基于单片机的红外遥控控制模块的设计

合集下载

基于单片机的遥控控制电路设计

基于单片机的遥控控制电路设计

基于单片机的遥控控制电路设计遥控控制电路是一种通过无线信号传输控制设备的电路系统。

基于单片机的遥控控制电路设计可以实现对电器设备、机械装置等的无线控制,具有广泛的应用领域,如家电遥控、无线门禁等。

设计一个基于单片机的遥控控制电路需要考虑以下几个方面:1.硬件设计:首先,需要选择合适的无线通信模块。

常见的无线通信模块有红外遥控模块、射频遥控模块等。

根据具体的应用需求选择合适的模块。

在硬件设计中,还需要考虑单片机、电源、按键等元件的选择和连接。

在单片机的选择上,可以选择一些常见的MCU产品,如Arduino、STM32等,根据具体需求选择适合的型号。

选择低功耗的供电方式,如锂电池供电或电池组供电,确保电路的可靠性和使用寿命。

在按键的选取上,可以选择常见的手持遥控器按键、数字键盘等,根据具体的应用需求进行选择。

电源模块需要选择能够提供稳定电流和电压的模块,以确保单片机系统正常运行。

除了以上硬件元件,还需要考虑电路板布线、外设连接等。

合理布局电路元件,确保信号传输和电路工作的稳定性。

2.软件设计:遥控控制电路的软件设计涉及到单片机程序的设计和开发。

在软件设计中,首先需要定义单片机与无线通信模块的通信协议,如红外协议、射频协议等。

根据通信协议的要求,编写单片机程序,实现与无线通信模块的正常通信。

在软件设计中,还需要编写按键扫描程序,实现对按键的检测和处理。

通过按键扫描程序,可以实现对按键的触发和对应功能的执行。

此外,还需要编写电机控制程序、电磁阀控制程序等,根据具体的应用需求,实现对设备的无线控制。

3.测试和调试:在完成硬件和软件设计后,需要进行测试和调试。

首先进行硬件电路的测试,检查电路连接是否正确,供电是否正常,信号传输是否稳定。

然后进行单片机程序的测试,确保按键的检测和处理正常,与无线通信模块的通信正常。

最后进行整体系统的测试,模拟实际应用场景,测试遥控控制效果。

如果发现问题,需要进行相应的调试和优化。

基于单片机的红外遥控系统设计

基于单片机的红外遥控系统设计

基于单片机的红外遥控系统设计 【摘要】本文介绍了基于AT89C51和AT89C2051的红外遥控系统。该系统的设计重点在于采用同一遥控器控制多个设备。其中,硬件电路主要包含了以下几个模块:红外发射电路和红外接收电路。整个电路简单可靠、操作灵活、耗电量小、性价比较高,满足了现代生活,生产和科研的需要。

【关键词】红外遥控系统;红外发射电路;红外接收电路;AT89C51;AT89C2051

1.引言 随着物质文化生活水平的日益提高,人们对产品智能化、方便性等方面的追求也在进一步提升。而红外遥控装置由于其结构简单、成本低廉、制作方便、抗干扰能力强等一系列的优点,成为目前使用最广泛的的一种通信和遥控手段。但是,近年来,由于各种各样的家用电器走进了千家万户,比如电视机、DVD、录像机、数字投影机等,因此经常需要同时使用多种遥控器,而不同的设备所遵循的红外传输规约也不尽相同,这些都给使用者带来了诸多的不便。本文的设计正是利用单片机的控制指令对不同的设备进行控制,因而可以方便快捷的实现红外遥控电路的控制功能。

2.红外遥控系统的硬件设计 2.1 红外遥控系统的总体设计 红外遥控系统包括发射和接收两个组成部分。系统的发送端由单片机将需要发送的二进制信号编码调制为一系列的脉冲信号,而后通过红外发射管发射红外信号。在红外接收端采用一体化红外接收头,在接收红外信号的同时对信号进行放大、滤波、整形,将得到的TTL电平编码信号传送给单片机,最后由单片机解码并进行相关控制。系统的整体设计框图如图1所示。

