三年级级行程问题的练习A+C奥数
小学三年级数学行程问题应用题

【导语】⾏程问题是⼩学奥数中的⼀⼤基本问题。
⾏程问题有相遇问题、追及问题等近⼗种,是问题类型较多的题型之⼀。
⾏程问题包含多⼈⾏程、⼆次相遇、多次相遇、⽕车过桥、流⽔⾏船、环形跑道、钟⾯⾏程、⾛⾛停停、接送问题等。
以下是⽆忧考整理的《⼩学三年级数学⾏程问题应⽤题》相关资料,希望帮助到您。
【篇⼀】⼩学三年级数学⾏程问题应⽤题 1、甲⼄两列⽕车同时从相距700千⽶的'两地相向⽽⾏,甲列车每⼩时⾏85千⽶,⼄列车每⼩时⾏90千⽶,⼏⼩时两列⽕车相遇? 2、甲⼄两车从两地同时出发相向⽽⾏,甲车每⼩时⾏40千⽶,⼄车每⼩时⾏60千⽶,经过3⼩时相遇。
两地相距多少千⽶? 3、甲⼄两艘轮船从相距654千⽶的两地相对开出,8⼩时两船还相距22千⽶。
已知⼄船每⼩时⾏42千⽶,甲船每⼩时⾏多少千⽶? 4、甲⼄两艘轮船同时从相距126千⽶的两个码头相对开出,3⼩时相遇,甲船每⼩时航⾏22千⽶,⼄船每⼩时航⾏多少千⽶? 5、甲、⼄两车同时从相距480千⽶的两地相对⽽⾏,甲车每⼩时⾏45千⽶,途中因汽车故障甲车停了1⼩时,5⼩时后两车相遇。
⼄车每⼩时⾏多少千⽶? 6、甲、⼄两地相距280千⽶,⼀辆汽车和⼀辆拖拉机同时分别从两地相对开出,经过4⼩时两车相遇。
已知汽车的速度是拖拉机速度的4倍,相遇时,汽车⽐拖拉机多⾏多少千⽶? 7、甲、⼄两车同时从相距960千⽶的A、B两地相向开出,8⼩时后相遇。
已知甲车每⼩时⽐⼄车快4千⽶,求甲车的速度是多少?相遇时⼄车⾏驶了多少千⽶? 8、某零件加⼯⼚要加⼯零件1200个。
第⼀车间每天能加⼯190个,⽐⼆车间每天少加⼯20个。
现在两个车间共同加⼯这批零件,要加⼯多少天?完成时每个车间各加⼯了多少个? 9、⾃⾏车商店要装配2380辆⾃⾏车,甲组每天装配120辆,⼄组每天装配140辆。
两个组共同装配7天后,由⼄组单独装配。
⼄组还要多少天才能完成任务? 10、甲⼄两列⽕车同时从A、B两地相对开出,甲车每⼩时⾏90千⽶,⼄车每⼩时⾏84千⽶,相遇时甲车⽐⼄车多⾏了78千⽶,A、B两地相距多少千⽶?【篇⼆】⼩学三年级数学⾏程问题应⽤题 1、⽺跑5步的时间马跑3步,马跑4步的距离⽺跑7步,现在⽺已跑出30⽶,马开始追它。
奥数行程问题专题训练

行程问题知识要点:1.相遇和追及问题: 在时间相等的情况下,相遇时间=路程和÷速度和,追及时间=路程差÷速度差2.流水问题: 顺水速度=船速+水速,逆水速度=船速-水速3.火车过桥问题 火车过桥的路程=车身长+桥长4.往返接送问题 利用公式解题。
行程问题通常用到线段图帮助分析。
相遇和追及问题例题:两名游泳运动员在长50米的游泳池里游泳,他们的速度分别为每秒0.8米和每秒0.6米,他们同时分别从游泳池的两端出发,来回游了15分钟,如果不计转向时间,那么在这段时间内他们一共相遇了多少次?(包括追上的次数)解法一:第一次相遇:50÷(0.8+0.6)=2507秒 15分钟=900秒 后面还剩下900-2507 =60507秒 第一次相遇以后,两人游的总路程满100米即相遇一次,需要50×2÷(0.8+0.6)=5007秒 60507 ÷5007 =12110(次) 速度快的人要从身后追上慢者的话,需要50÷(0.8-0.6)=250秒,以后每过500秒追上一次。
因为250×0.8=200米,是泳池长度的整数倍,所以每次追上都是在泳池的一端。
考虑到在泳池的一端转向,所以追上的情形已经包括在相遇情况里面了(看做一个转向一个没转向)。
所以相遇的次数是12+1=13次。
解法二:快的游完50米需要50÷0.8=5008 秒,15分钟可以来回900÷5008 =1425次 慢的游完50米需要50÷0.6=5006 秒,15分钟可以来回900÷5006 =1045次 用下图表示:快时间慢两人游完50米所需的时间比是快比慢=3比4,所以按照3比4的间隔来画。
交点是两人相遇的时间点,数得13个点,因此相遇13次。
流水问题例题一艘船在静水中每小时行34千米,它从A 港开往B 港要行16小时,从B 港开往A 港要行18小时,A 、B 两港间的路程有多少千米?此类问题用方程解决比较方便。
小学奥数行程问题习题及详解系列之七

