新高一数学衔接指导教案

合集下载

新高一数学教案(7)_ 集合间的基本关系

新高一数学教案(7)_ 集合间的基本关系

其中:“A 含于B”中的于是被的意思,简单地说就是A 被B 包含.“⊆”类似于“≤”开口朝向谁谁就“大”.在数学中,除了用列举法、描述法来表示集合之外,我们还有一种更简洁、直观的方法——用平面上的封闭曲线的内部来表示集合venn (韦恩)图.那么,集合A 是集合B 的子集用图形表示如下:B A ⊆2.若集合A 是集合B 的子集,并且存在元素B x ∈,且A x ∉,那么集合A 叫做集合B 的真子集. 记作:A B (或B A )A = BB A ⊆A B3.集合相等:对于实数b a ,,如果b a ≥且a b ≥,则 a 与b 的大小关系如何?b a = 用子集的观点,仿照上面的结论在什么条件下A=B ?⎩⎨⎧⊆⊆⇔=A B BA B A4.空集:如(1)2{|10}x R x ∈+= (2){|||20}x R x ∈+<集合中没有元素,我们就把上述集合称为空集.不含任何元素的集合叫做空集,记为∅,规定:空集是任何集合的子集 ,空集是任何非空集合的真子集.四、【典型例题剖析】[例 1]写出集合{a,b,c}的所有子集并指出,真子集、非空真子集.[举一反三]写出下列各集合的子集及其个数.{}{}{},,,,,,a a b a b c ∅ABA B B A ⊆⊆且1.下列各式中错误的个数为( )①{}10,1,2∈ ②{}{}10,1,2∈ ③{}{}0,1,20,1,2⊆ ④{}{}0,1,22,0,1=A. 1B. 2C. 3D. 4 2.已知{}|22,M x R x a π=∈≥=,给定下列关系:①a M ∈,②{}a M ③a M ④{}a M ∈, 其中正确的是( ) A.①② B.④ C.③ D.①②④ 3.满足{}a M ⊆{},,,abcd 的集合M共有( ) A.6个 B.7个 C.8个 D.9个4.若,x y R ∈,集合{}(,)|,(,)|1y A x y y x B x y x ⎧⎫====⎨⎬⎩⎭,则A,B的关系为( ) A. A=B B. A⊆B C.AB D.BA5.已知{}{}{}A B C ===菱形正方形平行四边形,则集合A,B,C之间的关系为___________6.已知集合{}{}2|320,|10A x x x B x ax =-+==-=若B A,则实数a 的值为__________7.已知A={},a b ,{}|B x x A =∈,集合A与集合B的关系为_______ 8.集合{}{}|12,|0A x x B x x a =<<=-<若A B,则a 的取值范围是_____ 9.已知集合{}{}2|560,|1A x x x B x mx =-+===,若B A ,则实数m 所构成的集合M=________10.若集合{}2|30A x x x a =++=为空集,则实数a 的取值范围是______ 11.写出满足{},a b A ⊆{},,,a b c d 的所有集合A.12.已知集合{}{}22,,,2,2,A x y B x y A B ===且,求,x y 的值.。

高一数学教案(优秀5篇)

高一数学教案(优秀5篇)

高一数学教案(优秀5篇)高一数学教学教案篇一一、教学目标(一)知识与技能了解数轴的概念,能用数轴上的点准确地表示有理数。

(二)过程与方法通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

(三)情感、态度与价值观在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点(一)教学重点数轴的三要素,用数轴上的点表示有理数。

(二)教学难点数形结合的思想方法。

三、教学过程(一)引入新课提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。

我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习如图,写出数轴上点A,B,C,D,E表示的数。

(四)小结作业提问:今天有什么收获?引导学生回顾:数轴的三要素,用数轴表示数。

高一数学教案全集5 篇二数学教案-圆1、教材分析(1)知识结构(2)重点、难点分析重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备。