2.2 红外发射电路 该模块采用AT89C2051作为发射电路的核心处理器并选择点触式开关作为控制键。同时,设计中还包括有晶振与简单的红外发射电路。

发射电路的主要原理如下,遥控发射通过点触式键盘控制。当不同的按键按下时,可以产生不同的数字编码脉冲,而后将编码调制在38KHz载波上,再经缓冲放大后送往红外发光二极管,使其产生不同的脉冲信号,继而传送到遥控接收器上。其中,用于发射部分的主要元器件为红外发光二极管。其内部材料与普通发光二极管不同,在该元件两端施加相应的电压时可以发出红外线。本次设计选用脉冲振幅调制(PAM)对二进制脉冲信号进行调制。详细的红外发射电路如图2所示。 2.3 红外接收电路 该模块电路主要由一体化红外接收头、单片机AT89C51、存储器、还原调制和红外发光管驱动电路组成。其中,接收部分的主要元件为红外接收管。为使红外接收二极管正常工作,往往需要加反向偏压,而且反向偏压可以使其获得较高的灵敏度。一体化接收头在该设计中的主要作用为解调红外遥控信号,即去除38KHz的载波信号后识别出二进制码0、1。在接收到遥控信号后,经过红外接收头的前置放大、限幅放大、带通滤波、峰值检测以及整形,即可解调出与遥控信号反向的脉冲。

基于单片机的红外遥控设计与制作

基于单片机的红外遥控设计与制作

基于单片机的红外遥控设计与制作13工试2班陈舒佳章韬略一、设计目的对于本课题的研究,其理论中的价值是对红外线这种电磁波的特性进行更加深入的研究。

同时在与单片机和电子电路的共同作用下,找到单片机及电子电路在实际运用中的更多功能,从而挖掘出红外线和硬件设备结合中的更多可能性。

在现实意义中,对于红外线的使用,它不仅提高了单片机、硬件设备和硬件系统在智能遥控领域的广泛应用,而相对了在硬件设施上使用了红外线的遥控技术,也同时大大拓宽了硬件设施的应用范围。

在不久的将来,我相信,人们对于红外遥控控制的运用,会变得越来越广。

二、设计要求基本功能要求:1.以一个单片机作为控制遥控器,另一个单片机控制系统为被遥控对象;2.用遥控器的10个遥控开关,控制遥控对象的10个电源开关通断;3.能实现10个电源开关状态显示;4.能实现定时开关某一个电源开关。

扩展功能:1.能实现灯光亮度连续调节;2.能根据不同电器实现不同时间通断控制;3.其他扩展功能。

三、方案设计3.1红外遥控发射电路的方案采用指令键产生电路产生不同的控制指令,单片机进行状态的编码,直接由单片机的口输出方波信号控制红外发射管进行发射。

红外发射管采用普通的红外发射二极管。

3.2红外遥控接收电路的方案遥控系统采用红外线脉冲个数编码,直接利用单片机软件解码,实现功能的遥控。

3.3单片机的选择本设计所编写的程序比较简单,功能也比较少,所用到的输入输出端口也不是很多,所以我们决定用STC89C52单片机来完成本设计,既方便也很实用。

3.4红外遥控系统电路的原理框图以及各部分作用各部分作用:(1)行列式键盘行列式键盘又称为矩阵式键盘,用I/O线组成行列结构,按键设置在行列的交点上,行列式分别连接到按键开关的两端。