小学奥数行程问题习题及详解系列之七小学行程问题是我们在小学应用题中经常会遇到的,我们在解决行程问题前,要牢记以下公式:基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程 +乙的路程=环形周长追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 流水速度+流水速度÷2 水速:流水速度-流水速度÷2181.龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米.乌龟不停地跑;但兔子却边跑边玩,它先跑了1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟,…….那么先到达终点的比后到达终点的快多少分钟?解: 乌龟到达终点所需时间为5.2÷3×60=104分钟. 兔子如果不休息,则需要时间5.2÷20×60=15.6分钟. 而兔子休息的规律是跑1、2、3、…分钟后,休息15分钟.因为15.6=1+2+3+4+5+0.6,所以兔子休息了5×15=75分钟,即兔子跑到终点所需时间为15.6+75=90.6分钟.显然,兔子先到达,先乌龟104-90.6=13.4分钟达到终点.182. A ,B 两地相距125千米,甲、乙二人骑自行车分别从A ,B 两地同时出发,相向而行.丙骑摩托车以每小时63千米的速度,与甲同时从A 出发,在甲、乙二人间来回穿梭(与乙相遇立即返回,与甲相遇也立即返回).若甲车速度为每小时9千米,且当丙第二次回到甲处时(甲、丙同时出发的那一次为丙第零次回到甲处),甲、乙二人相距45千米.问:当甲、乙二人相距20千米时,甲与丙相距多少千米?解:我们设乙的速度为9x ,即甲的x 倍.当乙、丙第一次相遇的时候,设甲走了“1”,则乙走了“x ”,丙走了“7”,所以有“7”+“x ”=125,于是“1”1257x=+,此时甲、丙相距“7”-“1”=“6”.这样丙第一次回到甲时,甲又向前行639+“6”×9=34“”,丙又行了“6”-32144=“”“”,乙又行了3344x x ⨯=“”“”所以,甲、乙此时相距2133312537(7)(7)1254444747x x x x x x--=-=⨯⨯-=⨯⨯++“”“”“”千米.有丙第二次回到甲处的时,125千米的路程相当于百3712547x x-⨯⨯+千米,即甲、乙相距2371254547x x ⎡-⎤⎛⎫⨯⨯= ⎪⎢⎥+⎝⎭⎣⎦,所以2716725x x -⎛⎫= ⎪+⎝⎭,7475x x -=+,解得79x =所以乙的速度为79979x =⨯=千米/小时.当第三次甲、丙相遇时,甲、乙相距373434545452747455x x-⨯⨯=⨯⨯=⨯=+千米.当第四次甲、丙相遇时,甲、乙相距3812755⨯=千米,而题中甲、乙相距20千米,此时应在甲、丙第三次和第四次相遇的某个时刻. 有81192055-=千米,而甲、乙的速度比为9:7,所以甲从甲、丙第四次相遇处倒退19917159780⨯=+千米即可.又因为丙的速度是甲的7倍,所以丙倒退的路程应为甲的7倍,于是甲、丙相距171171(71)17.18010⨯+==千米当甲、乙二人相距20千米时,甲与丙相距17.1千米.评注:甲从A 地往B 地出发,乙从B 地往C 出发,丙从A 地开始在甲乙之间来回往返跑动.当甲丙第1次相遇时所需的时间为t ,(甲、丙同时出发时,算第0次相遇) 则甲丙第2次相遇时还所需的时间为v v v v tv v v v --⨯⨯++乙丙甲丙乙丙甲丙则甲丙第3次相遇时还所需的时间为2v v v v tv v v v ⎛⎫--⨯⨯ ⎪++⎝⎭乙丙甲丙乙丙甲丙则甲丙第n次相遇时还所需的时间为 1n v v v v tv v v v -⎛⎫--⨯⨯ ⎪++⎝⎭乙丙甲丙乙丙甲丙由此可知,丙在相邻的2次相遇之间所走路程为等比数列.183. 一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行.已知小汽车的速度是大卡车速度的3倍,两车倒车的速度是各自速度的15,小汽车需倒车的路程是大卡车需倒车的路程的4倍.如果小汽车的速度是每小时50千米,那么要通过这段狭路最少用多少小时? 解:如果一辆车在倒车,另一辆的速度一定大于其倒军速度,即一车倒出狭路另一车也驶离狭路,倒车的车可立即通过. 小汽车倒车的路程为947.241⨯=+千米,大卡车倒车的路程为91 1.841⨯=+千米.小汽车倒车的路程为150105⨯=千米/小时,大卡车倒车的速度为111050353⨯⨯=千米/小时当小汽车倒车时,倒车需7.2÷10=O .72小时,而行驶过狭路需9÷50=0.18小时,共需0.72 +0.18=0.9小时; 当大卡车倒车时,倒车需101.80.543÷=小时,而行驶过狭路需5090.543÷=小时,共0.54+0.54=1.08/小时.显然当小轿车倒车时所需时间最少,需0.9小时.184. 