人教版高中数学必修四 1.3的诱导公式一导学案
1.3三角函数的诱导公式(一) 新课标高中数学人教A版必修四 教案

1.3诱导公式(一)教学目标(一)知识与技能目标⑴理解正弦、余弦的诱导公式.⑵培养学生化归、转化的能力.(二)过程与能力目标(1)能运用公式一、二、三的推导公式四、五.(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.(三)情感与态度目标通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.教学重点掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.教学难点运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.教学过程一、复习:诱导公式(一)tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k 诱导公式(二)tan )180tan(cos )180cos( sin )180sin(αααααα=+︒-=+︒-=+︒ 诱导公式(三)tan )tan(cos )cos( sin )sin(αααααα-=-=--=-诱导公式(四)tan )180tan(cos )180cos( sin )180sin(αααααα-=-︒-=-︒=-︒ 对于五组诱导公式的理解 :①可以是任意角;公式中的α②这四组诱导公式可以概括为:符号。
看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,, , ),Z (2-+-∈+k k总结为一句话:函数名不变,符号看象限练习1:P27面作业1、2、3、4。
2:P25面的例2:化简二、新课讲授: 1、诱导公式(五) sin )2cos( cos )2sin(ααπααπ=-=- 2、诱导公式(六) sin )2cos( cos )2sin(ααπααπ-=+=+ 总结为一句话:函数正变余,符号看象限例1.将下列三角函数转化为锐角三角函数:).317sin()4( ,519cos )3( ,3631sin )2( ,53tan )1(πππ-︒ 练习3:求下列函数值:).580tan )4( ,670sin )3( ),431sin()2( ,665cos)1(︒︒-ππ 例2.证明:(1)ααπcos )23sin(-=- (2)ααπsin )23cos(-=- 例3.化简:.)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(αππααπαπαπαπαπαπ+-----++- 的值。
1.3三角函数的诱导公式_导学案

1.3三角函数的诱导公式 第二课时班级 姓名 座号学习目标:1.经历诱导公式五、六的推导过程,体会数学知识的“发现”过程。
2.掌握诱导公式五、六,能初步应用公式解决一些简单的问题。
3.领会数学中转化思想的广泛性,了解诱导公式就是具有一定关系的几何特征关系的代数表示,从而对诱导公式能够达到属性结合的认识高度。
学习重点、难点:重点:诱导公式五、六的推导探究,诱导公式的应用。
难点:发现终边与角α的终边关于直线y x =对称的角与α之间的数量关系。
学习过程:一、预习完成部分: 复习回顾,引出新知公式二: 公式三: 公式四: =+=+=+)tan()cos()sin(απαπαπ =-=-=-)t a n ()c o s ()s i n (ααα =-=-=-)tan()cos()sin(απαπαπ它们的记忆技巧是: .二.合作探究: 1、诱导公式五:问题1:如图单位圆中,你能画出角 (2π—α)的终边吗?问题2:假设点1p 的坐标为),(y x ,你能说出⎪⎭⎫⎝⎛-απ2的终边与单位圆的交点2p 坐标吗?问题3:请用三角函数的定义写出角⎪⎭⎫⎝⎛-απ2的三角函数值(诱导公式五):预习检测1: 1、化简(1)⎪⎭⎫⎝⎛-βπ25sin (2) )27cos(απ-)=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-απαπ2cos 2sin2、证明:ααπcos 23sin )1-=⎪⎭⎫ ⎝⎛- ααπsin 23cos )2-=⎪⎭⎫ ⎝⎛-2、诱导公式六: 思考:同学们,角(2πα+)与角α又有怎样的关系呢?你仍然是画图研究吗,还是用已学的公式来探究呢?请试着写出你的推导诱导公式六过程:所以得到公式六:sin()cos 2cos()sin 2πααπαα+=+=-观察可得记忆口诀:把α看成锐角,函数名奇变偶不变,符号看象限。
预习检测2:求值:3(1)cos()23ππ- 5(2)sin 6π三、当堂达标: (一)、典型例题:例1:化简:1)11sin(2)cos()cos()cos()229cos()sin(3)sin()sin()2πππαπαααππαπαπαα-++-----+例2、已知:,212sin 计算-=⎪⎭⎫⎝⎛+απ(1)();2cos απ- (2)()πα7tan -(二)学习小结 :1.诱导公式反映了各种不同形式的角的三角函数之间的相互关系,并具有一定的规律性,“奇变偶不变,符号看象限”,是记住这些公式的有效方法.2.诱导公式是三角变换的基本公式,其中角α可以是一个单角,也可以是一个复角,应用时要注意整体把握、灵活变通.四、课后作业: 1、化简:1)()()()()0261sin .171sin 99sin .1071sin --+-;2)()()αππααππα--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-2cos .2sin .25sin 2cos 3)()()()ααα-+--sin 360tan cos 022、计算:1)()()00660cos .330sin 750cos .420sin --+2)⎪⎭⎫ ⎝⎛-++425tan 325cos625sin πππ3、已知():,21sin 计算-=+απ 1)⎪⎭⎫ ⎝⎛-23cos πα 2)⎪⎭⎫⎝⎛-απ2tan五、反思:1.自我评价: (优秀、良好、一般、不理想)2、还存在哪些问题?3、对于本节课有何感想?。
高中数学1.3.4单位圆与诱导公式(1)导学案(无答案)新人教版必修4

1.求下列各式的值(1)sin
16
(
2)sin印
3
4
(1)f (x)
sin x
2•判断下列函数的奇偶性:
⑵f(x)
sin xcosx
【延伸】例3•化简Sin(
n ) sin(
n
-(n Z)
si n(
n )cos(
n
)
说明:关键抓住题中的整数
n是表示 的整数倍与公式一中的整数k有区别,所以
必须把n分成奇数和偶数两种类型,分别加以讨论.
