,同理PQ2==,∴当S位于M(0,3)时,PQ1的临界值为和;②当S位于经过点O的MN的垂直平分线上的点K时,∵M(0,3),N(,0),∴MN=,∴=2,∵⊙O的半径为1,∴∠OKZ=30°,∴△OPQ为等边三角形,∴PQ=1或,∴当S位于经过点O且垂直于MN的直线上即点K时,PQ1的临界点为1和,∴在两种情况下,PQ的最小值在1≤t≤内,最大值在,综上所述,t的取值范围为1≤t≤,.【点评】本题是圆的综合题,考查了最值问题,切线的性质,等边三角形的判定和性质,勾股定理,相似三角形的判定和性质,熟练掌握心概念“关联点”是解题的关键。
2012年北京各区县二模试题分类几何综合解析版

2012年北京各区县二模试题分类几何综合解析版2012年北京市中考数学二模分类汇编——几何综合与中点有关的问题1.(昌平24) 如图,D 是△ABC 中AB 边的中点,△BCE 和△ACF 都是等边三角形,M 、N 别是CE 、CF 的中点. (1)求证:△DMN 是等边三角形; (2)连接EF ,Q 是EF 中点,CP ⊥EF 于点P .求证:DP =DQ . 同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM 绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.24. 证明:(1)取AC 的中点G ,连接NG 、DG .NME F C∴DG =21BC ,DG ∥BC ;△NGC 是等边三角形.∴NG = NC CM . …………………2分 ∵∠1 + ∠2 = 180º,∴∠NGD + ∠2 = 240º.∵∠2 + ∠3 = 240º,∴∠NGD =∠3.∴△NGD≌△NCM . ……………………3分 ∴ND = NM ,∠GND =∠CNM .∴∠DNM =∠GNC = 60º.∴△DMN 是等边三角形.………………………………4分(2)连接QN 、PM .∴QN=21CE= PM . ……………………5分Rt △CPE 中,PM =EM ,∴∠4= ∠5.∵MN ∥EF ,∴∠5= ∠6,∠7=∠8.67854P Q N M E C C 321G NM E F∵NQ ∥CE ,∴∠7= ∠4.∴∠6= ∠8.∴∠QND = ∠PMD . ………………………6分∴△QND ≌△PMD .∴DQ = DP . ……………………7分2.(丰台24)在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F . (1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1图224.解:(1)DE =DF .……1分A E F PB DC E B A DF P(2)DE =DF 不发生改变. (2)分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==. ∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分 同理,524,//DM FN MD PC =∠=∠.∴四边形MDNP 为平行四边形.……5分∴67∠=∠ ∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分∴△EMD ≌△DNF . ∴DE =DF .……7分3.(海淀25.)在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB =BC , 点M 、A 重合, E为CF 的中点,试探究BN 与NE 的位置关系及BM CE 的值, 并证明你的结论;(2)如图2,且若AB =BC , 点M 、A 不重合,7654321N M C D B P F E ABN =NE ,你在(1)中得到的两个结论是否成立,若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN =NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图 1 图 2 图325. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;CE BM 2 证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中, AB =BC ,∴ 矩形ABCD 为正方形.∴ AB =AD =CD , ∠A =∠ADC =∠DCB =90°.∴ EG//CD , ∠EGN =∠A , ∠CDF =90°.……………1分∵ E 为CF , F A ( M ) D N D A C E N M B F E C BF N M E C B∴ GF =DG =11.22DF CD = ∴ 1.2GE CD = ∵ N 为MD (AD )的中点,∴ AN =ND =11.22AD CD = ∴ GE =AN ,NG=ND+DG=ND+AN=AD=AB . ………2分∴ △NGE ≌△BAN .∴ ∠1=∠2.∵ ∠2+∠3=90°,∴ ∠1+∠3=90°.∴ ∠BNE =90°.∴ BN ⊥NE . ……………………………3分∵ ∠CDF =90°, CD =DF ,可得 ∠F =∠FCD =45°, 2.CF CD =. 于是122CF CE CE CE BM BA CD CD ==== …………4分(2)在(1)中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H .H B C E M∵四边形ABCD是矩形,∴AB∥CG.∴∠MBN=∠DGN,∠BMN=∠GDN.∵N为MD的中点,∴MN=DN.∴△BMN≌△GDN.∴MB=DG,BN=GN.∵BN=NE,∴BN=NE=GN.∴∠BEG=90°. (5)分∵EH⊥CE,∴∠CEH =90°.∴∠BEG=∠CEH.∴∠BEC=∠GEH.由(1)得∠DCF =45°.∴∠CHE=∠HCE =45°.∴EC=EH,∠EHG =135°.∵∠ECB=∠DCB+∠HCE =135°,∴∠ECB =∠EHG.∴△ECB≌△EHG.∴EB=EG,CB=HG.∵BN=NG,∴BN⊥NE. ……………………6分∵BM =DG= HG-HD= BC-HD =CD-2CE,∴2. ……………………7分CEBM不一定等于(3)BN⊥NE;CEBM2. ……………………8分密云25.已知菱形ABCD的边长为1,60ADC∠=o,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E 、F 分别是边DC 、CB 的中点时,过点P 任作一直线,分别交DA 边于点M ,BC 边于点G ,DC 边的延长线于点N ,请你直接写出11DM DN+的值.25.(本小题满分8分)证明:(1)如图1:分别连结OE 、OF .∵四边形ABCD 是菱形,∴AD DC CB ==,AC BD ⊥,DO BO =, 且112302ADC ∠=∠=∠=o . ∴在Rt △AOD 中,有12AO AD =. 又 E 、F 分别是边DC 、CB 的中点,∴1122EO CB DC OF ===.∴AO EO FO ==.∴点O 即为等边△AEF 的外心. ------------------------- 3分(2)①猜想:△AEF 的外心P 落在对角线DB 所在的直线上.证明:如图2:分别连结PE 、PA ,作PQ DC ⊥于Q ,PH AD⊥于H .则90PQE PHD ∠=∠=o∵60ADC ∠=o, ∴在四边形QDHP 中,120QPH ∠=o.又 ∵点P 是等边△AEF 的外心,60EFA ∠=o,∴PE PA =,2260120EPA EFA ∠=∠=⨯=oo. ∴αβ∠=∠.∴△PQE ≌△PHA (AAS ).∴PQ=PH . ∴点P 在ADC ∠的角平分线上.∵菱形ABCD 的对角线DB 平分ADC ∠, ∴ 点P 落在对角线DB 所在直线上--- 6分 ②112DM DN+=. ---------------------- 8分 旋转变换在几何证明应用延庆24. (1)如图1:在△ABC 中,AB=AC ,当∠ABD =∠ACD=60°时,猜想AB 与BD+CD 数量关系,请直接写出结果 ;(2)如图2:在△ABC 中,AB=AC ,当∠ABD =∠ACD=45°时,猜想AB 与BD+CD 数量关系并证明你的结论; (3)如图3:在△ABC 中,AB=AC ,当∠ABD =∠ACD=β(20°≤β≤70°)时,直接写出AB 与BD+CD 数量关系(用含β的式子表示)。
2012年北京市中考数学模拟试卷(一)