难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂。

初升高暑期衔接教材教案

初升高暑期衔接教材教案

初高中数学衔接校本教材教[教学重难点]:1、重点十字相乘法,会一元二次不等式及二元二次不等式组。

2、难点:画出函数图象及由图象得到函数的基本性质。

第1课时高中数学学习方法指导【教学目标】1.通过学法指导,让学生对学习数学有一个正确的学习认识和良好学习习惯。

2. 通过学法指导,提高学生的分析问题和解决问题的认识能力,培养学生的应用意识.【教学重难点】教学重点:学习数学的方法指导.教学难点:学习能根据自己的实际情况选择合适自己的恰当的学习方法.【教学过程】一、导入新课初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。

但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。

在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。

相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。

渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。

造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。

下面就对造成这种现象的一些原因加以分析、总结。

希望同学们认真吸取前人的经验教训,搞好自己的数学学习。

二、新课讲解一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。

不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。

确实,初、高中的数学语言有着显着的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。

2 思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。

即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。

2024年高一数学北师大版新教材新北师大版高一数学教案优质

2024年高一数学北师大版新教材新北师大版高一数学教案优质

2024年高一数学北师大版新教材新北师大版高一数学教案优质一、教学目标1.让学生理解集合的基本概念和表示方法。

2.培养学生运用集合思想解决实际问题的能力。

3.提高学生的逻辑思维和推理能力。

二、教学重难点重点:集合的概念、表示方法和运算。

难点:集合的运算和集合关系的判断。

三、教学过程1.导入新课(1)引导学生回顾初中阶段学习的数学知识,如算术平方根、立方根等。

(2)提出问题:初中阶段我们学习了数的分类,那么高中阶段我们将学习一种新的数学研究对象——集合,大家知道集合是什么吗?2.授课内容(1)集合的概念集合是一种由明确且互不相同的对象组成的整体。

例如:自然数集合、整数集合、实数集合等。

(2)集合的表示方法集合可以用列举法、描述法和图示法表示。

列举法:将集合中的元素一一列举出来,如{1,2,3,4}。

描述法:用文字或符号描述集合中的元素特征,如{x|x为自然数}。

图示法:用图形表示集合,如用圆圈表示集合A。

(3)集合的运算并集:两个集合中所有元素组成的集合,用符号“∪”表示。

如A∪B表示A和B的并集。

交集:两个集合中共同元素组成的集合,用符号“∩”表示。

如A∩B表示A和B的交集。

补集:全集减去某个集合得到的集合,用符号“C”表示。

如C(A)表示A的补集。

(4)集合关系的判断子集:如果一个集合中的所有元素都属于另一个集合,那么这个集合称为另一个集合的子集。

如A⊆B表示A是B的子集。

真子集:如果一个集合是另一个集合的子集,但两个集合不相等,那么这个集合称为另一个集合的真子集。

如A⊊B表示A是B的真子集。

相等:如果两个集合中的元素完全相同,那么这两个集合相等。

如A=B表示A和B相等。

3.课堂练习(1)判断下列各题中,集合A与集合B的关系。

A={1,2,3},B={1,2,3,4}A={x|x为自然数},B={x|x为整数}A={x|x²=4},B={-2,2}(2)求下列各题中,集合A与集合B的并集、交集、补集。

高一数学的教案(通用7篇)

高一数学的教案(通用7篇)

高一数学的教案(通用7篇)高一数学的教案篇1一、目的要求结合集合的图形表示,理解交集与并集的概念。

二、内容分析1.这小节继续研究集合的运算,即集合的交、并及其性质。

2.本节课的重点是交集与并集的概念,难点是弄清交集与并集的概念,符号之间的区别与联系。

三、教学过程复习提问:1.说出A的意义。

2.填空:如果全集U={x|0≤x6,X∈Z},A={1,3,5},B={1,4},那么,A=_________,B=__________。

(A={0,2,4},B={0,2,3,5})新课讲解:1.观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?2.定义:(1)交集:A∩B={x∈A,且x∈B}。