在一个沙漠地带,汽车每天行驶200千米,每辆汽车载运可行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成任务后,沿原路返回.为了让甲车尽可能开出更远的距离,乙车在行驶一段路程后,仅留下自己返回出发地的汽油,将其他的油给甲车.求甲车所能开行的最远距离. 解:甲车尽可能行驶更远,则乙车离开甲车时,应保证甲车还有可行驶24天的汽油. 设此时乙车已行驶了x 天,有甲也行驶了x 天,乙返程也需要x 天,有x+x+x+24=48,所以x=8,即乙车行驶8天后返程.留下还可行驶8天的汽油,将剩下的24-8-8=8天的汽车给甲车. 所以加上开始的24天的汽油,甲车共得到24+8=32天的汽油.那么甲车单程最多可行驶32÷2=16天.即甲车所能开行的最远距离为16×200=3200千米.185. 有甲、乙、丙三辆汽车,各以一定的速度从A 地开往B 地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需多少分钟才能追上乙?解:根据已知条件得知,乙用40分钟所走的距离与丙用50分钟所走的距离相等;甲用100分钟所走的距离与丙用130分钟所走的距离相等.故丙用130分钟所走的距离,乙用了1045040130=⨯(分钟),即甲用100分钟走的距离,乙用104分钟走完.由于甲比乙晚出发20分钟,当甲追上乙时,设甲用了x 分钟,则乙用了(x +20)分钟.依题意得20104100+=x x ,解得x =500.186. 甲、乙二人相距100米的直路上来回跑步,甲每秒钟跑2.8米,乙每秒钟跑2.2米.他们同时分别在直路两端出发,当他们跑了30分钟时,这段时间内相遇了多少次?解:两人一共跑的路程为(2.8+2.2)⨯30⨯60=9000(米),去掉二人第一次相遇时跑的100米,二人每跑200米,就相遇一次,共相遇的次数为(9000-100)÷200=44.5,取整得44次.加上第一次相遇,共44+1=45(次).187. 甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是 分钟.解:设乙骑自行车走一圈要x 分钟,环行公路长为S 米,则有S x S S =⎪⎭⎫⎝⎛+7045,解得x =126(分钟).188. 有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了10分钟,遇到自行车.已知自行车速度是人步行速度的三倍,汽车的速度是步行速度的 倍.解:设人行速度为每分钟1单位,则自行车速度为每分钟3单位,再设汽车速度为每分钟x 单位,依题意有(x -3)⨯10=(3+1)⨯10,故有x =7.189. 某校和某工厂之间有一条公路,该校下午2点钟派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2点40分到达.汽车速度是劳模步行速度的 倍.解:如下图,A 是学校,C 是工厂,B 是相遇地点.ABC汽车从A 到C 往返需要1小时,从A 到B 往返要40分钟即32小时,这说明AC AB 32=,即也说明汽车从A 到B 要用40÷2=20(分钟).而劳模由C 到B 要用1小时20分,即80分钟.是汽车的4倍,又易知AB =2BC ,即汽车的路程是劳模的2倍,于是汽车的速度是劳模步行速度的4⨯2=8(倍).190. 游船顺流而下,每小时前进7公里,逆流而上,每小时前进5公里.两条游船同时从同一个地方出发,一条顺水而下,然后返回;一条逆流而上,然后返回.结果,1小时以后它们同时回到出发点.在这1小时内有 分钟这两条船的前进方向相同?解:设1小时顺流时间为x 分钟,则逆流时间为(60-x )分钟,由于路程一定,行驶时间与速度成反比例,故x :(60-x )=5:7.解得x =25,60-x =35.当两条船同时从同一地方出发,一条顺流走25分钟后,开始返回(逆流行走),这时另一条还在逆流前进,这其间的35-20=10(分钟).两船同时向上游前进.191. 小明和小刚乘火车出外旅行,离开车时间只有2小时,他们家离车站12公里,两人步行每小时只能走4公里,按这个速度非误车不可.恰好小华骑自行车经过,就先将小明带了9公里,让小明继续步行,接着返回原路接小刚.小华在距他们家3公里处遇到小刚,带着小刚追小明.他们提前赶到了车站.你知道他俩在开车前几分钟到达车站的吗?