2012年北京市中考数学模拟试卷(一)2012年北京市中考数学模拟试卷(一)一、选择题(本题有15个小题,每小题3分,共45分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.D.3.(3分)(2004•杭州)在如图所示的长方体中,和平面A1C1垂直的平面有()4.(3分)(2004•杭州)蜗牛前进的速度每秒只有1.5毫米,恰好是某人步行速度的1000分之一,那么此人步行的,,,6.(3分)(2004•杭州)有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没7.(3分)(2004•杭州)若数轴上表示数x的点在原点的左边,则化简|3x+|的结果是()8.(3分)(2004•杭州)如图为羽毛球单打场地按比例缩小的示意图(由图中粗实线表示),它的宽度为5.18米,那么它的长大约在()9.(3分)(2004•杭州)甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时后.倍倍C倍D.倍10.(3分)(2004•杭州)如图,E,F,G,H分别是正方形ABCD各边的中点,要使中间阴影部分小正方形的面积是5,那么大正方形的边长应该是().C.11.(3分)(2004•杭州)如图,三个半径为的圆两两外切,且△ABC的每一边都与其中的两个圆相切,那么△ABC 的周长是()8+1212.(3分)(2004•杭州)方程2x﹣x2=的正根的个数为()214.(3分)(2004•杭州)如图,在Rt△ABC中,AF是斜边上的高线,且BD=DC=FC=1,则AC的长为().C D.15.(3分)(2004•杭州)甲,乙两人连续7年调查某县养鸡业的情况,提供了两方面的信息图(如图).甲调查表明:养鸡场的平均产鸡数从第1年的1万只上升到第7年的2.8万只;乙调查表明:养鸡场的个数由第1年的46个减少到第7年的22个.甲、乙两人得出以下结论:①该县第2年养鸡场产鸡的数量为1.3万只;②该县第2年养鸡场产鸡的数量低于第1年养鸡场产鸡的数量;③该县这7年养鸡场产鸡的数量逐年增长;④这7年中,第5年该县养鸡场出产鸡的数量最多.二、填空题(本题有5个小题,每小题4分,共20分)16.(4分)(2005•漳州)如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域的概率为_________.17.(4分)(2004•杭州)已知一次函数y=﹣2x+b,当x=3时,y=1,则直线y=﹣2x+b在y轴上的截距为_________.18.(4分)(2004•杭州)如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有_________(把你认为成立的比例式的序号都填上).19.(4分)(2004•杭州)在关于x1,x2,x3的方程组中,已知a1>a2>a3,那么将x1,x2,x3从大到小排起来应该是_________.20.(4分)(2004•杭州)给出一个正方形,请你动手画一画,将它剖分为n个小正方形.那么,通过实验与思考,你认为这样的自然数n可以取的所有值应该是_________.三、解答题(本题有6个小题,共55分)解答应写出文字说明,证明过程或推演步骤21.(7分)(2004•杭州)在第六册课本的阅读材料中,介绍了一个第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=…=A8A9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这22.(8分)(2004•杭州)要在如图所示的一个机器零件(尺寸单位:mm)表面涂上防锈漆,请你帮助计算一下这个零件的表面积.23.(8分)(2004•杭州)直线AB交圆于点A,B,点M在圆上,点P在圆外,且点M,P在AB的同侧,∠AMB=50度.设∠APB=x°,当点P移动时,求x的变化范围,并说明理由.24.(10分)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年的总收入为72万元,需要支出的各种费用为40万元.(1)问:该船运输几年后开始盈利(盈利即指总收入减去购船费及所有支出费用之差为正值)?(2)若该船运输满15年要报废,报废时旧船卖出可收回20万元,求这15年的年平均盈利额(精确到0.1万元).25.(10分)(2004•杭州)二次函数y=ax2+bx+c的图象的一部分如图,已知它的顶点M在第二象限,且经过点A (1,0)和点B(0,1).(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的倍时,求a的值.26.(12分)(2004•杭州)在△ABC中,AB=AC,D为BC上一点,由D分别作DE⊥AB于E,DF⊥AC于F.设DE=a,DF=b,且实数a,b满足9a2﹣24ab+16b2=0,并有2a2b=2566,∠A使得方程x2﹣x•sinA+sinA﹣=0有两个相等的实数根.(1)试求实数a,b的值;(2)试求线段BC的长.2012年北京市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题有15个小题,每小题3分,共45分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.D.ah是常数项,是分式,不属于整式范围,故不作考虑.3.(3分)(2004•杭州)在如图所示的长方体中,和平面A1C1垂直的平面有()4.(3分)(2004•杭州)蜗牛前进的速度每秒只有1.5毫米,恰好是某人步行速度的1000分之一,那么此人步行的,,,,<+>,<6.(3分)(2004•杭州)有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没±,∴7.(3分)(2004•杭州)若数轴上表示数x的点在原点的左边,则化简|3x+|的结果是()8.(3分)(2004•杭州)如图为羽毛球单打场地按比例缩小的示意图(由图中粗实线表示),它的宽度为5.18米,那么它的长大约在()=9.(3分)(2004•杭州)甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时后.倍倍C倍D.倍10.(3分)(2004•杭州)如图,E,F,G,H分别是正方形ABCD各边的中点,要使中间阴影部分小正方形的面积是5,那么大正方形的边长应该是().C.XX BW=AS=X=11.(3分)(2004•杭州)如图,三个半径为的圆两两外切,且△ABC的每一边都与其中的两个圆相切,那么△ABC 的周长是()8+12WF=SG=EH=DT=2WF=SG=EH=DT=2=6BE+3EH=18+6.12.(3分)(2004•杭州)方程2x﹣x2=的正根的个数为()=的图象在一、三象限;而两函数在第一象限没有交点,交点再第三象限.的正根的个数为2,整数范围内能进行因式分解,14.(3分)(2004•杭州)如图,在Rt△ABC中,AF是斜边上的高线,且BD=DC=FC=1,则AC的长为().C D.AC=AD+CD=15.(3分)(2004•杭州)甲,乙两人连续7年调查某县养鸡业的情况,提供了两方面的信息图(如图).甲调查表明:养鸡场的平均产鸡数从第1年的1万只上升到第7年的2.8万只;乙调查表明:养鸡场的个数由第1年的46个减少到第7年的22个.甲、乙两人得出以下结论:①该县第2年养鸡场产鸡的数量为1.3万只;②该县第2年养鸡场产鸡的数量低于第1年养鸡场产鸡的数量;③该县这7年养鸡场产鸡的数量逐年增长;④这7年中,第5年该县养鸡场出产鸡的数量最多.二、填空题(本题有5个小题,每小题4分,共20分)16.(4分)(2005•漳州)如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域的概率为.个部分,其中阴影部分占一份,故指针落在阴影区域的概率为17.(4分)(2004•杭州)已知一次函数y=﹣2x+b,当x=3时,y=1,则直线y=﹣2x+b在y轴上的截距为7.18.(4分)(2004•杭州)如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有②③(选对一个给1分,选错一个扣2分,不出现负分)(把你认为成立的比例式的序号都填上).19.(4分)(2004•杭州)在关于x1,x2,x3的方程组中,已知a1>a2>a3,那么将x1,x2,x3从大到小排起来应该是x2>x1>x3.=,,,=a=a20.(4分)(2004•杭州)给出一个正方形,请你动手画一画,将它剖分为n个小正方形.那么,通过实验与思考,你认为这样的自然数n可以取的所有值应该是n=4或n≥6的所有自然数(n=4给1分,其余不完整的正确答案酌情给分).在水平和垂直方向划两条线,可分出边长为和的两个正方形及长和宽为)个边长为个边长为的小正方形,故总的正,按在水平和垂直方向划两条线,这可分出边长为和两个正方形及长宽分别为和)个边长为的小正方形,三、解答题(本题有6个小题,共55分)解答应写出文字说明,证明过程或推演步骤21.(7分)(2004•杭州)在第六册课本的阅读材料中,介绍了一个第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=…=A8A9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这===21O A2O A3O4O A5O A6O A7O×××××.22.(8分)(2004•杭州)要在如图所示的一个机器零件(尺寸单位:mm)表面涂上防锈漆,请你帮助计算一下这个零件的表面积.L=23.(8分)(2004•杭州)直线AB交圆于点A,B,点M在圆上,点P在圆外,且点M,P在AB的同侧,∠AMB=50度.设∠APB=x°,当点P移动时,求x的变化范围,并说明理由.24.(10分)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年的总收入为72万元,需要支出的各种费用为40万元.(1)问:该船运输几年后开始盈利(盈利即指总收入减去购船费及所有支出费用之差为正值)?(2)若该船运输满15年要报废,报废时旧船卖出可收回20万元,求这15年的年平均盈利额(精确到0.1万元).25.(10分)(2004•杭州)二次函数y=ax2+bx+c的图象的一部分如图,已知它的顶点M在第二象限,且经过点A (1,0)和点B(0,1).(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的倍时,求a的值.=,=,××=S•.26.(12分)(2004•杭州)在△ABC中,AB=AC,D为BC上一点,由D分别作DE⊥AB于E,DF⊥AC于F.设DE=a,DF=b,且实数a,b满足9a2﹣24ab+16b2=0,并有2a2b=2566,∠A使得方程x2﹣x•sinA+sinA﹣=0有两个相等的实数根.(1)试求实数a,b的值;(2)试求线段BC的长.,则根据)由条件有;,BC=BD+DC=.的长应为菁优网 ©2010-2014 菁优网参与本试卷答题和审题的老师有:zhqd ;CJX ;kuaile ;心若在;zhjh ;ZJX ;HLing ;ln_86;zhehe ;蓝月梦;lf2-9;mmll852;zzz ;117173;lanchong ;自由人;py168;星期八;feng ;lanyan ;MMCH ;zhangCF ;ljj ;sd2011(排名不分先后)菁优网2014年2月27日。