(2)并集:A∪B={x∈A,且x∈B}。

3.讲解教科书1.3节例1-例5。

组织讨论:观察下面表示两个集合A与B之间关系的5个图,根据这些图分别讨论A∩B与A∪B。

(2)中A∩B=φ。

(3)中A∩B=B,A∪B=A。

(4)中A∩B=A,A∪B=B。

(5)中A∩B=A∪B=A=B。

课堂练习:教科书1.3节第一个练习第1~5题。

拓广引申:在教科书的例3中,由A={3,5,6,8},B={4,5,7,8},得A∪B={3,5,6,8}∪{4,5,7,8}={3,4,5,6,7,8}我们研究一下上面三个集合中的元素的个数问题。

我们把有限集合A的元素个数记作card(A)=4,card(B)=4,card(A∪B)=6.显然,card(A∪B)≠card(A)+card(B)这是因为集合中的元素是没有重复现象的,在两个集合的公共元素只能出现一次。

那么,怎样求card(A∪B)呢?不难看出,要扣除两个集合的公共元素的个数,即card(A∩B)。

在上例中,card(A∩B)=2。

一般地,对任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A∩B)。

四、布置作业1.教科书习题1.3第1~5题。

高一数学教案五篇

高一数学教案五篇

高一数学教案五篇教案:教学文书教案:电力术语教案:明清来华传教士和教会的案件下面是我为大家整理的高一数学教案五篇,欢迎大家与参考,盼望对大家有所关心。

第1篇: 高一数学教案一、指导思想与理论依据数学是一门培育人的思维,进展人的思维的重要学科。

因此,在教学中,不仅要使同学"知其然'而且要使同学"知其所以然'。

所以在同学为主体,老师为主导的原则下,要充分揭示猎取学问和方法的思维过程。

因此本节课我以建构主义的"创设问题情境提出数学问题尝试解决问题验证解决方法'为主,主要采纳观看、启发、类比、引导、探究相结合的教学方法。

在教学手段上,则采纳多媒体帮助教学,将抽象问题形象化,使教学目标体现的更加完善。

二、教材分析三角函数的诱导公式是一般高中课程标准试验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。

本节是第一课时,教学内容为公式(二)、(三)、(四)。

教材要求通过同学在已经把握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发觉任意角、终边的对称关系,发觉他们与单位圆的交点坐标之间关系,进而发觉他们的三角函数值的关系,即发觉、把握、应用三角函数的诱导公式公式(二)、(三)、(四)。

同时教材渗透了转化与化归等数学思想方法,为培育同学养成良好的学习习惯提出了要求。

为此本节内容在三角函数中占有特别重要的地位。

三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班同学水平处于中等偏下,但本班同学具有擅长动手的良好学习习惯,所以采纳发觉的教学方法应当能轻松的完成本节课的教学内容。

四、教学目标(1)基础学问目标:理解诱导公式的发觉过程,把握正弦、余弦、正切的诱导公式;(2)力量训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简洁的三角函数求值与化简;(3)创新素养目标:通过对公式的推导和运用,提高三角恒等变形的力量和渗透化归、数形结合的数学思想,提高同学分析问题、解决问题的力量;(4)共性品质目标:通过诱导公式的学习和应用,感受事物之间的一般联系规律,运用化归等数学思想方法,揭示事物的本质属性,培育同学的唯物史观。

2014级河南省郑州外国语中学高一数学衔接课教案

专题一 因式分解(2课时)教学目标:使学生掌握因式分解的几种典型方法(提公因式法,公式法,分组分解法,十字相乘法,配方法,求根法) 重点:十字相乘法分解因式难点:灵活选择适当方法分解因式 教学方法:启发法,讨论法 学法指导:带领学生复习初中因式分解的相关知识,为高中知识的学习做好铺垫。