解: 小刚走3公里用的时间是4343=÷(小时);小华骑自行车的速度为()2043939=÷+-(公里/小时);小明到火车站所用时间为()2.14912209=÷-+÷(小时);小刚到火车站用的时间为()2.12031243=÷-+÷(小时);小明、小刚开车前到达火车站的时间为2-1.2=0.8(小时)=48(分).即他俩在开车前48分钟到达车站.192. 甲乙两地相距很远,每天从甲、乙两地同时相对开出一辆客车,两车速度和路线相同,都要经过整整五天才能到达终点站,然后休整两天,又按原路返回.在这条线路上的每辆客车都这样往返运行.为了保证这条线路上客运任务能正常进行,问这条线路上至少应配备多少辆客车.解:本题要求每天从甲、乙两地同时相对开出一辆客车,每辆客车运行5天再休整2天,需7天后再往回开,这样为保证每天在线路上有两辆客车在相对开,至少应配备2⨯7=14(辆)客车.193. A 、B 两地相距150千米.两列火车同时从A 地开往B 地.快车每小时行60千米.慢车每小时行48千米.当快车到达B 地时,慢车离B 地还有 千米.解:快车到达B 地所需时间是:150÷60=2.5(小时),慢车离B 地的距离是150-48⨯2.5=30(千米).194. 某人沿直线从甲城到乙城去旅行,去的时候以每小时30公里的速度匀速前进.回来时以每小时60公里的速度匀速返回,此人在往返行程中的平均速度是每小时 公里.解:设甲乙两城相距S 公里,平均速度为每小时V 公里,依题意有VS S S 26030=+,解得: V =40.195. 某教师每天早上驾车40公里到学校需要用55分钟,某天早上她迟离开家7分钟,那么她的车速每小时为 公里时才能和平常一样按时到达学校. 解:50607605540=⎪⎭⎫⎝⎛-÷(公里/小时).196. 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到3/5路程时,出了故障,用5分钟修理完毕,如果仍需要在预定时间内到达乙地.汽车行驶余下的路程时,每分钟须比原来快 米. 解:汽车行驶余下路程需要的时间是100055315053150750=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-⨯⨯(米);故每分钟必须比原来快1000-750=250(米).197. 一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒?解:两只蚂蚁分别从直径AB 的两端同时出发,相向而行,若不调头的话,两只蚂蚁的行程为半个圆的周长,即1.26÷2=0.63(米)=63(厘米).而两只蚂蚁的速度和为每秒5.5+3.5=9(厘米).它们相遇的时间为63÷9=7(秒).即两只蚂蚁需要向前爬的时间是7秒钟.但蚂蚁是按向前,再调头向后,再调头向前……的方式前进.每只蚂蚁向前爬1秒,然后调头反向爬3秒,又调头向前爬5秒,这时相当于又向前爬行了2秒.同理再AB向后爬7秒,再前爬9秒,再向后爬11秒,再向前爬13秒,就相当于一共向前爬了1+2+2+2=7秒,正好相遇,这时它们用了1+3+5+7+11+13=49(秒).198. 有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间?(按小时计算)解: 机船去甲岛,单程时间为600÷300=2(分).木船去甲岛,单程时间为600÷150=4(分).其中机船在18分钟内,可运5次学生共10⨯5=50(人),到达甲岛时间分别为2、6、10、14、18(分钟);而木船18分钟内,只能运2次学生共25⨯2=50(人),到达甲岛的时间为4、12(分钟),故18分钟内两船可运完学生去甲岛.机船去乙岛,单程时间为:900÷300=3(分),木船去乙岛,单程时间为:900÷150=6(分).其中机船27分钟内,可运5次学生共10⨯5=50(人),到达乙岛的时间为:3、9、15、21、27(分钟),而木船27分钟内,只能运2次学生共25⨯2=50(人),到达乙岛的时间为:6、18(分钟).所以27分钟两船可运光全部学生去乙岛.最短需要时间为18+5+27=50(分)=65 (小时).199. 甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?解: 设学生步行时速度为“1”,那么汽车的速度为“7”,有如下示意图. 我们让甲班先乘车,那么当乙班步行至距学校l 处,甲班已乘车至距学校71处.此时甲班下车步行,汽车往回行驶接乙班,汽车、乙班将相遇.汽车、乙班的距离为7l-l=6l,两者的速度和为7+1=8,所需时间为6l÷8=0.75l,这段时间乙班学生又步行0.75l的路程,所以乙班学生共步行l+0.75l=1.75l后乘车而行.应要求甲、乙班同时出发、同时到达,且甲、乙两班步行的速度相等,所以甲班也应在步行1.75l路程后达到飞机场,有甲班经过的全程为7l+1.75l=8.75 l,应为全程.所以有7l=24÷8.75×7=19.2千米,即在距学校19.2千米的地方甲班学生下车步行,此地距飞机场24-19.2=4.8千米.即汽车应在距飞机场4.8千米的地方返回接乙班学生,才能使两班同时到达飞机场200. 一艘轮船顺流航行120千米,逆流航行60千米共用了12时;顺流航行225千米,逆流航行210千米用了30时。