(1)sin960o;(2)cos(43);(3)tan( 1560o).
6
分析:先将不是0o,360o范围内角的三角函数,转化为0o,360o范围内
的角的三角函数(利用导公式一)或先将负角转化为正角然后再用诱导公 式化到0o,90o范围内角的三角函数的值。
【解】
【归纳总结】:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步
位圆的交点则siny,cosx;
2、诱导公式 由三角函数定义可以知道:终边相同的角的同一三角函数值相等.
(1)公式一:
思考:除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、
关于原点对称等,那么它们的三角函数有何关系呢?
当角的终边与角的终边关于x轴对称时,与 的三角函数值之间的关
系为:。
4
授课 时间
第周星期第节
课 型
新授 课
主备课 人
数学教研 组
学习 目标
1.巩固理解三角函数线知识,并能用三角函数线推导诱导公式;
2.能正确运用诱导公式求出任意角的三角函数值
重点
难点
运用诱导公式求出任意角的三角函数值
高中数学必修四:1.2.3(一) 诱导公式(一~四) 导学案

1.2.3(一) 诱导公式(一~四)一、【学习目标】1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.二、【自学要点】1. 诱导公式一,怎样解释?公式是什么?如何运用?2. 诱导公式二,怎样解释?公式是什么?如何运用?3. 诱导公式三,怎样解释?公式是什么?如何运用?4.诱导公式四,怎样解释?公式是什么?如何运用?三、【尝试完成】判断下列各题的正误:1.诱导公式中角α是任意角.( )2.sin(α-π)=sin α.( )3.cos 43π=-12.( ) 4.诱导公式对弧度制适用,对角度制不适用. ( )四、【合作探究】1.求下列各三角函数式的值.(1)cos 210°;(2)sin11π4;(3)sin ⎝⎛⎭⎫-43π6;( 4)cos(-1 920°).2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ= .3.化简下列各式.(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α); (2)1+2sin 290°cos 430°sin 250°+cos 790°.五、【当堂巩固】1.求下列各三角函数式的值.(1)sin 1 320°;(2)cos ⎝⎛⎭⎫-31π6;(3)tan(-945°).2.已知sin (π-α)=-2sin(π+β),3cos(-α)=-2cos(π+β),0<α<π,0<β<π,求α,β.3.化简tan (n π-α)sin (n π-α)cos (n π-α)cos[α-(n +1)π]·sin[(n +1)π-α](n ∈Z ).4.化简下列各式.(1)cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α); (2)cos 190°·sin (-210°)cos (-350°)·tan (-585°).六、【课堂小结】:七、【教学反思】:。
高中数学人教A版必修四第一章 1.3诱导公式(一)【教案】

必修四第一章 1.3 诱导公式(一)【教学目标】
1.知识与技能:
(1)识记诱导公式.
(2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.
2.过程与方法:
(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.
(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.
(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.
3.情感态度价值观:
(1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.
(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.
【重点难点】
1.教学重点:诱导公式的推导及应用,三角函数式的求值、化简和证明等。
2.教学难点:相关角边的几何对称关系及诱导公式结构特征的认识,三角函数式的求值、化简和证明等。
【教学策略与方法】
1.教学方法:合作探究、启发诱导,学生动手尝试相结合.
