第17讲 高中数学零点问题(解析版)
高中数学考点12 零点定理(讲解)(解析版)知识点解析

考点12:零点定理【思维导图】【常见考法】考点一:求零点1.若幂函数()f x x α=的图象过点(,则函数()()3g x f x =-的零点是。
【答案】9【解析】∵幂函数()f x x α=的图象过点,∴2α=,解得1=2α,∴()12f x x =∴()123g x x =-由()1230g x x =-=,得9x =.2.函数()234f x x x =+-的零点是____________.【答案】1,4-【解析】令f (x )=0,即x 2+3x-4=0,解得:x=-4,x=1.3.若函数()2,01,0x e x f x x x ⎧≤=⎨->⎩,则函数()1y f x =-的零点是___________.【答案】0【解析】要求函数()1y f x =-的零点,则令()10y f x =-=,即()1f x =,又因为:()2,01,0x e x f x x x ⎧≤=⎨->⎩,①当0x ≤时,()xf x e =,1x e =,解得0x =.②当0x >时,()21f x x =-,211x -=,解得x =,所以x =.综上所以,函数()1y f x =-的零点是0.故答案为:04.函数y =11x-的图象与函数y =2sinπx(-2≤x≤4)的图象所有交点的横坐标之和等于.【答案】8【解析】函数y 1=11x-与y 2=2sinπx 的图象有公共的对称中心(1,0),作出两个函数的图象,由图象可知,两个函数在[-2,4上共有8个交点,两两关于点(1,0)对称设对称的两个点的横坐标分别为m 、n 则m+n=2×1=2,故所求的横坐标之和为8,故答案为8.考点二:零点区间1.函数()42xxf x -=-的零点所在区间是()A .(1,0)-B .1(0,4C .11(,42D .1(,1)2【答案】D【解析】易知函数()f x 为减函数,又121111(402424f -=-=->,11(1)042f =-<,根据零点存在性原理,可知函数()42xx f x -=-的零点所在的区间是1(,1)2,故选D.2.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f (0)=-4,f (1)=-1,f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2,故选B .3.函数()ln 3f x x x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】C【解析】∵f (x )=ln x +x -3在(0,+∞)上是增函数f (1)=-2<0,f (2)=ln2-1<0,f (3)=ln3>0∴f (2)•f (3)<0,根据零点存在性定理,可得函数f (x )=ln x +x -3的零点所在区间为(2,3)故选:C .4.已知()f x 是定义在()0,∞+上的单调函数,满足()()2ln 21xf f x ex e --+=-,则函数()f x 的零点所在区间为()A .210,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .()1,e 【答案】C【解析】设()2ln 2xf x e x t --+=,即()2ln 2xf x e x t =+-+,()1f t e =-,因为()f x 是定义在()0,∞+上的单调函数,所以由解析式可知,()f x 在()0,∞+上单调递增.而()12f e t =-+,()1f t e =-,故1t =,即()2ln 1xf x e x =+-.因为()110f e =->,11112ln 13ee f e e e e ⎛⎫=+-=- ⎪⎝⎭,由于11ln ln 3ln 30ee e-=-<,即有13e e <,所以1130e f e e ⎛⎫=-< ⎪⎝⎭.故()110f f e ⎛⎫< ⎪⎝⎭,即()f x 的零点所在区间为1,1e ⎛⎫ ⎪⎝⎭.故选:C .考点三:零点个数1.函数f(x)=|x-2|-lnx 在定义域内零点的个数为。
【高考数学专题】专题07 函数的零点解题模板-高中数学解题模板

函数的零点问题【考点综述】函数的零点是函数与其他知识具有广泛联系的一个链结点,它从不同的角度,将数与形、函数与方程有机地联系在一起由于函数零点涉及到化归、分类讨论、数形结合、函数与方程等重要的数学思想方法,加之与导数的应用一唱一和,与高等数学相衔接,因此自然成为命题者眼中难以割舍的命题源泉.利用函数零点解决函数问题、方程问题已成为高考命题的一个热点,成为新课程实验后高考的新亮点.【解题方法思维导图预览】【解题方法】解题方法模板一:零点或零点存在区间的确定使用情景:一般函数类型解题模板:第一步 直接根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0; 第二步 若其乘积小于0,则该区间即为存在的零点区间;否则排除其选项即可. 例1 函数()43xf x e x =+-的零点所在的区间为( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭ C .13,24⎛⎫ ⎪⎝⎭ D .3,14⎛⎫ ⎪⎝⎭【答案】B【解析】解题模板选择: 本题中需要确定函数的零点所在的区间,故选取解题方法模板一零点或零点所在区间的确定进行解答.