讲练结合。

教具:多媒体 教学过程:一、知识前测(通过做题回顾初中所学习的因式分解的方法) 1.完成下列因式分解,并思考所用的方法。

因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法、分组分解法、配方法、拆(添)项法等等. 一、公式法我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a a b b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a a b b a b+-+=+; (2)立方差公式 2233()()a b a a b b a b-++=-; (3)三数和平方公式 2222()2()a b c a b c a b b c ac ++=+++++; (4)两数和立方公式 33223()33a b a a b a b b+=+++; (5)两数差立方公式 3322()33a b a a b a b b-=-+- 二、分组分解法 2(1)9x -2(2)69x x -+2(3)36xy xyz -+2(5)32x x -+y b x b y a x a 2222)4(+++例1因式分解:33(1) 8 (2) 12527x b +-34(3)381a b b -76(4)a ab -例2. 2222428x xy y z ++-例3. 2222()()ab c d a b cd ---三、十字相乘法(1)2()x p q x pq +++型:(2)型:212122112()a a x a c a c x c c +++例5因式分解四、配方法例6.221x x --五、拆添项法 例7.3234x x -+六、求根法若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例8.221x x --22(2)6 +-x xy y 107ab b a 322+-)(222(4)812+-++()()x x x x 例4因式分解:2 (1)1336++x x 22222(1)273(2)3103(3)1252(4)568x x x x x x xy y ++-+--+-小结:多项式分解因式的一般步骤:1.如果多项式的各项有公因式,那么先提公因式;2. 如果各项没有公因式,那么可以尝试运用公式来分解;3.如果用上述方法不能分解,那么可以尝试用分组来分解;4.分解因式,必须进行到每一个多项式都不能再分解为止. 作业:A 类:导学案习题3,5 5分 B 类:导学案习题4 6 分 C 类:导学案习题6 8分 板书设计 因式分解1.提取公因式法 3十字相乘法2.公式法 例作业中主要错误;:对于含参数二次方程不会解方程,对于多项式不会合理分组,整体 意思不强。

高一数学教案设计5篇

高一数学教案设计5篇高一数学教案设计【篇1】一教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式方程不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。

对函数概念本质的理解,首先应通过与初中定义的比较与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托反复地螺旋式上升地理解函数的本质。

教学重点是函数的概念,难点是对函数概念的本质的理解。

学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识掌握方法提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。

二教学三维目标分析1知识与技能(重点和难点)(1)通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。

并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。

不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。

(2)了解构成函数的三要素,缺一不可,会求简单函数的定义域值域判断两个函数是否相等等。

(3)掌握定义域的表示法,如区间形式等。

(4)了解映射的概念。

2过程与方法函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题: (1)首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想观察分析归纳类比概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。

高一数学教案(通用15篇)

高一数学教案(通用15篇)高一数学教案1【内容与解析】本节课要学的内容有函数的概念指的是函数的概念及符号的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。

学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此根底上的进展的。

由于它还与根本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面学问的根底,是本学科的核心内容。

教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简洁函数的定义域和值域。

【教学目标与解析】1、教学目标(1)理解函数的概念;(2)了解区间的概念;2、目标解析(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的缘由是:函数本身就是一个抽象的概念,对学生来说一个难点。

要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培育学生的抽象概况力量,其中关键是理论联系实际,把抽象转化为详细。

【教学过程】问题1:一枚炮弹放射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依靠关系,从问题的实际意义可知,在t的变化范围内任给一个t,根据给定的对应关系,都有唯一的一个高度h与之对应。

问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t根据给定的图象,都有唯一的一个臭氧层空洞面积S 与之相对应。

高一数学教案(最新10篇)

高一数学教案(最新10篇)高中数学教案篇一教学准备教学目标熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

掌握两角和与差的正、余弦公式,能用公式解决相关问题。

教学重难点熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

教学过程复习两角差的余弦公式用- B代替B看看有什么结果?高一数学教案篇二第一节集合的含义与表示学时:1学时[学习引导]一、自主学习1.阅读课本.2.回答问题:⑴本节内容有哪些概念和知识点?⑴尝试说出相关概念的含义?3完成练习4小结二、方法指导1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。