键盘中有无按键按下是由行线送入扫描字及列线读入列线状态字来判断的,有键按下时通过查键并执行键功能程序。

(2)红外线发射电路遥控器信息码由单片机的定时器1中断产生40KHZ红外线方波信号。

基于单片机的红外遥控系统设计

基于单片机的红外遥控系统设计

单片机红外遥控系统设计随着社会的发展、科技的进步以及人们生活水平的逐步提高,各种方便于生活的遥控系统开始进入了人们的生活。

传统的遥控器采用专用的遥控编码及解码集成电路,这种方法虽然制作简单、容易,但由于功能键数及功能受到特定的限制,只实用于某一专用电器产品的应用,应用范围受到限制。

而采用单片机进行遥控系统的应用设计,具有编程灵活多样、操作码个数可随便设定等优点。

本设计主要应用了AT89C51单片机作为核心,综合应用了单片机中断系统、定时器、计数器等知识,应用红外光的优点,设计了一个红外线遥控系统。

本系统包含发射和接收两大部分,利用编码/解码芯片来进行控制操作。

发射部分包括键盘矩阵、编码调制、LED 红外线发射器;接收部分包括红外线接收芯片、光电转换器、调解电路。

其优点硬件电路简单,软件功能完善,性价比较高等特点,具有一定的使用和参考价值。

关键词:单片机AT89C51;LED红外线发射器目录目录 (2)1 绪论 (2)1.1研究背景 (2)1.2国内外研究现状 (3)1.3研究目的与意义 (3)2系统方案设计论证 (5)2.1单片机红外遥控发射器设计原理 (5)2.2单片机红外遥控接收器设计原理 (5)2.3方案选择和论证 (6)3红外解码硬件电路设计 (8)3.1红外解码系统设计 (8)3.2单片机及其硬件电路设计 (8)3.3红外发射电路设计 (10)3.4红外接收电路设计 (11)3.5本章小结 (13)4红外解码程序设计 (14)4.1红外接收电路主程序流程图 (14)4.2红外接收电路子程序流程图 (14)4.3本章小结 (15)5 联机与调试 (16)结论和展望 (23)附录A:系统原理图 (24)附录B:系统PCB图 (25)附录C:系统仿真图 (26)附录D:系统源程序 (27)1 绪论1.1研究背景目前市场上采用的一般是遥控编码及解码集成的电路。

此方案的特点是制作简单、容易等,但因为功能键数及功能受到特定的限制,这类电路只适合用某一专用电器产品的应用,应用范围受到很大的限制。

基于PIC单片机的红外遥控设计

基于PIC单片机的红外遥控设计
·发射及接收电路的设计;
·编码及解码程序;
·红外传感器的选取和使用;
·红外键盘的设计。
(三)开发的思路
设计基于单片机的红外遥控,我们要从发射接收电路,编码解码,传感器,红外键盘几个方向入手。在软件部分中,我们主要是先要画好系统原理图,还有明确系统各部分功能,发射接收电路的设计,编码及解码程序,在硬件部分中,主要是发射和接收电路的硬件设计,红外传感器的使用,以及红外键盘的设计。
高档8位单片机:PIC17CXX系列
PIC17CXX是适合高级复杂系统开发的系列产品,其性能在中档位单片机的基础上增加了硬件乘法器,指令周期可达成160ns,它是目前世界上8位单片机中性价比最高的机种,可用于高、中档产品的开发,如马达控制
(二)相关背景知识
1.16F877a基本知识
(1)16F877a的基本架构
(8)睡眠和低功耗模式。虽然PIC在这方面已不能与新型的TI-MSP430相比,但在大多数应用场合还是能满足需要的。
3.PIC单片机的分类
初档8位单片机:PIC12C5XXX/16C5X系列
PIC16C5X系列是最早在市场上得到发展的系列,因其价格较低,且有较完善的开发手段,因此在国内应用最为广泛;而PIC12C5XX是世界第一个八脚低价位单片机可用于简单的智能控制等一些对单片机体积要求较高的地方,前景十分广阔。
XXXX大学本科毕业设计
基于PIC单片机的红外遥控设计
学生姓名
所在系
专业名称
班级
学号
指导教师
XXX大学教务处
年月
基于PIC单片机的红外遥控设计
学生:指导教师:
内容提要:遥控器是现代电子控制系统的重要部件。可以利用无线电波、可见光、红外光、超声波作为传输介质远距离操控电子设备。由于其功耗低、可靠性高和互相干扰小等优点,已在现实生活中得到了广泛应用。在目前的家用电器中,如电视机、家庭影院和数字音像设备中,大多都采用了红外线遥控电路。而这套“基于PIC单片机的红外遥控设计”则是以Microchip公司生产的16F877a芯片为模版,价格低廉,电路结构简单,据此本设计提出了一种简单易行的红外遥控器的设计。