解题模板应用:第一步,直接根据零点的存在性定理验证区间端点处的函數值的乘积是否小于0: 函数()43xf x e x =+-单调递增只有一个零点,而1144113204f e e ⎛⎫=+-=-< ⎪⎝⎭,1102f ⎛⎫=> ⎪⎝⎭; 第二步,若其乘积小于0,则该区间即为存在的零点区间;否则排除其选项即可: 由11042f f ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知数的点在11,42⎛⎫ ⎪⎝⎭,故选:B . 【典型例题】1. 函数()2ln f x x x =-的零点所在的大致区间的 A. ()1,2B. ()2,3C. (),3eD. (),e +∞ 【答案】B【解析】【分析】函数是单调递增函数,则只需()()0f a f b <时,函数在区间(a,b,上存在零点.【详解】函数()2ln f x x x=- ,在x>0上单调递增, ()2210f ln =-< ,()23ln303f =-> 函数f (x )零点所在的大致区间是()2,3;故选B【点睛】本题考查利用函数零点存在性定义定理求解函数的零点的范围,属于基础题;解题的关键是首先要判断函数的单调性,再根据零点存在的条件:已知函数在(a,b )连续,若()()[]00,,,f a f b x a b <∃∈ ()00f x = 确定零点所在的区间. 2. 函数()ln 2f x x x =+-的零点所在的大致区间为( )A. (0,1)B. (1,2)C. (2,)eD. (,4)e 【答案】B【解析】【分析】利用导数判断函数()f x 在其定义域(0,)+∞上是增函数,结合函数零点的存在性定理可得函数()f x 零点所在的大致区间.【详解】解:函数()f x 的导函数1()10f x x'=+>, 故()f x 在其定义域(0,)+∞上是增函数,再根据()110f =-<,()2ln20f =>,可得()()120f f ⋅<,故函数()ln 2f x x x =+-零点所在的大致区间为(1,2),故选:B .【点睛】本题主要考查用二分法求函数零点的近似值,函数零点的判定定理,属于基础题.3. 已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( )A. (-2,-1)B. (-1,0)C. (0,1)D. (1,2) 【答案】B【解析】【分析】分别计算()1f -,以及()0f 的函数值,根据零点存在性定理,即可判断.【详解】因为a >1,0<b <1,f (x )=a x +x -b ,所以f (-1)=1a-1-b <0,f (0)=1-b >0,所以f(-1)·f(0)<0,则由零点存在性定理可知f(x)在区间(-1,0)上存在零点.故选:B.【点睛】本题考查利用零点存在性定理判断零点所在区间,属基础题.4. 函数f(x)=log2x-3x-1的零点所在的区间为()A. ()1,2B. ()2,3C. ()3,4D. ()4,5【答案】C【解析】【分析】连续函数f,x,=log2x-3x-1在(0,+∞)上单调递增且f,3,f,4,,0,根据函数的零点的判定定理可求结果.【详解】∵函数f,x,=log2x-3x-1在定义域(0,+∞)上单调递增,∴f,3,=log23-1-1,0,f,4,=2-34-1,0,∴根据根的存在性定理得f,x,=log2x-3x-1的零点所在的一个区间是(3,4,,故选C,【点睛】本题主要考查了函数零点定义及判定的应用,属于基础试题.5. 函数f(x)=23x x+的零点所在的一个区间是A. (-2,-1)B. (-1,0)C. (0,1)D. (1,2)【答案】B【解析】【详解】试题分析:因为函数f(x)=2x+3x在其定义域内是递增的,那么根据f(-1)=153022-=-<,f(0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B.考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间. 视频解题方法模板二:零点的个数的确定使用情景:由所给的函数确定函数零点的个数解题模板:方法1:定义法使用情景:一般函数类型解题模板:第一步 判断函数的单调性;第二步 根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0;若其乘积小于0,则该区间即为存在唯一的零点区间或者直接运用方程的思想计算出其零点;第三步 得出结论.方法2:数形结合法使用情景:一般函数类型解题模板:第一步 在同一直角坐标系中,分别画出函数()y f x =和()y m x =的图像;第二步 观察并判断函数()y f x =和()y m x =的图像的交点个数;第三步 由()y f x =和()y m x =图像的交点个数等于函数()0g x =的零点即可得出结论. 例2A 函数()3xf x e x =+的零点个数是( )A .0B .1C .2D .3【答案】B解析】解题模板选择:本题需要确定函数的零点个数,故选取解题方法模板二定义法进行解答.解题模板应用:第一步,判断函数的单调性:由已知得()30x f x e '=+>,所以()f x 在R 上单调递增;第二步,根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0;若其乘积小于0,则该区间即为存在唯一的零点区间:又因为1(1)30f e --=-<,(1)30f e =+>,所以(1)(1)0f f ⋅-<第三步,得出结论:所以()f x 的零点个数是1,故选B .例2B 方程31()|log |3xx =的解的个数是( )A .3B .2C .1D .0【答案】B【解析】解题模板选择:本题中很明显在考查两个函数交点个数问题,故选取解题方法模板二数形结合法进行解答. 