2、理解集合元素的特性,并会判断元素与集合的关系3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。

4、在学习中要特别注意理解空集的意义和记法[思考引导]一、提问题1.集合中的元素有什么特点?2、集合的常用表示法有哪些?3、集合如何分类?4.元素与集合具有什么关系?如何用数学语言表述?5集合和是否相同?二、变题目1.下列各组对象不能构成集合的是( )A.北京大学2008级新生B.26个英文字母C.著名的艺术家D.2008年北京奥运会中所设定的比赛项目2.下列语句:①0与表示同一个集合;②由1,2,3组成的集合可表示为或;③方程的解集可表示为;④集合可以用列举法表示。

其中正确的是( )A.①和④B.②和③C.②D.以上语句都不对[总结引导]1.集合中元素的三特性:2.集合、元素、及其相互关系的数学符号语言的表示和理解:3.空集的含义:[拓展引导]1.课外作业:习题11第题;2.若集合,求实数的值;3.若集合只有一个元素,则实数的值为;若为空集,则的取值范围是.撰稿:程晓杰审稿:宋庆高一数学教案篇三知识结构重难点分析本节的重点是二次根式的化简。

本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新高一数学衔接知识指导一般的,学生由初中进入高中后可能会有这样的感觉:“进入高中后,内容一下子增加了很多,老师讲得很快,每堂课上需要理解和消化的知识点也非常多,学习起来感觉很难,也很吃力。

从初中到高中的转变,一下很难适应,甚至有点力不从心。

”在老师在授课中,初中老师更倾向于对知识点多次的重复,学生只需“模仿”就可以取得理想的成绩。

而高中老师按照模块教学,讲完一个模块以后,等这个模块的内容再次出现的时候,可能就是到高三总复习了。

对于高中的数学知识,最明显的一点就是由具体到抽象。

靠模仿是不行的,要学会“探究式”的学习。

在进入高一的这一个暑假期间,可以在以下几方面提前做好准备:一、计算能力。

高中涉及到更多的内容,而计算是一项基本技能,对于初中时候的有理数的运算、二次根式的运算、实数的运算、整式和分式运算,代数式的变形等方面如果还存在问题,应该在暑假的时候把这部分再好好复习巩固一下。