基于51单片机的红外遥控开关设计

基于51单片机的红外遥控开关设计
1)微处理器(CPU):一个8位的CPU,与通常的CPU基本相同,同样还包括了运算器和控制器两部分,只是增加了面向控制的出路功能,不仅可以处理字节数据还可以进行变量的处理。
2)数据存储器(RAM):片内为128B,片外最多可以外扩64KB。片内的128B的RAM以告诉RAM形式集成在单片机内。可以加快但单片机的运行速度,而且这种结果的RAM可以降低功耗。
2.方式1:当M1、M0为01是,定时器/计数器工作于方式1,这时定时器/计数器的等效电路如下图3-3
图3-3定时器/计数器方式1逻辑结构图
3方式2:
方式0和方式1的最大特点是计数溢出后,计数器为全0.因此在循环定时或循环计数用时就存在反复装入计数初值的问题。这不仅影响定时精数,而且也给程序设计带来麻烦。方式2就是针对此问题而设置的。当M1、M2为10时,定时器/计数器处于工作方式2,这时定时器/计数器得等效框图如图3-4所示。这种工作方式可以省去用户软件中得重装初值的程序,简化定时初值的计算方法,可以相当精确的确定定时时间。
3)程序存储器(ROM/EPROM):用来存储程序,8031没有此部件,8051为4KB的ROM;8751为4KB的EPROM。片外最多可以扩至64KB。
4)4个8位并行I/O口(P0、P1、P2、P3)
5)1个串行口:1个全双工的串行口,具有4种工作方式。可以用来进行串行通信,扩展并行I/O口,甚至与多个单片机相连接构成多机系统,从而使单片机的功能更加强且应用更广。
系统组成如图2-2所示【5】。系统由发射部分和接收部分组成。发射部分采用脉冲个数编码,将待发射信号调制成38KHz的载波信号,由红外发射管进行发射。接收部分由红外接收管进行解码接收,单片机通过对所接收信号的分析,输出相应的控制信号,由发光二极管和数码管指示出发射部分按下的按键号。

单片机中红外遥控接口的设计与实现方法探讨

单片机中红外遥控接口的设计与实现方法探讨红外遥控接口(IR remote control interface)是单片机(MCU)中常见的功能模块之一。

它允许单片机通过接收和解码红外遥控信号来控制外部设备,例如电视、空调、音响等。

本文将探讨红外遥控接口的设计与实现方法。

在设计红外遥控接口之前,我们首先需要了解红外遥控的原理。

红外遥控是利用红外线传输控制信号的技术。

遥控器上的红外发射器发射红外信号,接收器接收并解码这些信号,然后将解码结果传递给单片机进行相应的操作。

设计红外遥控接口的第一步是选择合适的红外接收器。

常见的红外接收器有红外收发二合一模块和红外解码模块。

红外收发二合一模块通常集成了红外发射器和接收器,适用于需要发射和接收红外信号的应用。

而红外解码模块则只包含接收器和解码电路,适用于只需要接收红外信号的应用。

在确定红外接收器后,接下来需要连接红外接收器与单片机。

一般来说,红外接收器的输出是一个数字信号,可以直接连接到单片机的GPIO引脚。

在连接红外接收器时,需要注意接收器的供电电压和逻辑电平与单片机的电源和引脚兼容。

接下来是设计红外解码电路。

红外解码电路的作用是将接收到的红外信号进行解码,并将解码结果以可操作的格式传递给单片机。

常见的红外解码方法有NEC 协议、RC-5协议和RC-6协议等。

NEC协议是一种常用的红外遥控协议,它使用38kHz的载波频率,通过调制红外信号的脉宽来传输数据。

在实现NEC协议的红外解码时,可以使用外部红外解码器芯片,也可以通过编程实现解码算法。

无论使用哪种方法,都需要正确配置单片机的定时器和外部中断等相关功能模块。

RC-5协议和RC-6协议是飞利浦开发的红外遥控协议。

RC-5协议使用36kHz的载波频率,通过调制红外信号的脉宽和位值来传输数据;RC-6协议则使用36kHz或38kHz的载波频率,通过调制红外信号的脉宽、位值和协议头来传输数据。