解题模板应用:第一步,在同一直角坐标系中,分别画出函数()y f x =和()y m x =的图像: 绘制函数13xy ⎛⎫= ⎪⎝⎭和函数3log y x =的图像如图所示:第二步,观察并判断函数()y f x =和()y m x =的图像的交点个数 : 由图象可知,函数1()3x y =与函数3log y x =有2个交点; 第三步,由()y f x =和()y m x =图像的交点个数等于函数()0g x =的零点即可得出结论:所以方程有2个解.故选:B .【典型例题】6. 函数()212log 6y x x =-++的零点个数为( ) A. 0个B. 1个C. 2个D. 3个【答案】C【解析】 【分析】令0y =,判断对数方程根的个数即可.【详解】令0y =,则()212log 60x x -++=, 即250x x -++=,又Δ1200=+>,故该方程有两根,且均满足函数定义域.故该函数有两个零点.故选:C【点睛】本题考查函数零点的求解,属简单题.7. 函数()22,026ln ,0x x f x x x x ⎧-≤=⎨-+>⎩的零点个数是( ) A. 0B. 1C. 2D. 3【答案】C【解析】【分析】当0x ≤时,直接解方程()0f x =得x =当0x >时,用函数的图象交点个数判断即可零点个数,两类情况合起来即可得选项.【详解】解:当0x ≤时,直接解方程()0f x =,即220x -=,解得:x = 当0x >时,()0f x =等价于26ln 0x x -+=,即ln 62x x =-,故设1ln y x =,262y x =-,做函数图象如图,故方程26ln 0x x -+=有一个根,所以函数()0f x =有一个实数根.综上,函数()f x 有两个零点.故选:C.【点睛】本题考查函数的零点个数,考查数形结合思想和方程思想,是基础题.8. 函数3()||x f x e x =-的零点个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据绝对值的性质,分类讨论,结合导数、零点存在原理进行求解即可.【详解】当0x ≤时,3()x f x e x =+,因为2'(30)x f x e x =+>,所以函数此时单调递增,而110,(0))0(11f e f --<==>-,所以此时函数3()x f x e x =+有唯一零点;当0x >时,令3(0)x f x e x =-=, 解得33ln x x e x x ⇒==,此时原函数的零点为函数()3ln g x x x =-零点,'3()1g x x =-,因此当3x >时,'3()10g x x=->,函数单调递增, 当30x >>时,'3()10g x x =-<,函数单调递减, (3)33ln33(1ln3)0g =-=-<,(1)10g =>,(6)63ln 63(2ln 2)0g =-=->,所以函数在30x >>和0x >各有一个零点,所以一共有3个零点.故选:C【点睛】本题考查了求函数零点个数问题,考查了导数的应用,考查了数学运算能力.9. 函数121()()2x f x x =-的零点个数为( ) A. 0B. 1C. 2D. 3【答案】B【解析】【分析】将问题转化为2个函数的交点问题,化成函数图象即可得出结论. 【详解】函数121()()2x f x x =-的零点,即令121()()02x f x x =-=,根据此题可得121()2x x =,在平面直角坐标系中分别画出幂函数y =12xy ⎛⎫= ⎪⎝⎭的图象,可得交点只有一个,所以零点只有一个,故选:B.【点睛】本题主要考查函数零点,意在考查学生的化归于转化的数学思想,属基础题.10. 已知函数()1cos 2xf x x ⎛⎫=- ⎪⎝⎭,则()f x 在0,2π上的零点的个数为( )A. 1B. 2C. 3D. 4【答案】C 【解析】 【分析】将函数零点转换为两函数的交点,通过图像即可得到答案.【详解】∵()1cos 02xf x x ⎛⎫=-= ⎪⎝⎭∵1cos 2xx ⎛⎫⎪=⎝⎭设1()cos 2()xg h x x x ⎛⎫= ⎪=⎝⎭,,画出图像可得在图像上的零点的个数为3. 故选:C.【点睛】本题考查函数零点的知识点,涉及到将零点的问题转换为函数的交点,考查了数形结合的思想,属于简单题型.考点:函数的零点.解题方法模板三:与分段、复合函数零点有关的参数取值范围问题使用情景:由分段函数或者复合函数确定参数取值范围解题模板:方法一:内外层分步讨论法 第一步 作出函数的图形第二步 讨论外层复合函数的性质,从而为讨论内层函数奠定基础 第三步 讨论内层复合函数的性质确定结论 方法二:利用组合坐标系处理复合函数的零点问题 第一步 利用组合坐标系作出函数图像第二步 结合组合坐标系综合讨论得到参数的取值范围.例3A 已知函数()()3lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x 的函数()()21y f x bf x =-+有8个不同的零点,则实数b 的取值范围是 . 【答案】172,4⎛⎤⎥⎝⎦【解析】 解题模板选择:本题中涉及到分段函数和复合函数问题,故选取解题方法模板三内外层分布讨论法进行解答.解题模板应用:第一步 作出函数的图形 根据题意作出函数f (x )的简图:第二步 讨论外层复合函数的性质,从而为讨论内层函数奠定基础由图可得当f (x )∈(0,4]时,有四个不同的x 与f (x )对应,再结合题中“关于x 的函数有8个不同的零点”,问题转化为“关于t 的方程t 2-bt +1=0在t ∈(0,4]上有两个不同的实数根”, 第三步 讨论内层复合函数的性质确定结论即211t b t t t+==+在t ∈(0,4]上有两个不同的实数根,而当t ∈(0,4]时,1172,4t t ⎛⎤+∈ ⎥⎝⎦.