三年级奥数《巧求周长》+《行程问题》

三年级奥数题《巧求周长》学习中我们已经会计算长方形和正方形的周长了,但是对于一些不是长方形,正方形而是多边形的图形,怎么求他的周长呢?今天给大家介绍如何把求多边形的周长转化为求长方形和正方形的周长。
例1如图13 — 1所示*求这个多边形的周长是多少厘米?分析要求这个多边形的周长,也就罡求线段AB ÷ BC +CD +DE+ ERn的和是多少,向在这大条线段中.只有砸利氐这两条线段的长度是己知的,其余四条线段的长度均是耒知的•当綿这个多边形的周长还是可以求的•眉一个大正方形把这个图形圈起来,如图捋一2所示,这个大正方形是ABCG•扌熨段原水平向上移动,移到CG边上,这样CD +EF的向上的DE边向左移动,移到AG边上.这样AF+ DE的长度正好与BC边的长度相等. 遗样虽然<K DE、EF.站这四条线段的长度不知道’但这四条线段的长度和我们可以求出耒.这样求这个多边形的周长就转化为求一个正方形的周长•这个多边形的周长就可以巧妙地求出来了。
解’ GX4=24〔厘氷)答;这个多边形的周⅜⅛24厘米。
匕度正好与抵■的长度相等■同样把竖直方B6.∣⅞>说明:本例图中的E 点在竖直方向上不论移动到什么位置(当然F 点也随着 上下移动),这个多边形的周长都不变,当然D 点在水平方向上移动(E 点也随 着移动).所得到的多边形周长也不变•这里点的移动不能超岀大正方形ABCG 这 个范围。
例2把长2厘米宽1厘氷的长方形一层、两层、三层地摆下去,摆気笫十五 层.这个图形的周长是多少厘米?分析 先观察图13-3,笫一层有一个长方形,第二层有两个长方形,笫三 层有三个长方形……找到规律,第十五层有十五个长方形•同样,用一个大长方 形把这个图形圈起亲•因此求这个多边形的周长就转化为求一个长为2×15=30 GS 米)、宽为1×15=15 (厘米)的长方形周长。
解:(2X15 + 1X15) ×2=45×2 = 90 (厘氷)答;这个图形的周长为90厘米。
三年级下册数学试题-奥数习题讲练:第四讲 行程问题初步(解析版)全国通用

第四讲行程问题初步在春季班时我们已经学习了简单的行程问题——相遇问题的基本类型(两人单次直线相遇),同学们,你们还记得做行程问题的基本工具是什么吗?没错,就是画“线段图”.今天我们将学习更加复杂的相遇问题.先来回顾一下相遇问题的基础知识吧!你还记得吗?1.孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?分析:建议教师画线段图.我们可以先求出2小时孙悟空和猪八戒走的路程:(200+150)×2=700(千米),又因为还差500米,所以花果山和高老庄之间的距离:700+500=1200(千米).2.甲乙两辆汽车分别从A、B两地出发相向而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行5O千米,5小时相遇,求A、B两地间的距离.分析:这题不同的是两车不“同时”.(法1 )求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48×(1+5)=288(千米),5O×5=25O(千米),288+25O=538(千米).(法2 )还可以先求出甲、乙两车5小时所行的路程和,再加上甲车1小时所行的路程.(48+5O)×5=49O(千米),49O+48=538(千米).3.甲乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?分析:240÷(240÷4+240÷6)=2.4(小时).4.南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车分别往南和往北驶去,南辕先生出发2小时后北辙先生才出发,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?