2.教具准备:直尺、多媒体
【教学过程】。
【第二课时】高一数学必修四第一章《1.32诱导公式》导学案及答案

姓名: -3-
使用时间:
=1-cossi2nα2α=ccooss22αα=1. [活学活用]
化简:解:(1)原式=cos[-π-α]·sin
-
π-α 2
(-sin α)
sin α
=cosπ-α·
-sin
π-α 2
(-sin α)
sin α
=-cos α·(-cos α)(-sin α) sin α
3
-2-
2019-2020 学年度下期高一数学必修四导学案
班级:
1.3 诱导公式 第二课时 诱导公式(二)
诱导公式五和公式六
[新知初探]
1.答案:(1)× (2)× (3)× 2.答案:C 3.答案:D 4.答案:-cos α
[小试身手]
利用诱导公式化简
[典例] 化简:
[解] ∵sin(4π-α)=sin(-α)=-sin α,
tan2π-αcos
3π-α 2
cos6π-α
tanπ-αsin
α+3π 2
cos
α+3π 2
=1.
利用诱导公式证明恒等式
利用诱导公式求值
[典例]
已知 cos
θ
cosπ-θ 3π-θ
sin 2
-1
=58,求cosπ+θsicnosπ2+2πθ--θsin
3π+θ 2
的值.
[活学活用] 已知 cos(75°+α)=1,求 cos(105°-α)-sin(15°-α)的值.
-cos θ θ-cos θ-1
= 1 =5,∴cos θ=3.
1+cos θ 8
5
cos2π-θ
∴ cosπ+θsin
π+θ 2
-sin
人教a版必修4学案:1.3三角函数的诱导公式(1)(含答案)
1.3三角函数的诱导公式(一)自主学习知识梳理1.设α为任意角,则π+α,-α,π-α的终边与α的终边之间的对称关系.相关角终边之间的对称关系π+α与α关于____对称;-α与α关于____对称;π-α与α关于____对称.2.诱导公式一~四(1)公式一:sin(α+2kπ)=______,cos(α+2kπ)=______,tan(α+2kπ)=________,其中k∈Z.(2)公式二:sin(π+α)=________,cos(π+α)=__________,tan(π+α)=________.(3)公式三:sin(-α)=________,cos(-α)=__________,tan(-α)=________.(4)公式四:sin(π-α)=________,cos(π-α)=________,tan(π-α)=__________.自主探究你能否利用π+α与α终边之间的对称关系,从任意角三角函数的定义出发推导诱导公式二吗?对点讲练知识点一给角求值问题例1求下列各三角函数值.(1)sin(-1 200°);(2)cos 47π6;(3)tan 945°.回顾归纳此类问题是给角求值,主要是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.如果是负角,一般先将负角的三角函数化为正角的三角函数,要记住一些特殊角的三角函数值.变式训练1求sin 1 200°·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan(-495°)的值.知识点二给值求值问题例2已知sin3π-αcos3π-α=2,求sinα-3π+cosπ-αsin-α-cosπ+α的值.回顾归纳(1)诱导公式的使用将三角函数式中的角都化为单角.(2)弦切互化是本题的一个重要技巧,值得关注.变式训练2已知cos π6-α=33,求cos 5π6+α-sin2α-π6的值.知识点三化简三角函数式例3化简:sin-2π-θcos6π-θtan2π-θcosθ-πsin5π+θ.回顾归纳解答此类题目的关键是正确运用诱导公式,如果含有参数k(k为整数)一般需按k的奇、偶性分类讨论.变式训练3化简:sin[k+1π+θ]·c os[k+1π-θ]sin kπ-θ·cos kπ+θ(其中k∈Z).1.明确各诱导公式的作用诱导公式作用公式一将角转化为0~2π求值公式二将0~2π内的角转化为0~π之间的角求值公式三将负角转化为正角求值公式四将角转化为0~π2求值2.诱导公式的记忆这组诱导公式的记忆口诀是“函数名不变,符号看象限”.其含义是诱导公式两边的函数名称一致,符号则是将α看成锐角时原角所在象限的三角函数值的符号.α看成锐角,只是公式记忆的方便,实际上α可以是任意角.课时作业一、选择题1.sin 585°的值为()A.-22B.22C.-32D.322.若n为整数,则代数式sin nπ+αcos nπ+α的化简结果是()A.tan nαB.-tan nαC.tan αD.-tan α3.记cos(-80°)=k,那么tan 100°等于()A.1-k2kB.-1-k2kC.k1-k2D.-k1-k24.tan(5π+α)=m,则sinα-5πcosπ+α的值为()A.m B.-m C.-1 D.15.若sin(π-α)=log814,且α∈-π2,0,则cos(π+α)的值为()A.53B.-53C.±53D.以上都不对二、填空题6.sin-π3+2sin5π3+3sin2π3=______.7.代数式1+2sin 290°cos 430°sin 250°+cos 790°的化简结果是________.8.设f(x)=asin(πx+α)+bcos(πx+β)+2,其中a、b、α、β为非零常数.