【名师点睛】对于复合函数问题,一定要弄清内函数、外函数以及它们各自的属性,尤其要注意内函数的值域与外函数的定义域之间的区别与联系.例3B 设定义域为R 的函数()lg 1,10,1x x f x x ⎧-≠⎪=⎨=⎪⎩,则关于x 的方程()()20f x bf x c ++=有7个不同实数解的充要条件是( )A .b <0,目c >0B .b >0且c <0C .b <0且c =0D .b ≥0且c =0 【答案】C 【解析】 解题模板选择:本题中涉及到分段函数和复合函数问题,故选取解题方法模板三利用组合坐标系处理复合函数的零点问题进行解答. 解题模板应用:第一步 利用组合坐标系作出函数图像令u =f (x ),则有g (u )=u 2+bu +c ,如图作出组合坐标系.第二步 结合组合坐标系综合讨论得到参数的取值范围.可知只有当u 2+bu +c =0的两个根120,0u u =>.此时,在左图中过()()12,0,,0u u 作u 轴的垂线与右图u =f (x )的图像才有可能恰有7个交点,(以右图中的交点的横坐标x 0为例,()01f x u =,又()10g u =,故x 0是方程g (f (x ))=0的一个根).故这7个交点的横坐标1237,,x x x x ⋯能使得()()0,(1,2,37)i g f x i ==⋯,即为1237,,x x x x ⋯为方程g (f (x ))=0的7个根. 故由韦达定理可知12120,0u u b u u c +=->==. 故选:C .【典型例题】11. 已知函数12,0()21,0x e x f x x x x -⎧>⎪=⎨--+≤⎪⎩,若关于x 的方程2()3()0()f x f x a a R -+=∈有6个不等的实数根,则a 的值是( ) A. 0 B. 1 C. 6 D. 2【答案】D 【解析】 【分析】采用数形结合,利用换元法令()f x t =,然后可知230-+=t t a 的两根11t =,22t =,然后利用韦达定理可得a .【详解】函数12,0()21,0x e x f x x x x -⎧>⎪=⎨--+≤⎪⎩的图象如图所示,令()f x t =,因为2()3()0()f x f x a a R -+=∈有6个不等的实数根,所以方程230-+=t t a 有两个不同的实数根1(1,2)t ∈,2(2,)t e ∈ 或11t =,22t =,由于123t t +=,故11t =,22t =,所以122a t t ==.故选:D【点睛】本题考查根据方程的根的个数求参,本题难点在于根据图形找到方程230-+=t t a 的两个不同的实数根,同时结合换元法的使用,使问题更加清晰,属中档题.12. 若函数()()()34020xa a x f x x ax x ⎧-≤⎪=⎨-+>⎪⎩,有三个不同的零点,则实数a 的取值范围是( ) A. (]1,2 B. (]2,4C. (]3,4D. ()3,5【答案】C 【解析】 【分析】由题意可知0a >且1a ≠,故函数()()3g x x ax 2x 0=-+>最多两个零点,故函数()()x h x 4a a x 0=-≤必须有零点,而函数()()x h x 4a a x 0=-≤是单调函数,故函数()()x h x 4a a x 0=-≤最多有一个零点,所以得出函数()()x h x 4a a x 0=-≤必须有一个零点,函数()()3g x x ax 2x 0=-+>必须有两个零点,再结合图象,根据函数零点存在定理得出a 的范围. 【详解】由题意可知0a >且1a ≠, 当0x >时,函数()3g x x ax 2=-+的导函数为()2g x 3x a '=-,所以函数()3g x x ax 2=-+在为减函数,在)+∞为增函数, 故函数()()3g x x ax 2x 0=-+>最多两个零点;而当0x ≤时,函数()()x h x 4a a x 0=-≤是单调函数, 故函数()()x h x 4a a x 0=-≤最多有一个零点;根据上述分析可以得出:函数()()3g x x ax 2x 0=-+>必须有两个零点,函数()()x h x 4a a x 0=-≤必须有一个零点. 当0x >时,在函数()3g x x ax 2=-+中, 因为(0)20g =>,故3g a 20=-⋅+<,解得3a >, 当0x ≤时,当01a <<时,函数()x h x 4a a =-是单调递减,()h 04a 0=->,不满足题意,当1a >时,函数()x h x 4a a =-是单调递增, 因为()x h x 4a a =-在0x ≤时有一个零点,则()h04a 0=-≥,解得:4a ≤ 综上:34a <≤, 故选:C .【点睛】本题考查了分段函数的零点问题,解题时运用了数形结合、还考查了分类讨论等思想方法和运算求解的能力,属于较难题. 13. 已知函数231,0()2,0x x f x x x ⎧--≥=⎨-+<⎩,函数()g x mx =,若函数()2()y f x g x =-恰有三个零点,则实数m 的取值范围是( ) A. 11(,)62 B. 1(,1)3-C. 1(,)6-+∞D. 1(,)2-∞【答案】A【分析】根据所给函数()231,02,0x x f x x x ⎧--≥=⎨-+<⎩,画出函数图象,根据()g x mx =及()()2y f x g x =-恰有三个零点,即可根据图象判断m 的取值范围. 