分析:两人虽然不是相对而行,但是题目要求的仍是路程和.50×2+(50+60)×5=650(千米).暑假精讲【例1】两地相距3200米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行78米,已经行了15分钟,还要行多少分钟两人可以相遇?分析:(法1)[3200-(82+78)×15] ÷(82+78)=5(分钟);(法2) 3200 ÷(82+78)-15=5(分钟).【例2】李明和王亮同时分别从两地骑车相向而行,李明每小时行18千米,王亮每小时行16千米,两人相遇时距全程中点3千米.问全程长多少千米?分析:根据题意,画个草图,能帮助我们找出数量关系.依题意作行程草图如下:李明走了全程的一半多3千米,王亮走了全程的一半少3千米,李明比王亮实际多走了3×2=6(千米).由已知李明每小时比王亮多走18—16=2(千米),那么多少小时李明比王亮多行6千米呢?需要6÷2=3(小时),这就是两人的相遇时间,有了相遇时间,全程就容易求出了.相遇时李明比王亮多行的路程3×2=6(千米),李明比王亮每小时多行的路程18-16=2(千米),两人相遇时间6÷2=3(小时),全程(18+16)×3=102(千米).【例3】甲乙两人同时从两地相向而行.甲每小时行5千米,乙每小时行4千米.两人相遇时乙比甲少行3千米.两地相距多少千米?分析:两人行驶的时间为3÷(5-4)=3小时,所以两地相距(5+4)×3=27千米.【例4】两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?分析:甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了同时相对而行,把相同方向行走时乙用的时间和返回时相对而行的时间相加,就是共同经过的时间.乙到达目标时所用时间:900÷100=9(分钟)甲9分钟走的路程:80×9=720(米)甲距目标还有:900—720=180(米)相遇时间:180÷7(100+80)=1(分钟),共用时间:9+1=10(分钟).简便解:画图可知两人总共走了2个全程,所以总全程为1800,所以时间为1800÷(80+100)=10分钟.【例5】一个圆形操场跑道的周长是500米,两个学生同时同地相背而行.甲每分钟走66米,乙每分钟走59米.经过几分钟才能相遇?分析:500÷(66+59)=500÷125=4分钟.【例6】甲乙两辆汽车同时分别从A、B两地相对开出,甲车每小时行42千米,乙车每小时行45千米.甲、乙两车第一次相遇后继续前进,甲、乙两车各自到达B、A两地后,立即按原路原速返回.两车从开始到第二次相遇共用6小时.求A、B两地的距离.分析:甲、乙两车从出发到第一次相遇共同行完一个AB间的路程,第一次相遇后继续前进,各自到B、A两地后,又共同行完一个AB间的路程.当甲、乙两车第二次相遇时,又共同行完一个AB间的路程.因此,甲、乙两车从开始到第二次相遇共行3个AB间的路程.甲、乙速度和42+45=87(千米),3个AB间路程87×6=522(千米),A、B相距522÷3=174(千米).【例7】阿呆和阿瓜同时从距离20千米的两地相向而行,阿呆每小时走6千米,阿瓜每小时走4千米. 阿瓜带着一只小狗,狗每小时走10千米.这只狗同阿瓜一道出发碰到阿呆的时候,它就掉头朝阿瓜这边走,碰到阿瓜时又朝阿呆那边走,直到两人相遇,问这只小狗一共走了多少千米?分析:要求狗走的路程,由于狗在两人之间要跑多少个来回,每一次所用的时间是多少,这些量无法确知,所以不可能把每次狗与两人相遇走的路程分别求出再相加.仔细分析整个过程,抓住其中不变的关系:不论狗在两人之间跑了多少个来回,狗走的路程所用的总时间等于两人相遇所用的时间.所以,只要求出两人相遇所用的时间,就可以求出狗所走的路程.这样,问题就转化为求志强与蓝利亚两人相遇时间的问题.相遇时间20÷(6+4)=2(小时),狗共跑路程10×2=20(千米).【例8】甲骑自行车每小时行18千米,乙步行每小时行6千米,如果两人同时在同一地点同一方向出发,甲走了48千米到达某地,立即按原路返回,在途中和乙相遇.问:从出发到相遇共经过多少时间?分析:由题意知,甲走了48千米到达某地说明全程为48千米,甲乙从出发到相遇共行了两个全程,则再依两人的速度和,求出相遇时间.所以甲乙速度和为18+6=24(千米).甲乙的相遇时间为48×2÷24=4(小时).【例9】一辆汽车和一辆摩托车同时从甲乙两地相对开出,摩托车每小时行54千米。
行程问题的练习题

行程问题的练习题行程问题的练习题在我们的生活中,行程安排是一项重要的技能。