若f(2 009)=1,则f(2 010)=________.三、解答题9.若cos(α-π)=-2 3,求sinα-2π+sin-α-3πcosα-3πcosπ-α-cos-π-αcosα-4π的值.10.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0.§1.3三角函数的诱导公式(一)答案知识梳理1.相关角终边之间的对称关系π+α与α关于原点对称;-α与α关于x轴对称;π-α与α关于y轴对称.2.(1)sin αcos αtan α(2)-sin α-cos αtan α(3)-sin αcos α-tan α(4)sin α-cos α-tan α自主探究解设P(x,y)为角α终边上任一点,∵角α与π+α终边关于原点对称.∴P(x,y)关于原点的对称点P′(-x,-y)位于角π+α的终边上.∴|OP′|=|OP|=x2+y2=r.由任意角三角函数的定义知:sin(π+α)=-yr=-sin α,cos (π+α)=-xr=-cos α,tan(π+α)=-y-x=yx=tan α.借助任意角三角函数的定义同样可以推得公式三、公式四.对点讲练例1解(1)sin(-1 200°)=sin(-4×360°+240°) =sin 240°=sin(180°+60°)=-sin 60°=-3 2;(2)cos 47π6=cos(11π6+6π)=cos11π6=cos(2π-π6)=cosπ6=32;(3)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1.变式训练1解原式=sin(3×360°+120°)·cos(3×360°+210°)-cos(2×360°+300°)·sin(2×360°+330°)-tan(360°+135°)=sin(180°-60°)·cos(180°+30°)-cos(360°-60°)·sin(360°-30°)-tan(180°-45°)=-sin 60°·cos 30°+cos 60°·sin 30°+tan 45°=-32×32+12×12+1=1 2 .例2解∵sin3π-αcos3π-α=2,∴tan(3π-α)=2,∴tan α=-2.∵sinα-3π+cosπ-αsin-α-cosπ+α=-sin α-cos α-sin α+cos α=sin α+cos αsin α-cos α=1+tan αtan α-1∴sinα-3π+cosπ-αsin-α-cosπ+α=1-2-2-1=13.变式训练2解cos 5π6+α-sin2α-π6=-cosπ-5π6+α-sin2π6-α=-cos π6-α-sin2π6-α=-33-1-332=-33-23=-2+33.例3解原式=-sin2π+θ·cos θ·-tan θcosπ-θ·sinπ+θ=sin θ·cos θ·tan θ-cos θ·-sin θ=sin θ·cos θ·tan θsin θ·cos θ=tan θ变式训练3解当k为偶数时,不妨设k=2n,n∈Z,则原式=sin[2n+1π+θ]·c os[2n+1π-θ] sin2nπ-θ·cos2nπ+θ=sinπ+θ·cosπ-θ-sin θ·cos θ=-sin θ·-cos θ-sin θ·cos θ=-1.当k为奇数时,设k=2n+1,n∈Z,则原式=sin[2n+2π+θ]·c os[2n+2π-θ] sin[2n+1π-θ]·c os[2n+1π+θ]=sin[2n+1π+θ]·c os[2n+1π-θ] sinπ-θ·cosπ+θ=sin θ·cos θsin θ·-cos θ=-1.∴上式的值为- 1. 课时作业1.A[sin 585°=sin(360°+225°)=sin(180°+45°)=-2 2 .]2.C[若n为偶数,则原式=sin αcos α=tan α;若n为奇数,则原式=sinπ+αcosπ+α=tan α.]3.B[∵cos(-80°)=k,∴cos 80°=k,∴sin 80°=1-k2.∴tan 80°=1-k2 k.∴tan 100°=-tan 80°=-1-k2 k.]4.A[∵tan(5π+α)=tan α=m,∴tan α=m.原式=-sin α-cos α=tan α=m.]5.B[∵sin(π-α)=sin α=log2 2-23=-23,∴cos(π+α)=-cos α=-1-sin2α=-1-49=-53.]6.0解析原式=-sin π3+2sin2π-π3+3sin2π3=-32-2×32+3×32=0.7.-1解析原式=1+2sin180°+110°·cos360°+70°sin180°+70°+cos2×360°+70°=1-2sin 110°cos 70°cos 70°-sin 70°=1-2sin 70°cos 70°cos 70°-sin 70°=|sin 70°-cos 70°| cos 70°-sin 70°=-1.8.3解析f(2 009)=asin(2 009π+α)+bcos(2 009π+β)+2 =asin(π+α)+bcos(π+β)+2=2-(asin α+bcos β)=1.∴asin α+bcos β=1.f(2 010)=asin(2 010π+α)+bcos(2 010π+β)+2 =asin α+bcos β+2=3.9.