【中考12年】北京市2002-中考数学试题分类解析 专题08 平面几何基础

【2013版中考12年】北京市2002-2013年中考数学试题分类解析专题08 平面几何基础一、选择题1. (2002年北京市4分)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是【】A.等腰三角形 B.正三角形 C.等腰梯形 D.菱形2. (2003年北京市4分)下列图形中,不是中心对称图形的是【】A. 菱形B. 矩形C. 正方形D. 等边三角形3. (2004年北京市4分)下列图形中,既是轴对称图形又是中心对称图形的是【】(A)等边三角形(B)等腰梯形(C)正方形(D)平行四边形4. (2005年北京市4分)下列图形中,不是中心对称图形的是【】A、圆B、菱形C、矩形D、等边三角形5. (2006年北京市大纲4分)在下列图形中,既是中心对称图形,又是轴对称图形,且对称轴只有两条的是【】A、等腰梯形B、平行四边形C、菱形D、正方形6. (2006年北京市大纲4分)如果正n边形的一个内角等于一个外角的2倍,那么n的值是【】A、4B、5C、6D、77. (2006年北京市课标4分)如图,AD∥BC,点E在BD的延长线上,若∠ADE=1550,则∠DBC的度数为【】A.1550B.500C.450D.2508. (2007年北京市4分)如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为【】A.35°B.45°C.55°D.65°9. (2008年北京市4分)若一个多边形的内角和等于7200,则这个多边形的边数是【】A.5 B.6 C.7 D.810. (2009年北京市4分)若一个正多边形的一个外角是400,则这个正多边形的边数是【】A.10B.9C.8D.611. (2011年北京市4分)下列图形中,即是中心对称又是轴对称图形的是【】A、等边三角形B、平行四边形C、梯形D、矩形12. (2012年北京市4分)正十边形的每个外角等于【】A.18︒B.36︒C.45︒D.60︒13. (2012年北京市4分)如图,直线AB,CD交于点O,射线OM平分∠AOD,若∠BOD=760,则∠BOM等于【】A.38︒B.104︒C.142︒D.144︒14.(2013年北京市4分)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于【】A. 40°B. 50°C. 70°D. 80°15.(2013年北京市4分)下列图形中,是中心对称图形但不是轴对称图形的是【】二、填空题1. (2005年北京市4分)如果正多边形的一个外角为72°,那么它的边数是▲ .三、解答题1. (2006年北京市课标4分)请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得,由此可知新正方形得边长等于两个小正方形组成得矩形对角线得长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)2. (2009年北京市4分)阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA 的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果).。
北京2012年中考数学二模试题分类汇编:代数综合题

北京2012年中考数学二模试题分类汇编:代数综合题2012年北京市中考数学二模分类汇编――代数综合题整数根、系数是整数问题 1.(昌平23.)已知m为整数,方程 =0的两个根都大于-1且小于,当方程的两个根均为有理数时,求m的值. 23.解:设.....................................1分∵ 的两根都在和之间,∴ 当时,,即:.............2分当时,,即:. (3)分∴ .…………………4分∵ 为整数,∴ ...............................5分① 当时,方程,∴ 此时方程的根为无理数,不合题意.② 当时,方程,符合题意.③ 当时,方程,,不符合题意.综合①②③可知,. (6)分 2.(房山)23.)已知:关于x的方程mx2-3(m-1)x+2m-3=0.⑴当m取何整数值时,关于x的方程mx2-3(m-1)x+2m-3=0的根都是整数;⑵若抛物线向左平移一个单位后,过反比例函数上的一点(-1,3),①求抛物线的解析式;②利用函数图象求不等式的解集. 解:⑴⑵① ②23.解:⑴当m=0时,x=1----------------------------1分当m≠0,可解得x1=1,x2= -----------------2分∴ 时,x均有整数根--------------------------------------3分综上可得时,x均有整数根⑵①抛物线向左平移一个单位后得到y= m(x+1)2-3(m-1)(x+1)+2m-3-------------4分过点(-1,3)代入解得m=3 ∴抛物线解析式为y= 3x2-6x+3----------5分②k=-1×3=-3-----------------------6分∴x>1或-1<x<0-----------------------7分3.(平谷23)已知抛物线.(1)求证此抛物线与轴有两个不同的交点;(2)若是整数,抛物线与轴交于整数点,求的值;(3)在(2)的条件下,设抛物线顶点为,抛物线与轴的两个交点中右侧交点为.若为坐标轴上一点,且,求点的坐标. 23.解:(1)证明:令,则.因为, 1分所以此抛物线与轴有两个不同的交点. 2分(2)因为关于的方程的根为,由为整数,当为完全平方数时,此抛物线与轴才有可能交于整数点.设(其中为整数), 3分所以.因为与的奇偶性相同,所以或解得.经检验,当时,关于的方程有整数根.所以 ...................................5分(3)当时,此二次函数解析式为,则顶点的坐标为().抛物线与轴的交点为、.设抛物线的对称轴与轴交于,则.在直角三角形中,由勾股定理,得,由抛物线的对称性可得,.又,即.所以△ 为等腰直角三角形.且.所以为所求的点. 6分若满足条件的点在轴上时,设坐标为.过作轴于,连结、.则.由勾股定理,有;.即.解得.所以为所求的点. 7分综上所述满足条件的点的坐标为()或(). 4.(门头沟23)已知抛物线y=ax2+x+2. (1)当a=-1时,求此抛物线的顶点坐标和对称轴; (2)若代数式-x2+x+2的值为正整数,求x的值; (3)若a是负数时,当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0). 若点M在点N的左边,试比较a1与a2的大小.23. 当a=-1时,y=-x2+x+2,∴a=-1,b=1,c=2. ∴抛物线的顶点坐标为( , ),对称轴为直线x= .……2分(2)∵代数式-x2+x+2的值为正整数,∴函数y=-x2+x+2的值为正整数. 又因为函数的最大值为,∴y的正整数值只能为1或2. 当y=1时,-x2+x+2=1,解得,…………3分当y=2时,-x2+x+2=2,解得x3=0,x4=1.……………4分∴x的值为,,0或1. (3)当a<0时,即a1<0,a2<0. 经过点M的抛物线y=a1x2+x+2的对称轴为 , 经过点N的抛物线y=a2x2+x+2的对称轴为 (5)分∵点M在点N的左边,且抛物线经过点(0,2) ∴直线在直线的左侧……………6分∴ <. ∴a1<a2.…………………………………7分 5.(怀柔23)已知抛物线 (m为常数) .(1)若抛物线与轴交于两个不同的整数点,求m的整数值;(2)在(1)问条件下,若抛物线顶点在第三象限,试确定抛物线的解析式;(3)若点M(x1,y1)与点N(x1+k,y2)在(2)中抛物线上 (点M、N不重合), 且y1=y2. 求代数式的值. 23.解:(1)由题意可知,△= =5-4m>0,.…………………1分又抛物线与轴交于两个不同的整数点,∴5-4m为平方数,设k2 =5-4m,则满足要求的m值为1,-1,-5,-11,-19…… ∴满足题意的m 整数值的代数式为 (n为正整数). …………………………3分(2)∵抛物线顶点在第三象限,∴只有m=1符合题意,抛物线的解析式为.…………………4分(3)∵点M 与N 在抛物线上,∴ ,∵ ∴ 整理,得∵点M、N不重合,∴k≠0. ∴2x1 =-k-1.