【详解】由题意,画出函数()231,02,0x x f x x x ⎧--≥=⎨-+<⎩的图象如下图所示:()()2y f x g x =-恰有三个零点,即()()2f x g x =有三个不同交点,即()2f x mx =有三个不同交点,由图象可知,当直线斜率在OA k ,OB k 之间时,有三个交点,即2OA OB k m k << 所以1213m -<<,可得1162m -<<.故选:A.【点睛】本题考查了函数图象的画法,根据零点个数求参数的取值范围,属于中档题.14. 已知()11x f x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( ) A. (2,1)-- B. (1,0)-C. (0,1)D. (1,2)【答案】A【分析】【分析】利用十字相乘法解()0g x =,得()2f x =或()f x a =-,利用函数与方程之间的关系转化为两个图象的交点个数问题进行求解即可.【详解】解:若2()[()](2)()2[()2][()]g x f x a f x a f x f x a =+--=-+有三个零点, 即()[()2][()]0g x f x f x a =-+=有三个根, 即()2f x =或()f x a =-.当()2f x =时,由|1|12x e -+=,即|1|1x e -=,则11x e -=或11x e -=-, 即2x e =或0x e =,则2x ln =或x 无解,此时方程只有一个解, 则()f x a =-.有两个不同的根, 作出()f x 的图象如图:由图象知,则12a <-<,即21a -<<-, 即实数a 的取值范围是(2,1)--, 故选:A .【点睛】本题主要考查函数零点个数的应用,利用数形结合转化为两个函数图象的交点个数问题是解决本题的关键.15. 若函数222,0(),0x x x x f x e a x +⎧->⎪=⎨-≤⎪⎩有3个零点,则实数a 的取值范围是( ). A. ()2,e +∞B. {}()21,e ⋃+∞C. 2[1,e ] D. [)1,+∞【答案】B 【解析】 【分析】结合题意,将零点问题转化为函数交点问题,计算a 的范围,即可.【详解】当0x >时,由2()2x f x x =-得2x =或4x =(画图确定只有两个解),故()222,0,0x x x x f x e a x +⎧->⎪=⎨-≤⎪⎩有3个零点等价于()200x e a x +-=≤有1个零点,画出()20x y ex +=≤的图像,数形结合可得实数a 的取值范围是{}()21,e ⋃+∞.故选:B.【点睛】本道题考查了函数的性质,考查了数形结合思想,难度中等.解题方法模板四:由函数零点个数分类讨论,各个击破使用情景:函数的零点问题不易确定,需要分类讨论 解题模板:第一步 确定需要讨论的对象和它的取值范围;第二步 逐类进行讨论,得出各类结果 第三步 归纳各类结论,得出结论.例4 设m ,k 为整数,方程mx 2-kx +2=0在区间(0,1)内有两个不同的根,则m +k 的最小值为( )A.-8B.8C.12D.13 【答案】D 【解析】 解题模板选择:本题中所给的零点问题比较复杂,需要分类讨论,故选取解题方法模板四由函数零点个数分类讨论进行解答.解题模板应用:第一步 确定需要讨论的对象和它的取值范围;记f (x )=mx 2-kx +2,则:2(0)20(1)(2)001280mf m mf m m k k m k m =>⎧⎪=-+>⎪⎪⎨<<⎪⎪∆=->⎪⎩,据此可得:022m m k k m⎧>⎪+>⎨⎪<<⎩,所以2m >m >2,又m 为整数,故m ≥3. 需要对参数m 进行分类讨论.第二步 逐类进行讨论,得出各类结果 当m =3时,5k <<,无整数k ; 当m =4时,6k <<,无整数k ; 当m =5时,7k <<,无整数k ;当m =6时,8k <,整数k =7,方程mx 2-kx +2=6x 2-7x +2=0的根为12,23满足题意.又当m 增大时,k 的值不会减少,所以m +k 的最小值为13, 第三步 归纳各类结论,得出结论. 综上可得,m +k 的最小值为13. 故选:D .【名师点睛】分类讨论是我们求解含参问题最常用的策略对于含参的函数零点问题也不例外若我们无法通过等价转化的思想将原问题化归为相对容易的问题,那也只能报据题设要求合理地对参教的取值进行分类,并逐一对每种情况进行仔细斟酌求解利用该策略求解一般要求我们能深思熟虑严而不漏,这对培养学生思维的严密性很有好处. 解题方法模板五:参变分离处理零点问题使用情景:参数易于分离,且分离后所得函数的性质容易讨论解题模板:第一步 将需要求值(求范围)的变量放置在等式的一侧,其余变量放置在等式另一侧 第二步 利用导函数或者其他工具讨论不含所求变量一侧函数的性质 第三步 确定所求参数的值(或范围)例5 已知函数2()22ln f x x ax a x =--,当a >0时,若函数y =f (x )存在唯一零点,求a 的值. 【答案】12【解析】 解题模板选择: 本题中由0f x 易于分类参变量,故选取解题方法模板五参变分离处理零点问题进行解答.解题模板应用:第一步 将需要求值(求范围)的变量放置在等式的一侧,其余变量放置在等式另一侧由f (x )=0,得()22ln x a x x =+,显然0x lnx +≠,从而22(ln )x a x x =+. 