无论是出差、旅行还是日常生活,我们都需要合理安排时间和路线,以便高效地完成任务或达到目的地。
行程问题是数学中的一类经典问题,通过解决这些问题,我们可以提高自己的时间管理和规划能力。
下面,我们将通过几个练习题来探讨行程问题。
练习题一:小明的旅行计划小明计划去一个新的城市旅行,他有一天的时间。
他希望尽可能多地参观景点,但又不想太匆忙。
他事先了解到这个城市有五个著名景点,分别是博物馆、公园、古镇、海滩和购物中心。
每个景点参观的时间不同,博物馆需要2个小时,公园需要3个小时,古镇需要4个小时,海滩需要5个小时,购物中心需要1个小时。
小明希望在一天内参观完这五个景点,该如何安排行程?解析:根据题目给出的参观时间,我们可以计算出小明参观完这五个景点所需的总时间为2+3+4+5+1=15个小时。
而小明只有一天的时间,也就是说他只有24个小时。
因此,小明可以将行程安排如下:早上8点:博物馆(2小时)上午11点:公园(3小时)下午2点:古镇(4小时)下午6点:海滩(5小时)晚上11点:购物中心(1小时)通过这样的安排,小明可以在一天内参观完这五个景点,并且还有一些时间休息或自由活动。
练习题二:小红的出差安排小红是一名商务人士,她需要连续出差三天,分别去A市、B市和C市。
她希望在这三天内尽可能多地拜访客户,同时保证行程的合理性和效率。
她已经列出了每个城市需要拜访的客户数量和拜访每个客户所需的时间。
请你帮助小红安排行程,使得她在这三天内能够拜访到尽可能多的客户。
解析:根据小红提供的信息,我们可以得到以下表格:A市:客户数量5,每个客户拜访时间2小时B市:客户数量4,每个客户拜访时间3小时C市:客户数量6,每个客户拜访时间1小时为了方便计算,我们可以将每个城市的客户数量和拜访时间相乘,得到每个城市的总拜访时间。
然后,我们按照总拜访时间的大小进行排序,从总拜访时间最长的城市开始安排行程。
小学奥数行程问题练习
行程问题练习一、基础练习1、A、B两地相距540千米,甲车的速度是每小时60千米,乙车每小时行75千米,两车同时出发相向而行。
甲、乙两车几小时后相遇?2、甲、乙两地相距360千米,一辆汽车从甲地出发到乙地需6小时。
一辆面包车从乙地到甲地需9小时行驶完,现在两车同时出发相向而行,几小时相遇?3、客、货两车从相距550km的甲、乙两站同时开出相向而行,5小时后相遇,客车每小时行60千米,货车每小时行多少千米?4、AB 两人同时从两地出发相向而行,A每分钟行65米,B 每分钟走55米,20分钟后,两人相遇后又相距100米,两地之间相距多少米?5、一辆公共汽车和一辆面包车同时从相距272千米的两地相向而行,公共汽车每小时行33千米,面包车每小时行35千米。
行了几小时后两车第一次相距68千米?再行几小时两车又相距68千米?6、甲乙两个车队同时从相距900km的两地相向而行,甲车队每小时行48千米,乙车队每小时行42千米,通讯员骑摩托车随甲车队一同出发,每小时行60千米在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?7、甲乙两人站在一条笔直的公路上,相距300米,甲每分钟走60米,乙每分钟走80米,问2分钟后两人可能相距多少米?8、王华上午10:00从家出发步行去姑姑家,每分钟行60米,10:30姑姑骑自行车从家出发去接王华,每分钟行200米,10:50姑姑接到了王华,问两家相距多少千米?9、甲乙二人同时从两地出发相向而行,甲每分钟行78m,乙每分钟行72m,15分钟后,两人相遇后又相距150m,两地间相距多少千米10、甲乙两车同时从A、B两地相对开出,6h相遇,甲车从A地到B地要9h,乙车从B地到A地要几小时?11、甲乙二人在环形跑道上以各自不变的速度跑步,如果两人同时同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一圈要20分钟,乙跑一圈要几分钟?12、甲乙两列火车同时从A、B两站相对开出,第一次在距A站70km处相遇,相遇后继续前进,到达对方出发地后立即返回,第二次相遇在距B站35km处,求两站间距离。
奥数题《行程问题》练习和答案
奥数题《行程问题》练习和答案
奥数题《行程问题》练习汇集和答案
题型:行程问题 难度:
李华步行以每小时4千米的速度从学校出发到20.4千米处的.冬令
营报到。半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千
米。又过了1.5小时,张明从学校骑车去营地报到。结果三人同时在途
中某地相遇。问骑车人每小时行驶多少千米?