……………………………………6分∴ = =6.………7分6.在平面直角坐标系xOy中,抛物线的顶点为M,直线,点为轴上的一个动点,过点P作轴的垂线分别交抛物线和直线于点A,点B. ⑴直接写出A,B两点的坐标(用含的代数式表示);⑵设线段AB的长为,求关于的函数关系式及的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系; (3)已知二次函数(,,为整数且),对一切实数恒有≤ ≤ ,求,,的值. 25.解:(1) , .�l�l�l�l�l�l�l�l�l2分(2) =AB= = . ∴ == .�l�l3分∴ 当时,取得最小值 . �l�l 4分当取最小值时,线段OB与线段PM的位置关系和数量关系是OB⊥PM且OB=PM. (如图10) �l�l�l�l�l 5分(3) ∵ 对一切实数恒有≤ ≤ ,∴ 对一切实数,≤ ≤ 都成立. ( ) ① 当时,①式化为0≤ ≤ . ∴ 整数的值为0.�l�l�l�l�l 6分此时,对一切实数,≤ ≤ 都成立.( ) 即对一切实数均成立. 由②得≥0 ( ) 对一切实数均成立. ∴ 由⑤得整数的值为1.�l�l�l�l�l�l�l�l�l7分此时由③式得,≤ 对一切实数均成立. ( ) 即≥0对一切实数均成立. ( ) 当a=2时,此不等式化为≥0,不满足对一切实数均成立. 当a≠2时,∵ ≥0对一切实数均成立,( ) ∴ ∴ 由④,⑥,⑦得0 < ≤1. ∴ 整数的值为1.�l�l�l�l�l�l�l�l�l�l8分∴ 整数,,的值分别为,, . 利用数形结合研究交点、方程的根 1.(东城23.)已知关于的方程.(1)若方程有两个不相等的实数根,求的取值范围;(2)若正整数满足,设二次函数的图象与轴交于两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象恰好有三个公共点时,求出的值(只需要求出两个满足题意的k值即可). 23.解:(1).......2分由题意得,>0且.∴ 符合题意的m的取值范围是的一切实数.......3分(2)∵ 正整数满足,∴ m可取的值为1和2 .又∵ 二次函数,∴ =2. (4)分∴ 二次函数为.∴ A点、B点的坐标分别为(-1,0)、(3,0).依题意翻折后的图象如图所示.由图象可知符合题意的直线经过点A、B.可求出此时k的值分别为3或-1.……7分注:若学生利用直线与抛物线相切求出k=2也是符合题意的答案. 2.(海淀23)已知抛物线与x轴交于A、B两点.(1)求m的取值范围;(2)若m>1, 且点A在点B的左侧,OA : OB=1 : 3, 试确定抛物线的解析式;(3)设(2)中抛物线与y轴的交点为C,过点C作直线l //x轴, 将抛物线在y轴左侧的部分沿直线 l翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线与新图象只有一个公共点P(x0, y0)且时, 求b的取值范围.23. 解:(1)∵ 抛物线与x轴交于A、B两点,∴ 由①得,由②得,∴ m的取值范围是且.…………2分(2)∵ 点A、B 是抛物线与x轴的交点,∴ 令,即.解得,.∵ ,∴ ∵ 点A在点B左侧,∴ 点A的坐标为,点B的坐标为. …………………………3分∴ OA=1,OB= .∵ OA : OB=1 : 3,∴ . ∴ .∴ 抛物线的解析式为.………………………………………4分(3)∵ 点C是抛物线与y轴的交点,∴ 点C的坐标为 . 依题意翻折后的图象如图所示.令,即.解得 , .∴ 新图象经过点D . 当直线经过D点时,可得 . 当直线经过C点时,可得.当直线与函数的图象仅有一个公共点P(x0, y0)时,得 . 整理得由,得.结合图象可知,符合题意的b的取值范围为或.……………7分通州22.已知关于的方程(1)求证:无论取任何实数时,方程恒有实数根. (2)若关于的二次函数的图象经过坐标原点(0,0),求抛物线的解析式. (3)在直角坐标系中,画出(2)中的函数图象,结合图象回答问题:当直线与(2)中的函数图象只有两个交点时,求的取值范围. 22. . 解:(1)分两种情况讨论. ① 当时,方程为,方程有实数根,………………………………………….(1分) ②当,则一元二次方程的根的判别式=不论为何实数,成立,方程恒有实数根………………………………………….(2分) 综合①、②可知取任何实数,方程恒有实数根………………….(3分) (2)二次函数的图象与经过(0,0)………………………………………….(4分) 二次函数解析式为:………………………….(5分) (3)在(2)条件下,直线与二次函数图象只有两个交点,结合图象可知当时,得由得………………………….(6分) 综上所述可知:当时,直线与(2)中的图象有两个交点. ………….(7分)23.(延庆)已知:关于x的一元二次方程 (1)若此方程有实根,求m 的取值范围; (2)在(1)的条件下,且m取最小的整数,求此时方程的两个根; (3)在(2)的前提下,二次函数与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.23. (1)解:∵关于x的一元二次方程有实根∴m≠0,且△≥0 (1)分∴△=(2m+2)2-4m(m-1)=12m+4≥0 解得m≥ ∴当m≥ ,且m≠0时此方程有实根,……..2分(2)解:∵在(1)的条件下,当m取最小的整数, ∴m=1…………..3分∴原方程化为:x2-4x=0 x(x-4)=0 x1=0,x2=4 ………….. …………..4分(3)解:如图所示:①当直线l经过原点O时与半圆P有两个交点,即b=0………5分②当直线l与半圆P相切于D点时有一个交点,如图由题意可得Rt△EDP、Rt△ECO是等腰直角三角形,∵DP=2 ∴EP= ………….6分∴OC= 即b= ∴当0≤b<时,直线l与半圆P只有两个交点。
2023年北京市中考数学真题(含答案解析)

2023年北京市中考数学真题学校:___________姓名:___________班级:___________考号:___________.....如图,90AOC ∠=∠=︒,126AOD ∠=,则BOC ∠的大小为(A .36︒B .44︒54︒4.已知10a ->,则下列结论正确的是(A .11a a -<-<<11a a -<-<<C .11a a -<-<<11a a-<-<<5.若关于x 的一元二次方程23x x m -+=有两个相等的实数根,A .9-B .94-946.十二边形的外角和...为()A .30︒B .150︒360︒7.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是()A .14B .138.如图,点A 、B 、C 在同一条线上,点上述结论中,所有正确结论的序号是(A .①②B .①③二、填空题9.若代数式52x -有意义,则实数10.分解因式:23x y y -=11.方程31512x x=+的解为12.在平面直角坐标系xOy 中,若函数则m 的值为.13.某厂生产了1000只灯泡.为了解这灯泡进行检测,获得了它们的使用寿命(单位:小时)使用寿命1000x <1000x ≤<灯泡只数510根据以上数据,估计这1000只灯泡中使用寿命不小于只.14.如图,直线AD ,BC 交于点O 的值为.15.如图,OA 是O 的半径,BC 是 交OC 的延长线于点E .若45AOC ∠=︒16.学校组织学生参加木艺艺术品加工劳动实践活动.A ,B ,C ,D ,E ,F ,G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E 所需时间/分钟99797在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要三、解答题17.计算:114sin602123-⎛⎫︒++-- ⎪⎝⎭18.解不等式组:23535x x x x+⎧>⎪⎨⎪-<+⎩.19.已知210x y +-=,求代数式x(1)求证:四边形AECF 是矩形;(2)AE BE =,2AB =,1tan 2ACB ∠=21.对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是的宽相等,均为天头长与地头长的和的宽为27cm .若要求装裱后的长是装裱后的宽的自《启功法书》)22.在平面直角坐标系xOy 中,函数y kx =+与过点()0,4且平行于x 轴的线交于点C .(1)求该函数的解析式及点C 的坐标;(2)当3x <时,对于x 的每一个值,函数23y =小于4,直接写出n 的值.23.某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:如下:a .16名学生的身高:(1)求证DB 平分ADC ∠,并求BAD ∠(2)过点C 作CF AD ∥交AB 的延长线于点25.某小组研究了清洗某种含污物品的节约用水策略.部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为度为0.990方案一:采用一次清洗的方式.结果:当用水量为19个单位质量时,清洗后测得的清洁度为结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约______个单位质量(结果保留小数点后一位)(2)当采用两次清洗的方式时,若第一次用水量为围.参考答案:【详解】如图,所有结果有4种,满足要求的结果有1种,故概率为【点睛】本题考查概率的计算,运用树状图或列表工具是解题的关键.