解原式=-sin2π-α-sin3π+αcos3π-α-cos α--cos αcos α=sin α-sin αcos α-cos α+cos2α=sin α1-cos α-cos α1-cos α=-tan α.∵cos(α-π)=cos(π-α)=-cos α=-2 3,∴cos α=23.∴α为第一象限角或第四象限角.当α为第一象限角时,cos α=2 3,sin α=1-cos2α=5 3,∴tan α=sin αcos α=52,则原式=-52.当α为第四象限角时,cos α=2 3,sin α=-1-cos2α=-5 3,∴tan α=sin αcos α=-52,则原式=52.10.证明∵sin(α+β)=1,∴α+β=2kπ+π2(k∈Z),∴α=2kπ+π2-β (k∈Z).tan(2α+β)+tan β=tan22kπ+π2-β+β+tan β=tan(4kπ+π-2β+β)+tan β=tan(4kπ+π-β)+tan β=tan(π-β)+tan β=-tan β+tan β=0,∴原式成立.。
【优选整合】人教版高中数学必修四第一章1.3诱导公式(一)【学案】.doc
1.3三角函数的诱导公式(一)班级: ___________ 姓名: ___________ 设计人: ____________ □期: ___________-J 亜*tJfr «3^SV Tl . jJUfi VI^*x> M>J JJ/J ") ■J UJ ") ^*x>温馨寄语罗蒙诺攻克科学堡垒,就像打仗一样,总会有人牺牲,有人受伤,我要为科学而献身。
索夫学习目标1.能借助于单位圆中的三角函数线推导诱导公式.2.能熟练运用诱导公式将任意角的三角函数转化为锐角的三角函数.学习重点1.诱导公式一到四的推导2.熟练正确地运用公式解决一些三角函数的求值、化简和证明问题学习难点诱导公式的灵活运用自主学习诱导公式sin(2A7r + a)=sin(— cr)=公式一cos(2in + a)=公式三cos(— a)=tan(2Ax + a)=tan(— a)=sin(rr -F a)=sin(n — a)=公式二COS(K + a)=公式四cos(兀一a)= tan(K + a)=tan(n — a)=14函数名不变•符号看象限预习评价1.计算:sin 600°=1D.~ -222 •计算sin 的值为1 1 V?A•—二B- C ____ 1 D.—2 2 2 23.sin 210°= ________ .4.已矢口sina =—,贝U sin(兀一a)= __________5.若tan(兀+&)=■,贝ij tan ct =3合作探究观察U,兀+乂,一乂的终边思考下列问题.根据上图,完成下面的填空.①兀+ a与u的终边关于_________ 对称;②兀一I【与K的终边关于_________ 对称;③一u与住的终边关于 _____________ 对称.(2)根据任意角三角函数的定义,并结合探究1的结论,探究下面的问题.®sin(7i+«)与sin认的值有何关系?cos(7t+a)与cos“呢?②sin(—u)与sin«的三角函数值有何关系?cos(—与cos“呢?③sin(7r—a)与sin&的三角函数值有何关系?cos(兀一。
高中数学必修四教案:1.3三角函数的诱导公式
设 为任意角
演示(二)
( 1)角 与( 180° + )的终边关系如何?(互为反向延长线或关于原点对称)
( 2)设 与( 180° + )的终边分别交单位圆于 p, p′,则点 p 与
p′具有什么关系?
(关于原点对称)
( 3)设点 p( x,y),那么点 p′坐标怎样表示? [p′(- x,- y)]
3
(三)构建知识系统、掌握方法、强化能力 I、课堂小结: (以填空形式让学生自己完成) 1、诱导公式(一) 、(二)、(三)
sin( k·2π + ) =sin tg( k·2π + )=tg
(k ∈ Z)
cos( k· 2π + ) =cos
sin( π + ) =- sin tg( π+ ) =tg sin(- )=- sin tg(- )=- tg
3、板书诱导公式(三)
sin(- ) =- sin tg(- ) =- tg
cos(- ) =cos
结构特征:①函数名不变,符号看象限(把
看作锐角)
②把求(- )的三角函数值转化为求
的三角函数值
4、基础训练题组二:求下列各三角函数值(可查表)
① sin(- ) ② tg(- 210°) ③ cos(- 240° 12′)
( 3)设 210°、30°角的终边分别交单位圆于点 p、p',则点 p 与 p'的位置关系如何?
(关于原点对称) ( 4)设点 p( x, y),则点 p’怎样表示?
[p'(- x,- y) ]
( 5) sin210 °与 sin30°的值关系如何?
7、师生共同分析: 在求 sin210°的过程中,我们把 210°表示成( 180° +30°)后,利用 210°与 30°角 的终边及其与单位圆交点 p 与 p′关于原点对称, 借助三角函数定义, 把 180°~ 270°角的
【第一课时】高一数学必修四第一章《1.31诱导公式》导学案及答案
4.α+k·2π(k∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐
角时原函数值的符号.
[小试身手]
答案:(1)× (2)× (3)√
2.答案:B
3.答案:D
4.答案:-4
题型一答案
[解]
(1)sin
-7π 3
=-sin7π=-sin
2π+π 3
=-sinπ=-
3.