第二步 利用导函数或者其他工具讨论不含所求变量一侧函数的性质记2()2(ln )x g x x x =+,则()2(2ln 1)'2(ln )x x x g x x x +-=+,令ln 0x x +=的解为x 0,则当()00,x x ∈时,g (x )<0,当()0,1x x ∈时,2ln 10x x +-<,()'0g x <,g (x )单调递减, 当x ∈(1,+∞)时,2ln 10x x +->,()'0g x >,g (x )单调递增, 所以g (x )的极小值为()112g =. 从而画出g (x )的草图,第三步 确定所求参数的值(或范围)当a >0时,函数y =f (x )存在唯一零点,则只能()112a g ==. 【名师点睛】本题命题组给出的答案构造函数求出函数零点,对能力有较高的要求本题通过将原函数中的变参数进行分高后变形为a =g (x ),则原函数的零点问题化归为与y 轴垂直的直线y =a 和函数y =g (x )图像的交点问题而迎刃而解利用该方法求解零点问题的显著优势在于既可以回避对参数取值情况的复杂讨论,又形象直观,一目了然,参变分高,演绎了角色转换.【典型例题】16. 已知函数24,0()(2)1,0x x f x x x x ⎧+>⎪=⎨⎪+-≤⎩,若方程()20f x m -=恰有三个不同的实数根,则实数m 的取值范围是( ) A. (2,)+∞ B. (4,)+∞C. (2,4)D. (3,4)【答案】A 【解析】 【分析】画出函数()f x 的图象,设()2g x m =,数形结合得24m >,即得解. 【详解】画出函数()f x 的图象,如图所示.当0x >时,4()4f x x x=+. 设()2g x m =,则方程()20f x m -=恰有三个不同的实数根, 即()f x 和()2g x m =的图象有三个交点.由图象可知,24m >,即2m >, 故实数m 的取值范围是(2,)+∞. 故选:A【点睛】本题主要考查函数的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.17. 已知函数()24sin54π=--+f x x x a x 有唯一的零点,则常数a =( )A. 14- B. 1C.14D. 1-【答案】B 【解析】 【分析】()24sin 54π=--+f x x x a x 有唯一的零点可转化为()245g x x x =-+与()sin 4π=h x a x 有唯一交点问题,在同一坐标系作出函数图象即可得出结果.【详解】()24sin54π=--+f x x x a x 有唯一的零点,设()245g x x x =-+,()sin4π=h x a x ,∴()245g x x x =-+与()sin4π=h x a x 有唯一交点,在同一坐标系作出函数图象,如图所示:由图可知当2x =时,1a =,有唯一交点. 故选:B【点睛】本题考查函数的零点,同时考查三角函数的图像,体现了转化思想,数形结合思想的应用,属于中档题.18. 已知()2sin(2)6f x x m π=--在[0,]2x π∈上有两个零点,则m 的取值范围为 A. (1,2) B. [1,2]C. [1,2)D. (1,2]【答案】C 【解析】 【详解】【分析】由题意()2sin 26f x x m π⎛⎫=-- ⎪⎝⎭在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个零点可转化为2sin 26y x π⎛⎫=- ⎪⎝⎭与y m = 在]2[0x π∈, 上有两个不同交点,作出如图的图象,由于右端点的坐标是,12π⎛⎫⎪⎝⎭ 由图知,[)1,2m ∈故选C【点睛】本题考查正弦函数的图象,解答本题关键是将函数有两个零点的问题转化为两个函数有两个交点的问题,作出两函数的图象,判断出参数的取值范围,本题以形助数,是解此类题常用的方法,熟练作出相应函数的图象对解答本题很重要19. 已知函数3ln ,0()2,0x x x f x x x x ->⎧=⎨+≤⎩,若()()g x f x ax =-有3个零点,则实数a 的取值范围为________.【答案】()11,12,e ⎛⎫-+∞ ⎪⎝⎭【解析】 【分析】【分析】首先根据题意等价于函数()f x 与y ax =的图象有3个交点,利用导数得到函数的单调性,分别画出函数()f x 与y ax =的图象,根据两图象的交点有3个,结合图象即可得到答案.【详解】由题可知:()()g x f x ax =-有3个零点 等价于函数()f x 与y ax =的图象有3个交点 当0x >时,()ln f x x x =-,则()111x f x x x-'=-= 可知()0,1x ∈,()0f x '<,则函数单调递减 若()1,x ∈+∞,()0f x '>,则函数单调递增当0x ≤时,()32=+g x x x ,则()2320'=+>g x x则函数()g x 在(],0-∞单调递增. 又直线y ax =恒过原点 如图当直线y ax =与()ln f x x x =-相切时,设切点为()00,A x y ,()1x f x x-'=,()0001x f x ax -'==,又因为00y ax =,000ln =-y x x ,所以00000001ln x y x x x x x --==,解得0x e =,即()0111e a f x e e-='==-. 当直线y ax =与()32=+g x x x 相切时,切点为原点. 所以()232'=+g x x ,则()02a g ='=.由函数()ln f x x x =-在()0,1单调递减,在()1,+∞单调递增, 所以()()110≥=>f x f ,所以ln x x >又函数()f x 与y ax =的图象有3个交点,则11,1(2,)⎛⎫∈-⋃+∞ ⎪⎝⎭a e .