【分析】如图,过D 作DF AE ⊥于F ,则四边形,可得a b c +<,进而可判断①的正误;由a =,AE BC b ==,ABE CDB ∠=∠,∴DF AC a b ==+,∵DF DE <,∴a b c +<,①正确,故符合要求;∵EAB BCD ≌△△,∴BE BD =,CD AB a ==,AE =∵90CBD CDB ∠+∠=︒,∴90∠+∠=︒CBD ABE ,EBD ∠=∴BDE △是等腰直角三角形,由勾股定理得,22BE AB AE =+∵AB AE BE +>,【点睛】本题考查了一次函数的图象和性质,特征,利用数形结合的思想是解题的关键.23.(1)166m =,165n =;(2)甲组(3)170,172【分析】(1)根据中位数和众数的定义求解即可;(2)计算每一组的方差,根据方差越小数据越稳定进行判断即可;(3)根据要求,身高的平均数尽可能大且方差小于【详解】(1)解:将这组数据按照从小到大的顺序排列为:165,166,166,167,168,168,170出现次数最多的数是165,出现了3次,即众数由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小;(1)当采用两次清洗的方式并使总用水量最小时,用水量为19-7.7=11.3,即可节水约11.3个单位质量;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过的清洁度能达到0.990,第一次用水量为6个单位质量,总用水量为7.5故答案为:<.【点睛】本题考查了函数图象,根据数据描绘函数图象、26.(1)32t =(2)12t ≤【分析】(1)根据二次函数的性质求得对称轴即可求解;(2)根据题意可得()11,x y 离对称轴更近,1x 右侧,根据对称性求得1213222x x +<<,进而根据【详解】(1)解:∵对于11x =,22x =有1y =∴抛物线的对称轴为直线12322x x x +==,∵抛物线的对称轴为x t =.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,题的关键.28.(1)1C ,2C ;2OC =(2)2313t ≤≤或2633t ≤≤.a、若12C B与O相切,AC经过点O,①当S 位于点()0,3M 时,MP 为O 的切线,作PJ OM ⊥∵()0,3M ,O 的半径为1,且MP 为O 的切线,∴OP MP ⊥,。
2012年北京中考一模怀柔数学试题及答案
怀柔区2012年中考模拟练习(一)2012.5.9一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.3-的倒数是A .31 B . 31- C . 3- D . 3 2.在学雷锋活动中,我市青少年积极报名争当“助人为乐志愿者”,仅一个月时间就有人报名,将用科学记数法表示为 A .4107.10⨯B .51007.1⨯C .60.10710⨯ D .61.0710⨯3..不等式8-2x >0的解集在数轴上表示正确的是4.下列计算正确的是A .(a 2)3=a 6B .a 2+a 2=a 4C .(3a )·(2a )2=6a D .3a -a =3 5.某运动队为女队员购买某品牌运动鞋11双,其中各种尺码如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是A .25, 25B .24.5, 25C .25, 24.5D .24.5,24.5 6. 将右图所示的Rt △ABC 绕直角边AB 旋转一周,所得几何体的主视图为A .B .C .D .7.从1、2、3、4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能 被3整除的概率是 A .31B .14C .61 D .112A.B.C. D.2(第15题图)8. 如图,在矩形ABCD 中, AB =4,BC =6,当直角三角板MPN 的直角顶点 P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ=y ,那么y 与x 之间的函数图象大致是二、填空题(本题共16分,每小题4分) 9.分解因式:a 3-4a = . 10.函数21y x =+ 中自变量x 的取值范围是 .11.如图,小华在地面上放置一个平面镜E ,来测量铁塔AB 的高度,镜子与铁塔的距离EB=20米,镜子与小华的距离ED=2米时,小华刚好从镜子中看到铁塔顶端A .已知小华 的眼睛距地面的高度CD=1.5米,则铁塔AB 的高度是 米.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 . (用含字母n 的代数式表示,n 为正整数).三、解答题(本题共30分,每小题5分)132cos 45-︒-0201211()2--.解:14. 化简:24422x xx x++--. 解:15. 已知:如图,在四边形ABCD 中,AM ∥BC ,E 是CD 中点, D 是 AM 上一点. 求证:BE =EM . 证明:16.已知a 2-5a+1=0,求421a a +的值.解:怀柔初三一模 3 / 1017.已知一次函数2y x =+与反比例函数ky x=交于P 、Q 两点,其中一次函数2y x =+的图象经过点(k ,5).(1)求反比例函数的解析式;(2)设点Q 在第三象限内,求点Q 的坐标;(3)设直线2y x =+与x 轴交于点B ,O 为坐标原点,直接写出△BOQ 的面积= . 解:18.列方程或方程组解应用题:某市在道路改造过程中,需要铺设一条污水管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同. 求甲、乙工程队每天各铺设多少米? 解:四、解答题(本题共20分,每小题5分)19. 一副直角三角板如图放置,点C 在FD 的延长线上, AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC= 求CD 长. 解:20.我们都知道主动吸烟和被动吸烟都危害着人类的健康.为此,联合国规定每年的5月31日为“世界无烟日”.为配合今年的“世界无烟日”宣传活动,我区某校九年级二班的同学们在城区内开展了以“我支持的戒烟方式”为主题的问卷调查活动,征求居民的意见,并将调查结果分析整理后,制成了如下统计图:(1)求九年级二班的同学们一共随机调查了多少人? (2)根据以上信息,请你把统计图补充完整;(3)如果城区有2万人,那么请你根据以上调查结果,估计城区大约有多少人支持“强制戒烟”这种戒烟方式?(4)为了青少年的健康,针对你们学校实际提出一条你认为最有效的戒烟措施. 解:戒烟戒烟戒烟 戒烟4B21.已知:如图,在△ABC 中,BC =AC ,以BC 为直径的半圆与边AB 相交于点D ,DE ⊥AC , 垂足为点E .(1)求证:点D 是AB 的中点;(2)判断DE 与⊙O 的位置关系,并证明你的结论;(3)若⊙O 的直径为18,cosB =31,求DE 的长.(1)证明:22. 如图①,将一张直角三角形纸片ABC ∆折叠,使点A 与点C 重合,这时DE 为折痕,CBE∆为等腰三角形;再继续将纸片沿CBE ∆的对称轴EF 折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.图① 图② 图③(1)如图②,在正方形网格中,能否仿照前面的方法把ABC ∆折叠成“叠加矩形”,如果能,请在图②中画出折痕及叠加矩形;(2)如图③,在正方形网格中,以给定的BC 为一边,画出一个斜ABC ∆,使其顶点A 在格点上,且ABC ∆折成的“叠加矩形”为正方形;(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:关于x 的方程2(1)(1)20a x a x --++=.(1)a 取何整数值时,关于x 的方程2(1)(1)20a x a x --++=的根都是整数;(2)若抛物线y=2(1)(1)20a x a x --++=的对称轴为x =-1,顶点为M ,当k 为何值时,一次函数13y kx k =+的图象必过点M. 解:怀柔初三一模 5 / 1024.探究:(1)如图1,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,试判断BE 、DF 与EF 三条线段之间的数量关系,直接写出判断结果: ;(2)如图2,若把(1)问中的条件变为“在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF=21∠BAD ”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF 绕点A 逆时针旋转,当点分别E 、F 运动到BC 、CD 延长线上时, 如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明..25. 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B . (1)求抛物线的解析式;(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O C D B ,,,四点为顶点的四边形为平行四边形,求D 点的坐标;(3)连接OA ,AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得OBP △与OAB △相似?