3
32
D.sin(2π+α)=sin α
4.已知 tan α=4,则 tan(π-α)=________.
[典例] 求下列各三角函数值:
-7π (1)sin 3 ;
(2)cos17π; 6
给角求值问题 (3)tan(-855°).
[活学活用]
计算:(1)tanπ+tan2π+tan3π+tan4π;
5
5
5
2019-2020 学年度下期高一数学必修四导学案
班级:
三角函数的诱导公式
第一课时 诱导公式(一)
预习课本 P23~26,思考并完成以下问题 (1)π±α,-α的终边与α的终边有怎样的对称关系?
(2)诱导公式的内容是什么?
(3)诱导公式一~四有哪些结构特征?
[新知初探]
1.诱导公式二
(1)角π+α与角α的终边关于
题型二
[解] (1)cos-αtan7π+α=cos αtanπ+α=cos α·tan α=sin α=1.
sinπ-α
sin α
sin α sin α
(2)原式=sin4×360°+α·cos3×360°-α= sin α·cos-α = cos α =-1. cos180°+α·[-sin180°+α] -cos α·sin α -cos α
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 三角函数的诱导公式(一)学习目标 1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.设角α的终边与单位圆的交点为P,由三角函数定义知P点坐标为(cos α,sin α).知识点一诱导公式二思考角π+α的终边与角α的终边有什么关系?角π+α的终边与单位圆的交点P1(cos(π+α),sin(π+α))与点P(cos α,sin α)呢?它们的三角函数之间有什么关系?答案角π+α的终边与角α的终边关于原点对称,P1与P也关于原点对称,它们的三角函数关系如下:诱导公式二知识点二诱导公式三思考角-α的终边与角α的终边有什么关系?角-α的终边与单位圆的交点P2(cos(-α),sin(-α))与点P(cos α,sin α)有怎样的关系?它们的三角函数之间有什么关系?答案角-α的终边与角α的终边关于x轴对称,P2与P也关于x轴对称,它们的三角函数关系如下:诱导公式三思考角π-α的终边与角α的终边有什么关系?角π-α的终边与单位圆的交点P3(cos(π-α),sin(π-α))与点P(cos α,sin α)有怎样的关系?它们的三角函之间有什么关系?答案角π-α的终边与角α的终边关于y轴对称,P3与P也关于y轴对称,它们的三角函数关系如下:诱导公式四梳理 公式一~四都叫做诱导公式,它们分别反映了2k π+α(k ∈Z ),π+α,-α,π-α的三角函数与α的三角函数之间的关系,这四组公式的共同特点是:2k π+α(k ∈Z ),π+α,-α,π-α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.类型一 利用诱导公式求值命题角度1 给角求值问题例1 求下列各三角函数式的值.(1)cos 210°; (2)sin 11π4;(3)sin(-43π6); (4)cos(-1 920°). 解 (1)cos 210°=cos(180°+30°)=-cos 30°=-32. (2)sin 11π4=sin(2π+3π4) =sin 3π4=sin(π-π4) =sin π4=22. (3)sin(-43π6)=-sin(6π+7π6) =-sin 7π6=-sin(π+π6)=sin π6=12. (4)cos(-1 920°)=cos 1 920°=cos(5×360°+120°)=cos 120°=cos(180°-60°)=-cos 60°=-12. 反思与感悟 利用诱导公式求任意角三角函数值的步骤:(1)“负化正”:用公式一或三来转化.(2)“大化小”:用公式一将角化为0°到360°间的角.(3)“角化锐”:用公式二或四将大于90°的角转化为锐角.(4)“锐求值”:得到锐角的三角函数后求值.跟踪训练1 求下列各三角函数式的值.(1)sin 1 320°; (2)cos ⎝⎛⎭⎫-31π6; (3)tan(-945°). 解 (1)方法一 sin 1 320°=sin(3×360°+240°)=sin 240°=sin(180°+60°)=-sin 60°=-32. 方法二 sin 1 320°=sin(4×360°-120°)=sin(-120°)=-sin(180°-60°)=-sin 60°=-32. (2)方法一 cos ⎝⎛⎭⎫-31π6=cos 31π6=cos ⎝⎛⎭⎫4π+7π6 =cos(π+π6)=-cos π6=-32. 方法二 cos ⎝⎛⎭⎫-31π6=cos ⎝⎛⎭⎫-6π+5π6 =cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (3)tan(-945°)=-tan 945°=-tan(225°+2×360°)=-tan 225°=-tan(180°+45°)=-tan 45°=-1.命题角度2 给值求角问题例2 已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( ) A.-π6 B.-π3 C.π6 D.π3答案 D解析 由sin(π+θ)=-3cos(2π-θ),|θ|<π2, 可得-sin θ=-3cos θ,|θ|<π2, 即tan θ=3,|θ|<π2,∴θ=π3. 反思与感悟 对于给值求角问题,先通过化简已给的式子得出某个角的某种三角函数值,再结合特殊角的三角函数值逆向求角.跟踪训练2 已知sin(π-α)=-2sin(π+β),3cos(-α)=-2cos(π+β),0<α<π,0<β<π,求α,β.