故答案为:11,1(2,)e ⎛⎫-⋃+∞ ⎪⎝⎭【点睛】本题考查利用导数研究函数零点个数求参问题,常常使用等价转化的思想,转化为两个函数交点个数问题,数形结合,解决问题,属中难题. 20. 若关于x 的方程210x x a ---=在[]1,1-上有解,则实数a 的取值范围是________.【答案】5,14⎡⎤-⎢⎥⎣⎦【解析】【分析】由210x x a ---=可得21a x x =--,求得二次函数21y x x =--在区间[]1,1-上的值域,由此可得出实数a 的取值范围. 【详解】由210x x a ---=可得21a x x =--,由题意可知,实数a 的取值范围是函数21y x x =--在区间[]1,1-上的值域,当[]1,1x ∈-时,221551,1244y x x x ⎛⎫⎡⎤=--=--∈- ⎪⎢⎥⎝⎭⎣⎦.因此,实数a 的取值范围是5,14⎡⎤-⎢⎥⎣⎦.故答案为:5,14⎡⎤-⎢⎥⎣⎦.【点睛】本题考查利用方程在区间上有解求参数的取值范围,考查参变量分离法的应用,考查计算能力,属于中等题.解题方法模板六:一分为二,等价转化处理零点问题使用情景:可以将一个函数零点的问题转化为两个函数交点的问题 解题模板:第一步 将零点问题转化为两个函数交点个数的问题第二步 绘制相应的函数图像,结合临界值确定参数的值(或范围). 例6 对实数a 与b ,定义新运算“⊗”:,1,1a a b a b b a b -≤⎧⊗=⎨->⎩,设函数()()22()2,f x x x x x R =-⊗-∈,若函数y =f (x )-c 的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .3(,2]1,2⎛⎫-∞-⋃- ⎪⎝⎭ B .3(,2]1,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭【答案】B 【解析】解题模板选择:本题中所给的函数式整理之后是一个分段函数的形式,需要绘制函数图像进行讨论,故选取解题方法模板六等价转化处理零点问题进行解答. 解题模板应用:第一步 将零点问题转化为两个函数交点个数的问题 函数的解析式即:()f x =()()2222222,21,21x x x x x x x x x ⎧----≤⎪⎨---->⎪⎩=2232,123,1, 2x x x x x x ⎧--≤≤⎪⎪⎨⎪-<->⎪⎩或,由y =f (x )-c 的图像与x 轴恰有两个公共点可知f (x )与y =c 的图像恰有两个公共点, 第二步 绘制相应的函数图像,结合临界值确定参数的值(或范围). 绘制函数图像如图所示,由图像知c ≤-2,或314c -<<-. 故选:B .【名师点睛】对于函数F (x )的零点问题,我们常会将F (x )分解成两个相对简单的函数即F (x )=f (x )-g (x ),借助f (x )和g (x )的图像交点来求解F (x )的零点,克服了直接求解F (x )零点带来的技术难题.利用一分为二求解,精彩演绎了等价转化.31。
高中数学必修4三角函数的零点问题专练(解析版)

三角函数零点问题专练1、已知sin()3x π+=a 在50,3π⎛⎫ ⎪⎝⎭上有两个不相等的实数根,求a 的范围答案:()1,02a ⎛⎫∈-⋃ ⎪ ⎪⎝⎭,如下图2、已知函数()2sin()(0)3f x wx w π=->在()0,π上有且仅有两个零点,则实数w 的范围是(B ) A 4(0,]3 B 47(,]33 C 710(,]33 D 1013(,]33答案:解析如下图3、若函数()sin(2)3f x x k π=-+在0,2π⎡⎤⎢⎥⎣⎦上有且只有一个零点,则实数k 的取值范围是(D ) A 11{|1}22k k k -<≤=或 B 11{|1}22k k k -≤<=-或C {|1}k k k ≤<=D {|1}k k k <≤=- 答案:解析如下图4、函数2()4sin()cos 2sin()||2xf x x x x πππππ=++-+的零点个数为(B )A 3B 4C 5D 6答案:解析如下图5cos x x a +=在[]0,2x π∈上有两个不同的实数解,则a 的范围是(D )A ()2,1-B ()1,2C ()2,2-D ()2,1(1,2)-⋃答案:解析如下图6、已知定义在区间30,2π⎡⎤⎢⎥⎣⎦上的函数y=f(x)的图像关于直线34x π=对称,当34x π≥时,f(x)=cosx ,如果关于x 的方程f(x)=a 有解,记所有解的和为S ,则S 不可能为(A )A πB 32πC 94π D 3π答案解析如下图7、已知()cos f x wx wx =,若关于x 的方程f(x)+1=0在区间()0,2π上有且只有四个不相等的实数根,则正数w 的取值范围是(C ) A 37(,]22 B 725(,]26 C 313(,]26 D 313(,)26答案:解析如下图。
高中数学极值点偏移问题(解析版)