若存在,求出P 点的坐标;若不存在,说明理由.6数学试题评分标准及参考答案 2012.5.9一、选择题:(本题共32分,每小题4分)13.解:原式= 2122⨯--………………………4分 = 3.…………………………………5分14. 原式= 24422x xx x +---……………………………2分 = 2442x x x -+-………………………………3分= 2(2)2x x --………………………………4分= 2.x -…………………………………5分 15. 证明: E 是CD 中点,∴EC DE = ............................. .................................1分AM ∥BC ,∴1M ∠=∠.......................... .....................2分在BCE ∆和MDE ∆中………………….3分BCE ∆≌MDE ∆(AAS )............ ............4分 ∴EM BE =............................... .............................5分16.解:由已知a 2-3a+1=0知a≠0,将已知等式两边同除以a 得a -5+a1=0, ∴a+a1=5.………………………………………………2分 所以241aa +=a 2+21a ………………………………………3分 =(a+a1)2-2………………………………4分=52-2=23.…………………………………5分怀柔初三一模 7 / 1017. 解:(1)因一次函数2y x =+的图象经过点(k ,5), 所以得52k =+,解得3k = 所以反比例函数的表达式为3y x=………………………2分 (2)依题意, 列方程组23y x y x =+⎧⎪⎨=⎪⎩解得13x y =⎧⎨=⎩ 或31x y =-⎧⎨=-⎩故第三象限的交点Q 的坐标为(-3,-1)………………4分(3)△BOQ 面积为1……………………………………………5分18.解:设乙工程队每天能铺设x 米;则甲工程队每天能铺设)20(+x 米-----------1分依题意,得.xx 25020350=+ ----------------------------3分解得.50=x ----------------------------4分经检验,50=x 是原方程的解,且符合题意.答:甲工程队每天能铺设70米;乙工程队每天能铺设50米。
历年全国中考数学试题及答案(完整详细版)
班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。
2012年北京市高级中等学校招生考试-含详细解答
北京市2012年高级中等学校招生考试副标题一、选择题(本大题共8小题,共32.0分)1.-9的相反数是()A. B. C. D. 92.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为()A. B. C. D.3.正十边形的每个外角等于()A. B. C. D.4.下图是某个几何体的三视图,该几何体是()A. 长方体B. 正方体C. 圆柱D. 三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是()A. B. C. D.6.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.B.C.D.7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:则这20户家庭该月用电量的众数和中位数分别是()A. 180,160B. 160,180C. 160,160D. 180,1808.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A. 点MB. 点NC. 点PD. 点Q二、填空题(本大题共4小题,共16.0分)9.分解因式:mn2+6 mn+9 m=__________.10.若关于x的方程x2-2 x-m=0有两个相等的实数根,则m的值是__________.11.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB=________m.12.在平面直角坐标系xO y中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是;当点B的横坐标为4 n( n为正整数)时,m=________(用含n的代数式表示.)三、计算题(本大题共2小题,共10.0分)13.计算:14.解不等式组:四、解答题(本大题共11小题,共62.0分)15.已知,求代数式的值.16.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.17.如图,在平面直角坐标系xO y中,函数的图象与一次函数y=kx-k的图象的交点为A( m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足的面积是4,直接写出点P的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.19.如图,在四边形ABCD中,对角线AC,BD交于点E,,,,,.求CD的长和四边形ABCD的面积.20.已知:如图,AB 是的直径,C 是上一点,于点D,过点C 作的切线,交OD的延长线于点E,连接BE.(1)求证:BE 与相切;(2)连接AD并延长交BE于点F,若OB=9,,求BF的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.北京市轨道交通已开通线路相关数据统计表(截至2010年底)请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段,其中点A,B的对应点分别为A′,.如图1,若点A表示的数是,则点A′表示的数是B′_________;若点B′表示的数是2,则点B表示的数是_________;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是_________;(2)如图2,在平面直角坐标系xO y中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m 个单位,再向上平移n个单位( m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.23.已知二次函数在和x=2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k 的值;(3)设二次函数的图象与x轴交于点B,C (点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n( n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围.24.在中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.25.在平面直角坐标系xO y中,对于任意两点与的“非常距离”,给出如下定义:若,则点P1与点P2的“非常距离”为;若,则点与点的“非常距离”为.例如:点,点,因为,所以点P1与点P2的“非常距离”为,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点,B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.答案和解析1.【答案】D【解析】本题考查相反数的概念,难度较小.由相反数的概念可直接得到答案D.2.【答案】C【解析】本题考查用科学记数法表示一个大数,难度较小.根据科学记数法的一般形式a×10n,其中1≤|a|<10,n等于这个大数的整数位数减1,即60 110 000 000=6.011×1010可得答案C.3.【答案】B【解析】本题考查多边形的外角和定理,难度较小.根据任意多边形的外角和等于360°可知正十边形的外角和是360°,而正十边形的每个外角均相等,所以每个外角应是=36°,故应选B.4.【答案】D【解析】本题考查考生空间想象能力,难度中等.考生可结合图中三视图的特点以及三棱柱的三视图形状选出答案D.5.【答案】B【解析】本题考查等可能条件下事件的概率的计算,难度较小,根据P(取到科普读物)=可得到答案B.6.【答案】C【解析】本题考查角平分线的定义以及对顶角的性质,难度中等.由对顶角相等知∠AOC=∠BOD=76°,又∵OM平分∠AOC,∴∠AOM=∠AOC=38°,∴∠BOM=180°-38°=142°,故选C.7.【答案】A【解析】本题考查统计中的众数和中位数的概念,难度中等.根据众数及中位数的概念可得答案A.8.【答案】D【解析】本题考查考生阅读理解与逻辑推理能力,难度较大.本题可用排除法,首先排除选项A和C,若教练位于点P处,小翔最后是离教授越来越近,最后图象应呈下降趋势,而若教练位于点M处,因为点M是圆心,所以开始时小翔离教授距离不变,即图象应是平行于x轴的线段,与实际函数图象不符.对于选项B,若教练位于点N处,因为NA=NB=NC,即图象的起点与终点的纵坐标应相同,这与实际函数图象也不符,故应选D.9.【答案】m(n+3)2【解析】本题考查因式分解的内容,难度较小.考生应根据因式分解的常用方法,即先提公因式再利用公式法进一步分解,所以mn2+6mn+9m=m(n2+6n+9)=m(n+3)2.10.