与NEC协议相比,RC-5和RC-6协议在解码过程中需要更复杂的算法和状态机。

基于单片机的红外通信系统设计

基于单片机的红外通信系统设计1 简介红外通信是指利用红外线进行信息传输的一种无线通讯方式。

其传输距离在10米以内,速度较快,常用于遥控器、智能家居、安防监控等领域。

本文将介绍基于单片机的红外通信系统设计。

2 系统原理红外通信系统需包含红外发射器、红外接收器和处理器三个部分。

通信原理是将信息编码成红外信号,通过红外发射器发出,再由红外接收器接收,经过解码后传输到处理器中处理。

3 系统设计步骤3.1 红外接收器电路设计红外接收器采用红外管接收器,其特点是灵敏度高,在不同角度能接收到较远的红外信号。

红外管接收器与电路板焊接,电路板再选用较长的电线接到处理器的端口上。

3.2 红外发射器电路设计红外发射器采用红外二极管,其工作电压一般为1.2-1.4V。

通过接通1kHz以上的方波信号控制二极管的导通,使其发出红外光。

为保证其稳定性和较远的有效距离,需在电路中添加反向电流保护二极管。

3.3 处理器设计处理器选用常用的单片机,如AT89C51等。

单片机内置了红外通信模块,可用来发送和接收红外信号。

同时,还需通过编程实现对红外信号的解码和编码,实现信息传输与处理。

4 系统测试测试时,可用遥控器模拟发送红外信号,系统接收并解码后显示在液晶屏幕上。

测试距离一般在10米以内,且需保持天空无其它遮挡物。

5 总结基于单片机的红外通信系统设计,具有灵敏度高、速度快、传输距离短等特点。

其应用广泛,在智能家居、安防监控、车载通信等领域均有应用。

但需注意遮挡物的影响,以及信号干扰等问题。

基于单片机的红外遥控智能小车设计

基于单片机的红外遥控智能小车设计引言:随着科技的不断发展,智能物联网已经走进了我们的生活。

智能小车作为一种智能化的产品,能够实现远程遥控、自动避障等功能,受到了广大消费者的青睐。

本文就基于单片机的红外遥控智能小车设计进行详细介绍。

一、设计目标本设计的目标是通过红外遥控,实现对智能小车的远程控制,小车能够根据收到的指令进行行驶、避障等操作。

二、设计原理1.主控芯片:本设计使用单片机作为主控芯片,常用的单片机有51系列、AVR系列等,可根据实际需求选择合适的芯片型号。

2.红外遥控模块:红外遥控模块是实现红外通信的设备,可以将遥控器发出的红外信号解码成数据,实现遥控操作。

3.电机驱动模块:电机驱动模块可将单片机的PWM信号转化为电机的动力驱动信号,控制小车的行驶方向和速度。

4.超声波传感器:超声波传感器可以感知到小车前方的障碍物距离,根据测得的距离,进行相应的避障操作。

5.电源模块:小车需要使用适当的电源,通常是锂电池或者直流电源供应。

三、系统设计1.硬件设计:(1)搭建小车底盘:根据所选择的底盘,搭建小车结构,并安装好电机驱动模块、电源模块等硬件设备。

(2)连接电路:将红外遥控模块、超声波传感器等硬件设备与主控芯片进行连接,确保每个模块正常工作。

2.软件设计:(1)红外遥控程序设计:通过红外遥控模块接收红外信号,并解码成相应的指令。

根据指令控制电机驱动模块,实现小车的行驶方向和速度控制。

(2)超声波避障程序设计:根据超声波传感器测得的距离,判断是否有障碍物,如果有障碍物就停止或者转向。

四、实验结果和讨论经过实验验证,本设计的红外遥控智能小车能够准确接收红外信号,并根据指令控制小车的行驶方向和速度。

同时,超声波传感器能够及时感知到前方的障碍物,并进行相应的避障操作。

然而,该设计仍然存在一些不足之处,比如超声波传感器的测距范围有限,可能无法感知到较小的障碍物。

此外,红外遥控信号的传输距离也有一定限制,需要保持遥控器与小车之间的距离不过远。

基于单片机的红外遥控小车设计

基于单片机的红外遥控小车设计本文将详细介绍基于单片机的红外遥控小车设计。

小车采用红外遥控技术,能够实现远程控制和执行各种动作。

首先,将介绍设计的硬件和软件部分。