解 由题意,得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β. ②①2+②2,得sin 2α+3cos 2α=2,即sin 2α+3(1-sin 2α)=2,∴sin 2α=12,∴sin α=±22. ∵0<α<π,∴sin α=22,∴α=π4或α=34π. 把α=π4,α=34π分别代入②,得cos β=32或cos β=-32. 又∵0<β<π,∴β=π6或β=56π. ∴α=π4,β=π6或α=34π,β=56π. 类型二 利用诱导公式化简例3 化简下列各式.(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α); (2)1+2sin 290°cos 430°sin 250°+cos 790°. 解 (1)原式=sin (2π-α)cos (2π-α)·sin (-α)cos (-α)cos (π-α)sin (π-α)=-sin α(-sin α)cos αcos α(-cos α)sin α=-sin αcos α=-tan α. (2)原式=1+2sin (360°-70°)cos (360°+70°)sin (180°+70°)+cos (720°+70°) =1-2sin 70°cos 70°-sin 70°+cos 70°=|cos 70°-sin 70°|cos 70°-sin 70° =sin 70°-cos 70°cos 70°-sin 70°=-1. 引申探究若本例(1)改为:tan (n π-α)sin (n π-α)cos (n π-α)cos[α-(n +1)π]·sin[(n +1)π-α](n ∈Z ),请化简. 解 当n =2k 时,原式=-tan α·(-sin α)·cos α-cos α·sin α=-tan α; 当n =2k +1时,原式=-tan α·sin α·(-cos α)cos α·(-sin α)=-tan α. 反思与感悟 三角函数式的化简方法(1)利用诱导公式,将任意角的三角函数转化为锐角的三角函数.(2)常用“切化弦”法,即表达式中的切函数通常化为弦函数.(3)注意“1”的变式应用:如1=sin 2α+cos 2α=tan π4.跟踪训练3 化简下列各式.(1)cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α); (2)cos 190°·sin (-210°)cos (-350°)·tan (-585°). 解 (1)原式=-cos α·sin α-sin (π+α)·cos (π+α)=cos α·sin αsin α·cos α=1. (2)原式=cos (180°+10°)·[-sin (180°+30°)]cos (-360°+10°)·[-tan (360°+225°)]=-cos 10°·sin 30°cos 10°·[-tan (180°+45°)] =-sin 30°-tan 45°=12.1.sin 585°的值为( )A.-22B.22C.-32D.32答案 A解析 sin 585°=sin(360°+225°)=sin(180°+45°)=-sin 45°=-22. 2.cos(-16π3)+sin(-16π3)的值为( ) A.-1+32B.1-32C.3-12D.3+12答案 C解析 原式=cos 16π3-sin 16π3=cos 4π3-sin 4π3=-cos π3+sin π3=3-12. 3.已知cos(π-α)=32(π2<α<π),则tan(π+α)等于( ) A.12 B.33 C.- 3 D.-33答案 D解析 方法一 cos(π-α)=-cos α=32, ∴cos α=-32. ∵π2<α<π,∴sin α>0. ∴sin α=1-cos 2α= 1-34=12, ∴tan(π+α)=tan α=sin αcos α=-33. 方法二 由cos α=-32,π2<α<π,得α=56π, ∴tan α=-33,∴tan(π+α)=tan α=-33. 4.sin 750°= .答案 12解析 ∵sin θ=sin(k ·360°+θ),k ∈Z ,∴sin 750°=sin(2×360°+30°) =sin 30°=12. 5.化简:cos (α-π)sin (5π+α)·sin(α-2π)·cos(2π-α). 解 原式=cos (π-α)sin (π+α)·[-sin(2π-α)]·cos(2π-α) =-cos α-sin α·sin α·cos α=cos 2α.1.明确各诱导公式的作用2.诱导公式的记忆这四组诱导公式的记忆口诀是“函数名不变,符号看象限”.其含义是诱导公式两边的函数名称一致,符号则是将α看成锐角时原角所在象限的三角函数值的符号,α看成锐角,只是公式记忆的方便,实际上α可以是任意角.3.已知角求值问题,一般要利用诱导公式三和公式一,将负角化为正角,将大角化为0~2π之间的角,然后利用特殊角的三角函数求解.必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”课时作业一、选择题1.cos 600°的值为( ) A.32 B.12C.-32 D.-12答案 D解析 cos 600°=cos(360°+240°)=cos 240°=cos(180°+60°)=-cos 60°=-12.2.若cos(π+α)=-12,32π<α<2π,则sin(α-2π)等于() A.12 B.±32 C.32 D.-32答案 D解析 由cos(π+α)=-12,得cos α=12,故sin(α-2π)=sin α=-1-cos 2α=- 1-(12)2=-32(α为第四象限角).3.