【答案】-1【解析】本题考查一元二次方程的根的判别式的内容,难度较小.考生可根据根的判别式即△=b2-4ac的值来判别方程根的情况,因为方程有两个相等的实数根,所以△=0,即(-2)2-4×1×(-m)=0,所以m=-1.11.【答案】5.5【解析】本题考查相似三角形的判定与性质,难度中等.求树高AB,可先求出BC的长,由题意可知△DEF~△DCB,∴,即,∴BC=4( m),∴AB=AC+BC=1.5+4=5.5( m).12.【答案】3,4 6n-3【解析】本题考查作图并且能根据所作图形探索、发现规律的能力,难度较大.当m=3时,考生可通过尝试作出图形,找出符合条件的两个点(3,0),(4,0).当点B的横坐标是4n(n是正整数)时,考生可作出图形并得到当n=1时,m=3=6×1-3;当n=2时,m=9=6×2-3;当n=3时,m=15=6×3-3;当n =4时,m=21=6×4-3;…,从而找出规律m=6n-3.13.【答案】解:(π-3)0+==【解析】本题考查倒数、三角函数、二次根式以及幂的混合计算,难度较小.14.【答案】解:解不等式①,得x>1.解不等式②,得x>5.∴不等式组的解集为x>5.【解析】本题考查一元一次不等式组的解法,难度较小.15.【答案】解:∵,∴3 a=2 b.∴原式=.【解析】本题考查分式的化简求值,难度中等.化简时应将分式化简为最简分式,求值时应注意运用整体代入法,将26用3a整体代入,最后再约去a,得到最后结果.16.【答案】证明:∵AB∥CD,∴∠BAC=∠ECD.在△ABC和△CED中,∴△ABC≌△CED.∴BC=ED.【解析】本题考查全等三角形的判定与性质,难度较小.17.【答案】解:(1)∵点A( m,2)在函数y=( x>0)的图象上,∴2 m=4.解得m=2.∴点A的坐标为(2,2).∵点A(2,2)在一次函数y=kx-k的图象上,∴2 k-k=2.解得k=2.∴一次函数的解析式为y=2 x-2.(2)点P的坐标为(3,0)或(-1,0).【解析】本题第(1)问考查平面直角坐标系中的点的坐标与一次函数及反比例函数的解析式的关系,难度较小;第(2)问考查根据三角形的面积求出相应的点的坐标,难度中等,考生答题时应考虑两种情况,不能漏解.18.【答案】解:设一片国槐树叶一年的平均滞尘量为x毫克.由题意,得解得x=22.答:一片国槐树叶一年的平均滞尘量是22毫克.【解析】本题考查分式方程在实际生活中的应用,难度中等.考生在解出分式方程时应注意检验.19.【答案】解:过点D作DF⊥AC于点F.在R t△DEF中,∠DFE=90°,∠DEF=45°,DE=,∴DF=EF=1.在R t△CFD中,∠CFD=90°,∠DCF=30°,∴CD=2DF=2.∴FC=.在R t△ABE中,∠BAE=90°,∠AEB=∠CED=45°,BE=,∴AB=AE=2.∴AC=AE+EF+FC=.∴S四边形ABCD=S△ACD+S△ABC.∴四边形ABCD的面积是.学会根据图形的特点添加适当的辅助线,构造直角三角形,从而找到解决问题的方案.20.【答案】解:(1)证明:连接OC.∵EC与⊙O相切,C为切点,∴∠ECO=90°.∵OB=OC,∴∠OCB=∠OBC.∵OD⊥BC,∴DB=DC.∴直线OE是线段BC的垂直平分线.∴EB=EC∴∠ECB=∠EBC.∴∠ECO=∠EBO.∴∠EBO=90°.∵AB是⊙O的直径,∴BE与⊙O相切.(2)过点D作DM⊥AB于点M,则DM∥FB.在R t△ODB中,∵∠ODB=90°,OB=9,sin∠ABC=,由勾股定理得BD=.在R t△DMB中,同理得DM=BD·sin∠ABC=.∵O是AB的中点∴AB=18.∴AM=AB-BM=13.∵DM∥FB,∴△AMD∽△ABF.∴.【解析】本题考查切线的判定以及圆中的综合计算能力,难度中等.考生可通过作适当的辅助线构造直角三角形及相似三角形找到解题途径.21.【答案】解:(1)补全统计图如图,所补数据为228.(2)预计2020年运营总里程将达到336÷33.6%=1 000(千米).(3)2010到2015年新增运营里程为1 000×36.7%=367(千米),其中2010到2011年新增运营里程为372-336=36(千米),2011到2015年平均每年新增运营里程为=82.75(千米).【解析】本题考查对条形统计图、扇形统计图以及统计表的理解与应用,既考查了考生分析、处理数据的能力,又考查了考生的阅读理解能力,难度中等.22.【答案】解:(1)点A′表示的数是O;点B表示的数是3;点E表示的数是.(2)∵点A(-3,0),B(3,0)的对应点分别为A′(-1,2),B′(2,2),∴解得由题意可得n=2.设点F的坐标为( x,y).∴点F的坐标为(1,4).【解析】本题考查二元一次方程组在点的变换过程中的应用,难度中等.本题关键是能根据点的变换特点列出对应的二元一次方程组求解.23.【答案】解:(1)由题意得( t+1)·22+2( t+2)·2+.解得t=.∴二次函数的解析式为y=.(2)∵点A(-3,m)在二次函数y=的图象上,∴m=×(-3)2+(-3)+=-6.∴点A的坐标为(-3,-6).∵点A在一次函数y=kx+6的图象上,∴k=4.(3)由题意,可得点B,C的坐标分别为(-1,0),(3,0).平移后,点B,C的对应点分别为B′(-1-n,0),C′(3-n,0).将直线y=4 x+6平移后得到直线y=4 x+6+ n.如图1,当直线y=4 x+6+ n经过点B′(-1-n,0)时,图象G(点B′除外)在该直线右侧,可得n=;如图2,当直线y=4 x+6+ n经过点C′(3-n,0)时,图象G(点C′除外)在该直线左侧,可得n=6.∴由图象可知,符合题意的n的取值范围是≤ n≤6.【解析】本题是代数综合题,主要考查了二次函数、一次函数、不等式的相关知识,难度中等.这类题型基本上都会考查“数形结合思想”,以函数图象平移、图象的交点等内容为载体,最终建立不等式(组),以求解未知数的取值范围.24.【答案】解:(1)补全图形,见图1;∠CDB=30°.(2)猜想:∠CDB=90°-α.证明:如图2,连接AD,PC.∵BA=BC,M是AC的中点,∴BM⊥AC.∵点D,P在直线BM上,PA=PC,DA=DC.又∵DP为公共边,∴△ADP≌△CDP.∴∠DAP=∠DCP,∠ADP=∠CDP.又∵PA=PQ,∴PQ=PC.∴∠DCP=∠PQC.∴∠DAP=∠PQC.∵∠PQC+∠DQP=180°,∴∠DAP+∠DQP=180°.∴在四边形APQD中,∠ADQ+∠APQ=180°.∵∠APQ=2 a,∴∠ADQ=180°-2α.∴∠CDB=∠ADQ=90°-α.(3)α的范围是45°<α<60°.【解析】本题是几何综合压轴题,主要考查了旋转变换、全等三角形、等腰三角形等有关知识,难度较大.考生可通过作适当的辅助线构造全等三角形求解.25.【答案】解:(1)①点B的坐标是(0,2)或(0,-2)(写出一个答案即可);②点A与点B的“非常距离”的最小值是.(2)①过点C作x轴的垂线,过点D作y,轴的垂线,两条垂线交于点M,连接CD.如图1,当点C在点D的左上方且使△CMD是等腰直角三角形时,点C与点D的“非常距离”最小.理由如下:记此时点C所在位置的坐标为.当点C的横坐标大于x0时,线段CM的长度变大,由于点C与点D的“非常距离”是线段CM与线段MD长度的较大值,所以点C与点D的“非常距离”变大;当点C的横坐标小于x0时,线段MD的长度变大,点C与点D的“非常距离”变大.所以当点C的横坐标等于x0时,点C与点D的“非常距离”最小.∵CM=,MD=x0,CM=MD,∴=-x0.解得x0=.∴点C的坐标是.∴CM=MD=.∴当点C的坐标是时,点C与点D的“非常距离”最小,最小值是.②如图2,对于⊙O上的每一个给定的点E,过点E作y轴的垂线,过点C作x轴的垂线,两条垂线交于点N,连接CE.由①可知,当点C运动到点E的左上方且使△CNE是等腰直角三角形时,点C与点E的“非常距离”最小.当点E在⊙O上运动时,求这些最小“非常距离”中的最小值,只需使CE的长度最小.因此,将直线y=沿图中所示由点C到点E的方向平移到第一次与⊙O有公共点,即与⊙O在第二象限内相切的位置时,切点即为所求点E.作EP⊥x轴于点P.设直线y=与x轴,y轴分别交于点H,G.可求得HO=4,GO=3,GH=5.可证△OEP∽△GHO.∴∴∴∴点E的坐标是.设点C的坐标为解得.解得∴点C的坐标是∴CN=NE=1.∴当点C的坐标是,点E的坐标是时,点C与点E的“非常距离”最小,最小值是1.【解析】本题是代数、几何综合压轴题,主要考查了考生的阅读理解能力、分类讨论能力、逻辑推理能力,主要涉及的知识点有绝对值、相似三角形、点到直线距离中垂线段最短等,难度较大.。
2024年北京市中考数学试题(含答案解析)
2.【答案】B
【详解】解:∵ ,
∴ ,
∵ , ,
∴ ,
3.【答案】C
【详解】解:A、由数轴可知 ,故本选项不符合题意;
B、由数轴可知 ,由绝对值的意义知 ,故本选项不符合题意;
C、由数轴可知 ,而 ,则 ,故 ,故本选项符合题意;
D、由数轴可知 ,而 ,因此 ,故本选项不符合题意.
(1)当 时,求抛物线的顶点坐标;
(2)已知 和 是抛物线上的两点.若对于 , ,都有 ,求 的取值范围.
27.已知 ,点 , 分别在射线 , 上,将线段 绕点 顺时针旋转 得到线段 ,过点 作 的垂线交射线 于点 .
(1)如图1,当点 在射线 上时,求证: 是 的中点;
(2)如图2,当点 在 内部时,作 ,交射线 于点 ,用等式表示线段 与 的数量关系,并证明。
7.下面是“作一个角使其等于 ”的尺规作图方法.