然后,将详细描述小车的功能和实现过程。

最后,将对设计进行总结和展望。

硬件部分主要由以下组成:单片机、红外接收器、电机驱动器、电机和电源。

单片机是控制整个系统的核心部件,负责接收红外信号,解码并执行相应的动作。

红外接收器用于接收红外信号并传输给单片机进行解码。

电机驱动器用于控制车辆的运动,根据单片机的指令控制电机的速度和方向。

电机则负责提供车辆的动力。

电源则提供整个系统的电能供应。

软件部分主要由以下组成:单片机的程序和红外信号的解码。

单片机的程序是使用C语言编写的,负责接收红外信号并判断相应的指令。

红外信号的解码则是将红外接收器接收到的信号转换成数字信号,使单片机能够理解和执行。

小车的功能包括前进、后退、左转、右转和停止。

远程控制器上的按键对应不同的指令,通过红外遥控技术将指令发送给红外接收器。

红外接收器接收到指令后,传输给单片机进行解码。

单片机根据指令控制电机驱动器,使小车实现不同的动作。

实现过程如下:首先,根据硬件部分的连接原理图将各个硬件连接起来,并将电源接通。

然后,编写单片机程序,使其能够接收红外信号并解码。

接下来,根据不同的指令,编写程序控制电机驱动器,使小车实现前进、后退、左转、右转和停止的功能。

最后,对整个系统进行测试和调试,验证其功能和性能。

在设计过程中,还需要考虑小车的安全性和可靠性。

例如,可以加入碰撞检测功能,当小车检测到碰撞时,自动停止运动。

同时,还可以加入电池电量检测功能,当电池电量低于一定值时,自动停止运动并发出警报。

总结:通过本文的介绍,我们了解了基于单片机的红外遥控小车设计。

该设计能够实现远程控制和执行各种动作,具有很大的应用潜力。

然而,在实际应用中,还需要进一步优化设计,以提高小车的性能和功能。

希望未来能够有更多的研究和创新,推动该领域的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的红外遥控控制模块的设计
一、介绍
红外遥控技术广泛应用于家电、智能家居、车辆和工业控制等领域,可以实现远程控制的功能。

本文将介绍一个基于单片机的红外遥控控制模块的设计,详细分析其硬件和软件实现。

二、硬件设计
1.红外遥控接收模块:用于接收来自红外遥控器的信号,并将信号解码为数字数据。

常用的红外接收器有红外二极管和红外收发模块,我们选择红外收发模块来实现接收功能。

2.单片机:选择一个适合的单片机作为控制模块的核心,常用的单片机有STC89C51、PIC16F628A等,本文选择STC89C51单片机。

它具有丰富的外设接口和强大的处理能力。

3.电源电路:对于单片机和红外接收模块,都需要稳定的电源供应。

可以使用稳压芯片或直接使用电源适配器来提供适当的电压。

4.显示设备:为了方便调试和显示结果,可以连接一个数码管或LCD 显示屏。

5.按键开关:用于模块的启动和程序功能的选择。

三、软件设计
1.红外信号解码
红外接收模块接收到红外遥控器发出的信号后,需要进行解码。

我们可以利用红外接收模块的输出脚接入单片机的外部中断输入脚,在中断服务程序中对信号进行解码。

2.命令识别和执行
通过解码后的红外信号,我们可以识别出遥控器发送的命令。

针对不同的命令,我们可以在控制模块中设计相应的功能代码,如控制家电设备的开关、音量调节等。

3.程序功能选择
通过按键开关选择不同的程序功能,可以实现模块的多功能。

例如,我们可以通过按下不同的按键选择不同的遥控设备或控制家电设备的不同功能。

4.显示界面
为了方便用户操作和调试,可以在显示设备上显示模块当前的状态和接收到的命令。

可以通过调用LCD显示屏的相关函数或直接操作数码管来实现。

四、总结
本文介绍了一个基于单片机的红外遥控控制模块的设计。

通过选用合适的硬件和软件设计,可以实现红外信号的接收和解码,并根据不同的命令实现相应的功能。

该模块具有灵活性和可扩展性,可以应用于各种遥控控制场景。

相关文档
最新文档