若计算频频出现问题,会成为高中学习的一个巨大的绊脚石。

二、反思总结。

很多同学进入高中后都会在学法上遇到很大的困扰。

因为高中知识多,授课时间短,难度大,所以初中时候的一些学习方法在高中就不太适用了。

对于高中的知识,不能认为“做题多了自然就会了”,因为到了高中没有那么多时间来做题,因此一定要找到一种更有效地学习方法,那就是要在每次学习过后进行总结和反思。

总结知识点之间的联系和区别,反思一下知识更深层的本质。

不妨在假期期间,就对初中的知识自己进行一些总结和归纳,梳理清楚整个初中的知识脉络。

这么做一方面可以把初中的知识在总体上有一个把握,为将来学习高中知识的时候可以与其更好的衔接;另一方面,也可以摸索一下总结反思这种学习方法。

三、预习高一的知识。

新课程标准的高一第一学期一般是讲必修1和必修4两本。

目前高中采取模块教学,每个学期2个模块。

必修1的主要内容是三部分:集合:数学中最基础,最通用的数学语言。

贯穿整个高中以及现代数学都是以集合语言为基础的。

一定要学明白了。

函数:通过初中对具体函数的学习,在其基础上研究任意函数研究其性质,如单调性,奇偶性,对称性,周期性等。

这一部分相对有一定的难度,而且与初中的联系比较紧。

基本初等函数I:指数和对数的运算以及利用前面学到的函数性质研究指数函数,对数函数和幂函数。

这部分知识有新的计算,并且应用前面的函数性质学习新的函数。

必修4的主要内容也分为三部分:三角函数:对于初中的角的概念进行扩充,涉及到三角函数的运算以及三角函数的性质。

平面向量:这是数学里面一种新的常用的工具,通过向量的方法可以方便的解决很多三角函数的问题。

这种方法与平面直角坐标系的联系比较多,但与函数有所不同,应注意区别与联系。

三角恒等变换:这部分主要是三角的运算,属于公式很多,运算量也比较大的内容。

统观上述高一第一学期的内容可见知识非常多,而且这些知识在高考中的比重也比较大,因此若在高一一开始不能学好,对于后面的学习是会有一定影响的。

所以在假期期间首先要把初中的知识总结归纳,查缺补漏,打好基础,其次要考虑到初高中知识的差异,对自己的学法进行改进,最后要适当的预习一下新高一的内容,以期很快的适应高中的数学学习。

规划和经营好暑假时间,进入高一时你会感觉轻松和愉快。

一、初中数学与高中数学的差异1、知识差异初高中数学有很多衔接知识点,如四种命题、函数概念等。

因此,在讲授新知识时,教师要引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较,从而达到温故而知新的成效。

例如,在学习一元二次不等式解法时,教师应引导学生回首在初中已学过的一元二次方程和二次函数的有关知识,为学习一元二次不等式的解法做好必要的铺垫,如:根的判别式,求根公式,根与系数的关系(即“韦达定理”),二次函数的图像等等。

初中数学知识少、浅、难度容易、知识面窄。

高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完美。

如:初中学习的角的概念只是“0度—180度”范围内的,但现实当中也有720度和“负300度”等角,为此,高中将把角的概念推广到任意角,可表示包含正、负在内的所有大小角。

又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和外表积;还将学习“排列组合”知识,以便解决排队方法种数等问题。

如:①三个人排成一行,有几种排队方法,(=6种);②四人举行乒乓球双打比赛,有几种比赛场次?(答:=3种)高中将学习普查这些排列的数学方法。

初中一个负数开平方无意义,但在高中规定了=-1,就使-1的平方根为±i。

即可把数的概念举行推广,使数的概念扩大到复数范围等。

2、学习方法的差异(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师安排作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反重复复理解,直到学生掌握。

而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师安排课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将像初中那样监督每个学生的作业和课外练习,就能达到像初中那样把知识让每个学生掌握后再举行新课。

(2)模仿与创新的区别初中学生模仿做题,他们模仿老师思维推理较多,而高中学生有模仿做题和推理思维,但随着知识的难度大和知识面广泛,学生不能全部模仿,即即使学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学业绩也只能是一般程度。

现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。

初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰厚创造精神。

如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。

大多数学生不会分类讨论。

3、学生自学能力的差异初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已重复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只必要熟记结论就能够做题(不全是),学生不需自学。

但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯穿这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。

另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

其实,自学能力的提高也是一个人生活的必要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最后达到了自强。

4、思维习惯上的差异初中学生由于学习数学知识的范围小,知识层次低,知识面窄,对现实问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间举行严格的逻辑思维和判断。

代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。

高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。

也将培养学生高素质思维。

提高学生的思维递进性。

5、定量与变量的差异初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。

学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。

如:求解一元二次方程时我们采用对方程ax2+bx+c=0(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。

另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

二、高中数学与初中数学特点的变化1、数学语言在抽象程度上剧变初、高中的数学语言有着显著的区别。

初中的数学主要是以形象、通俗的语言方式举行表达。

而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。

2、思维方法向理性层次跃迁高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不等同。

初中阶段,很多老师为学生将各种题建立了统一的思维形式,如解分式方程分几步,因式分解先看什么,再看什么等。

因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。

这种能力要求的剧变使很多高一新生感到难受应,故而导致业绩下降。

3、知识内容的集体数量剧增高中数学与初中数学又一个显著的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。

4、知识的独立性大初中知识的系统性是较严谨的,给我们学习带来了很大的方便。

因为它便于记忆,又适合于知识的提取和使用。

但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。

因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。

初高中数学知识点衔接内容:1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“ 1”的分解,对系数不为“ 1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。

4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。

配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。

5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。

7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。

相关文档
最新文档