记cos(-80°)=k ,那么tan 100°等于( ) A.1-k 2k B.-1-k 2k C.k1-k 2 D.-k1-k 2答案 B解析 ∵cos(-80°)=k ,∴cos 80°=k ,∴sin 80°=1-k 2,则tan 80°=1-k 2k .∴tan 100°=-tan 80°=-1-k 2k .4.已知n 为整数,化简sin (n π+α)cos (n π+α)所得的结果是( )A.tan nαB.-tan nαC.tan αD.-tan α答案 C解析 当n =2k ,k ∈Z 时,sin (n π+α)cos (n π+α)=sin (2k π+α)cos (2k π+α)=sin αcos α=tan α;当n =2k +1,k ∈Z 时,sin (n π+α)cos (n π+α)=sin (2k π+π+α)cos (2k π+π+α)=sin (π+α)cos (π+α)=-sin α-cos α=tan α.故选C.5.tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( )A.m +1m -1 B.m -1m +1C.-1D.1答案 A解析 ∵tan(5π+α)=tan α=m ,∴原式=sin α+cos αsin α-cos α=tan α+1tan α-1=m +1m -1.6.若sin(π-α)=log 8 14,且α∈(-π2,0),则cos(π+α)的值为() A.53 B.-53C.±53 D.以上都不对答案 B解析 ∵sin(π-α)=sin α=log 32 2-2=-23,∴cos(π+α)=-cos α=-1-sin 2α=- 1-49=-53.二、填空题7.cos (-585°)sin 495°+sin (-570°)的值是 . 答案2-2 解析 原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°) =cos 225°sin 135°-sin 210° =cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 8.已知a =tan ⎝⎛⎭⎫-7π6,b =cos 23π4,c =sin ⎝⎛⎭⎫-33π4,则a ,b ,c 的大小关系是 .并比较值的大小 答案 b >a >c解析 ∵a =-tan 7π6=-tan π6=-33, b =cos ⎝⎛⎭⎫6π-π4=cos π4=22, c =-sin 33π4=-sin π4=-22, ∴b >a >c .9.已知cos(π+α)=-35,π<α<2π,则sin(α-3π)+cos(α-π)= . 答案 15解析 ∵cos(π+α)=-cos α=-35, ∴cos α=35, 又∵π<α<2π,∴3π2<α<2π, ∴sin α=-45. ∴sin(α-3π)+cos(α-π)=-sin(3π-α)+cos(π-α)=-sin(π-α)+(-cos α)=-sin α-cos α=-(sin α+cos α)=-⎝⎛⎭⎫-45+35=15. 10.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为 . 答案 -3解析 ∵f (4)=a sin(4π+α)+b cos(4π+β)=a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β)=a sin(π+α)+b cos(π+β)=-a sin α-b cos β=-3.11.已知sin(π-α)=log 814,且α∈(-π2,0),则tan(2π-α)的值为 . 答案 25512.已知cos(508°-α)=1213,则cos(212°+α)= . 答案 1213三、解答题13.化简下列各式.(1)sin(-193π)cos 76π; (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).解 (1)sin(-193π)cos 76π =-sin(6π+π3)cos(π+π6)=sin π3cos π6=34. (2)sin(-960°)cos 1 470°-cos 240°sin(-210°)=-sin(180°+60°+2×360°)cos(30°+4×360°)+cos(180°+60°)sin(180°+30°)=sin 60°cos 30°+cos 60°sin 30°=1.四、探究与拓展14.已知f (x )=⎩⎪⎨⎪⎧sin πx ,x <0,f (x -1)-1,x >0,则f (-116)+f (116)的值为 . 答案 -2解析 因为f (-116)=sin(-11π6)=sin(-2π+π6)=sin π6=12; f (116)=f (56)-1=f (-16)-2 =sin(-π6)-2=-12-2=-52, 所以f (-116)+f (116)=-2. 15.已知f (α)=sin (π+α)cos (2π-α)tan (-α)tan (-π-α)sin (-π-α). (1)化简f (α);(2)若α是第三象限角,且sin(α-π)=15,求f (α)的值; (3)若α=-31π3,求f (α)的值. 解 (1)f (α)=-sin αcos α(-tan α)(-tan α)sin α=-cos α. (2)∵sin(α-π)=-sin α=15, ∴sin α=-15.又α是第三象限角, ∴cos α=-265.∴f (α)=265. (3)∵-31π3=-6×2π+5π3, ∴f ⎝⎛⎭⎫-31π3=-cos ⎝⎛⎭⎫-6×2π+5π3 =-cos5π3=-cos π3=-12.。