(1)如图,以点 为圆心,任意长为半径画弧,分别交 , 于点 , ;
(2)作射线 ,以点 为圆心, 长为半径画弧,交 于点 ;以点 为圆心, 长为半径画弧,两弧交于点 ;
(3)过点 作射线 ,则 .
上述方法通过判定 得到 ,其中判定 的依据是()
A.三边分别相等的两个三角形全等
评委1
评委2
评委3
评委4
评委5
甲
乙
丙
若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是____________,表中 ( 为整数)的值为____________.
24.如图, 是 的直径,点 , 在 上, 平分 .
(1)求证: ;
(2)延长 交 于点 ,连接 交 于点 ,过点 作 的切线交 的延长线于点 .若 , ,求 半径的长.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 2012年北京市高级中等学校招生考试数学试卷 1. 9的相反数是 A.19 B.19 C.9 D.9 【解析】 D 【点评】 本题考核的是相反数,难度较小,属送分题, 本题考点:相反数. 难度系数为0.95. 2. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交
会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为 A.96.01110 B.960.1110 C.106.01110 D.110.601110 【解析】 C 【点评】 本题是以时政为背景的一道题,考核了科学记数法的同时让学生了解我国经贸发展的影响力及相关情况,进行爱国主义教育。此类与时事政治相关的考题是全国各地的总体命题趋势. 本题考点:科学记数法. 难度系数为:0.9 3. 正十边形的每个外角等于
A.18 B.36 C.45 D.60 【解析】 B 【点评】 本题考核了多边形的外角和及利用外角和列方程解决相关问题.多边形的外角和是初一下的内容,可能时间久了部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了,推导一下也不会花多少时间,所以,学习数学,理解比记忆更重要. 本题考点:多边形的外角和(或多边形内角和公式),及利用公式列方程解应用题 难度系数:0.75
4. 右图是某个几何体的三视图,该几何体是 A.长方体 B.正方体 C.圆柱 D.三棱柱 【解析】 D 【点评】 本题考核了基本几何体的三视图,判断简单物体的三视图,根据三视图描述实物原型. 本题考点:立体图形的三视图 难度系数:0.8
5. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物, - 2 -
1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是 A.16 B.13 C.12 D.23 【解析】 B 【点评】 本题是以班级优秀评比奖励为背景,考核了学生对概率求解的相关知识.,同时也进行了学生关爱集体教育,是一道很不错的题目 本题考点:求概率. 难度系数:0.9 6. 如图,直线AB,CD交于点O,射线OM平分AOC,若76BOD,则BOM等
于 A.38 B.104 C.142 D.144 【解析】 C 【点评】 本题对对顶角、角平分线的概念进行考核,用角平分线的性质解决简单问题,并结合图形分析角与角之间的关系 本题考点:角与角平分线. 难度系数:0.85 7. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:
用电量(度) 120 140 160 180 200
户数 2 3 6 7 2
则这20户家庭该月用电量的众数和中位数分别是
A.180,160 B.160,180 C.160,160 D.180,180 【解析】 A 【点评】 本题以调查家庭单月用电量为背景,在向学生渗透参与社会活动、关心生活的基础上考核了数理统计的相关知识。 本题考点:众数、中位数. 难度系数:0.85 8. 小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到
点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的 A.点M B.点N C.点P D.点Q - 3 -
【解析】 D 【点评】 本题考核的立意相对较新,考核了学生的空间想象能力,结合图形理解两点之间距离的概念,认识两点间距离变化产生的数量关系。采取验证法和排除法求解较为简单。 本题考点:两点间距离、线段. 难度系数:0.4 9. 分解因式:269mnmnm .
【解析】 2(3)mn 【点评】 本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式. 本题考点:因式分解(提取公因式法、应用公式法) 难度系数:0.85
10.若关于x的方程220xxm有两个相等的实数根,则m的值是 . 【解析】 1 【点评】 本题作为一元二次方程根的判别式的常见题型,利用一元二次方程根的情况确定方程中待定系数的取值,依据等实根产生判别式等于零,建立方程求解。 本题考点:一元二次方程跟的判别式. 难度系数:0.8
11.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边40cmDE,20cmEF,测得边DF离地面的高度1.5mAC,8mCD,则树高AB m.5.5 【点评】 本题尽管是填空题的倒数第二道题,但难度较小,很多学生在读完题后就能马上得出是相似三角形的问题,但关键是找准对应边,分析成比例线段,注意统一单位(不过找对对应边后与单位无关). 本题考点:相似三角形 难度系数:0.75 12.在平面直角坐标系xOy中,我们把横 、纵坐标都是整数的
点叫做整点.已知点04A,,点B是x轴正半轴上的整点,记AOB△内部(不包括边界)的整点个数为m.当3m时,点B的横坐标的所有可能值是 ;当点B的横坐标为4n(n为正整数)时,m (用含n的代数式表示.) 【解析】 3或4;63n 【点评】 本题是一道图形操作型规律探究性问题,考察观察能力和作图能力,对于此类题目首先应找出那些部分发生了变化,是按照什么规律变化的。对于本题而言难点就是,B点的运动位置及运动特点的分析,然后采用图形操作及验证法判断符合要求的整点个数。学生很容易发现部分整点个数变化规律,但是如何用一个统一的式子表示出变化规律是难点. 本题考点:找规律、平面直角坐标系. 难度系数:0.4 - 4 -
13.计算:101π3182sin458 【解析】 722 【点评】 本题综合考核了初中数学代数部分的相关计算题,尽管题目综合的知识点很多,但是都不难,只要掌握了每一个知识点,解决本题应该不在话下.本题是北京市中考计算题中的常见题型. 本题考点:二次根式的化简、特殊角的三角函数值、零次幂运算、负指数幂运算. 难度系数:0.8
14.解不等式组:43421.xxxx,
【解析】 5x 【点评】 解不等式(组)也是北京市中考题中计算题部分的常考题型. 本题易错点是:不等式基本性质三的应用,不等式组解集的确定 本题考点:解不等式(组). 难度系数:0.75
15.已知023ab≠,求代数式225224ababab的值. 【解析】 12 【点评】 本题考核了分式的化简求值。解决本题的关键是分式的正确化简、将已知条件的适当变形代入消元。 本题考点:分式的化简求值。 难度系数:0.65 16.已知:如图,点EAC,,在同一条直线上, ABCD∥,
ABCEACCD,. 求证:BCED.
【解析】 证ΔABC≌ΔCED (SAS) ∴BC=ED 【点评】 本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的几何证明题:只需证一次全等,无需添加辅助线,且全等的条件都很明显。本题是解答题中几何的第1道题,难度较小是为了让所有的考生在进入解答题后都有一个顺利的开端,避免产生畏惧心理,这样考试才有信心做后面较难的题目。 本题考点:全等三角形的判定(SAS)和性质. 难度系数:0.9 - 5 -
17.如图,在平面直角坐标系xOy中,函数40yxx的图象与一次函数ykxk的图象的交点为2Am,. (1)求一次函数的解析式; (2)设一次函数ykxk的图象与y轴交于点B,若P是x
轴上一点, 且满足PAB△的面积是4,直接写出点P的坐标.
【解析】 22yx;1(1,0)P,2(3,0)P 【点评】 本题是建立在反比例函数基础上的一次函数解析式确定及与一次函数图象有关的图形面积分析和点坐标的确定 本题考点:一次函数解析式的确定、一次函数图像与坐标轴上点的确定. 难度系数:0.7 18.列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.
【解析】 设一片国槐树叶一年的滞尘量为毫克,则一片银杏树叶一年的滞尘量为毫克, 由题意可得: 解得 检验:将带入中,不等于零,则是方程的根 答:一片国槐树叶一年的平均滞尘量22毫克 【点评】 本题也是一道与环保紧密相关的数学题,在考核学生数学知识的同时让学生了解环境保护的知识,本题着重考核了学生应用适当的数学模型解决实际问题的能力。 本题考点:列分式方程解应用题 难度系数:0.55
19.如图,在四边形ABCD中,对角线ACBD,交于点E, 9045302BACCEDDCEDE,,,, 22BE.求CD的长和四边形ABCD的面积. 【解析】 证明:过D作DF⊥AC与F 如图∵∠CED=45° ∴△ABE、△DEF均为等腰直角三角形