【答案解析】
题型:行程问题 难度:
有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每
分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,
在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的
距离是多少米?
【答案解析】
题型:行程问题 难度:
李明和王亮同时分别从两地骑车相向而行,李明每小时行18 千米,
王亮每小时行16 千米,两人相遇时距全程中点3千米.问全程长多少
千米?
【答案解析】
102千米
3×2÷(18-16)=3(小时)
3×(18+16)=102(千米)
题型:行程问题 难度:
客车和货车分别从甲、乙两站同时相向开出,第一次相遇在离甲
站40千米的地方,相遇后辆车仍以原速度继续前进,客车到达乙站、
货车到达甲站后均立即返回,结果它们又在离乙站20千米的地方相遇。
求甲、乙两站之间的距离。
【答案解析】
3×40-20=100(千米)
小学奥数:行程问题基础.专项练习
1. 行程的基本概念,会解一些简单的行程题.2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3. 利用对比分析法解终(中)点问题一、s 、v 、t 探源 我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
二、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s vt =路程÷速度=时间 可简记为:t s v =÷路程÷时间=速度 可简记为:v s t =÷三、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
板块一、简单行程公式解题【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【巩固】 小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?知识精讲教学目标行程问题基础【例 2】甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.【巩固】两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。
小学奥数行程问题专题全解
小学奥数行程问题专题全解(一例一练)行程问题变化很多,但是都是围绕速度义时间二路程这一基本公式展开的,做题的时候一定要学会画线段图,然后根据所求的问题去题目中寻找已知条件。
一、相遇问题(速度和义相遇时间=总路程)例1、甲、乙两人同时分别从两地骑车相向而行,甲每小时行18千米,乙每小时行16千米,两人相遇时,距全程中点3千米,全程长多少千米?练习1、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4 千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离是多少千米?例2、甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400 米,甲到少年宫后立即返回学校,在距离少年宫300 米处遇到乙,此时他们离开学校已30分钟.甲乙二人的速度各是多少?练习2、甲乙二人从A两地同时出发前往B地,甲的速度是50m/s,乙的速度是40m/s,甲到达B以后立即返回,在距A地120m的地方和乙相遇,求AB 两地之间的距离。
例3、有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75 米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?练习3、甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A 地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?例4、甲、乙两名同学在周长为米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑米,乙每秒钟跑米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?练习4、甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?例5、甲乙二人同时从相距200KM的AB两地出发,经过4小时相遇,已知甲的速度是乙的1.5倍,求甲乙二人的速度分别是多少?练习5、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8 千米,已知甲车速度是乙车的1.2倍,求A、B两地的距离是多少千米?例6、甲乙两队学生从相距18千米的两地同时出发,相向而行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题的练习
1. 甲乙两车同时从相距450千米的AB两地相向而行,甲车每小时行50千米,乙车每小时行40千米,两车开
出多少小时后相遇?
2. 甲乙两地相距3500米,小王骑自行车,小刚步行,两人同时从两地出发,相向而行,小王骑车的速度是270
米/分,10分钟后,两人在途中相遇,小刚步行的速度是多少?
3. 小王骑自行车,小刚步行,两人分别从甲乙两地同时出发相向而行,小王骑车的速度是270米/分,小刚步
行的速度是80米/分,10分钟后两人在途中相遇,甲乙两地相距多少米?
4. 甲乙两人同时从A地出发,背向而行,已知甲每分钟行65米,乙每分钟行70米,8分钟后,两人相距多少
米?
5. 甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千
米,乙多少小时可追上甲.
6. 甲乙两人同时从相距48千米的A、B两城同向而行,甲在前乙在后,甲每小时行12千米,乙每小时行18
千米。几小时后甲可追上乙?
较复杂行程问题的练习
7. 甲乙两车同时从AB两地出发,相向而行,8小时相遇,相遇后,甲车再行5小时到达B地,已知乙车每小
时行45千米,甲乙两地相距多少千米?
8. AB两地相距1200米,甲乙两人同时从两地出发,相向而行。甲每分钟行65米,乙每分钟行55米,两人
相遇后继续前进,分别到达AB两地后立即返回,途中第二次相遇。从出发到第二次相遇经过多少时间?
9. A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下
去,燕子飞了多少千米,两车才能相遇?