极值点偏移问题【典型例题】例1.已知函数f (x )=ln x -ax ,a 是常数且a ∈R .(1)若曲线y =f (x )在x =1处的切线经过点(-1,0),求a 的值;(2)若0<a <1e(e 是自然对数的底数),试证明:①函数f (x )有两个零点,②函数f (x )的两个零点x 1,x 2满足x 1+x 2>2e .【解析】(1)解:切线的斜率k =f (1)=1-af (1)=-a ,k =f (1)-01-(-1)=-a2,即1-a =-a2,解得a =2;(2)证明:①由f (x )=1x -a =0,得x =1a,当0<x <1a 时,f (x )>0;当x >1a 时,f (x )<0,∴f (x )在x =1a 处取得最大值f 1a=-ln a -1,f (1)=-a <0,∵0<a <1e ,∴f 1a =-ln a -1>0,f (x )在区间1,1a有零点,∵f (x )在区间0,1a 单调递增,∴f (x )在区间0,1a有唯一零点.由幂函数与对数函数单调性比较及f (x )的单调性知,f (x )在区间1a,+∞ 有唯一零点,从而函数f (x )有两个零点.②不妨设0<x 1<1a <x 2,作函数F (x )=f (x )-f 2a -x ,0<x <2a,则F 1a =0,F (x )=f (x )+f 2a -x =2(1-ax )2x (2-ax )≥0.∴F (x 1)<F 1a=0,即f (x 1)-f 2a -x 1 <0,f 2a-x 1 >f (x 1),又f (x 1)=f (x 2),∴f 2a-x 1 >f (x 2).∵0<x 1<1a<x 2,∴2a -x 1,x 2∈1a,+∞ ,∵f (x )在区间1a,+∞ 单调递减,∴2a -x 1<x 2,x 1+x 2>2a.又0<a <1e ,1a >e ,∴x 1+x 2>2e .例2.已知函数f (x )=ln x -ax (a ∈R ).(1)若曲线y =f (x )与直线x -y -1-ln2=0相切,求实数a 的值;(2)若函数y =f (x )有两个零点x 1,x 2,证明1ln x 1+1ln x 2>2.【解析】解:(1)由f (x )=ln x -ax ,得f (x )=1x-a ,设切点横坐标为x 0,依题意得1x 0-a =1x 0-1-ln2=ln x 0-ax 0,解得x 0=12a =1,即实数a 的值为1.(2)不妨设0<x 1<x 2,由ln x 1-ax 1=0ln x 2-ax 2=0,得ln x 2-ln x 1=a (x 2-x 1),即1a =x 2-x 1ln x 2-ln x 1,所以1ln x 2+1ln x 1-2=1ax 1+1ax 2-2=x 2-x 1ln x 2-ln x 11x 1+1x 2-2=x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1,令t =x 2x 1>1,则ln x 2x 1>0,x 2x 1-x 1x 2-2ln x 2x 1=t -1t-2ln t ,设g (t )=t -1t -2ln t ,则g(t )=t 2-2t +1t 2>0,即函数g (t )在(1,+∞)上递减,所以g (t )>g (1)=0,从而x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1>0,即1ln x 2+1ln x 1>2.例3.已知函数f (x )=x -e 2 (a -ln x )且f (e )=e4(其中e 为自然对数的底数).(Ⅰ)求函数f (x )的解析式;(Ⅱ)判断f (x )的单调性;(Ⅲ)若f (x )=k 有两个不相等实根x 1,x 2,证明:x 1+x 2>2e .【解析】解:(Ⅰ)f (e )=e 2a -12 =e 4,解得a =1,所以函数解析式为f (x )=x -e2(1-ln x );(Ⅱ)函数f (x )的定义域为(0,+∞),f (x )=1-ln x +x -e 2-1x =e2x-ln x ,设g(x)=e2x-ln x,g (x)=-e2x2-1x,在(0,+∞)上,g(x)<0恒成立,所以g(x)在(0,+∞)上单调递减,即f (x)在(0,+∞)上单调递减,又f (e)=0,则在(0,e)上f (x)>0,在(e,+∞)上f (x)<0.所以函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减;(Ⅲ)证明:构造函数F(x)=F(x)-f(2e-x),x∈(0,e),F (x)=f (x)+f (2e-x)=e2x-ln x+e2⋅12e-x-ln(2e-x)=ex(2e-x)-ln[x(2e-x)],设t=x(2e-x),当x∈(0,e)时,t∈(0,e),设h(t)=et-ln t,且h (t)=-et2-1t<0,可知h(t)在(0,e)上单调递减,且h(e)=0,所以h(t)>0在t∈(0,e)上恒成立,即F (x)>0在x∈(0,e)上恒成立,所以y=F(x)在(0,e)上单调递增,不妨设x1<x2,由(Ⅱ)知x1<e<x2F(x1)=f(x1)-f(2e-x1)<F(e)=f(e)-f(2e-e) =0,即f(x1)<f(2e-x1),因为f(x1)=f(x2),所以f(x2)<f(2e-x1),由(Ⅱ)知f(x)在(e,+∞)上单调递减,得x2>2e-x1,所以x1+x2>2e.例4.已知函数f(x)=e2x-a(x-1).(1)讨论函数f(x)的单调性;(2)若a>0,设f′(x)为f(x)的导函数,若函数f(x)有两个不同的零点x1,x2,求证:f′x1+x22<0.【解析】(1)解:f′(x)=2e2x-a,当a≤0时,f′(x)>0,函数f(x)在R上单调递增;当a>0时,令f′(x)>0,得x>12ln a2,令f′(x)<0,得x<12ln a2,所以f(x)在-∞,12ln a2上单调递减,在12ln a2,+∞上单调递增.(2)证明:由题意得e2x1-a(x1-1)=0e2x2-a(x2-1)=0,两式相减得a=e2x2-e2x1x2-x1,不妨设x1<x2,由f′(x)=2e2x-a,得f′x1+x22=2e x1+x2-e2x2-e2x1x2-x1=e x1+x2x2-x1[2(x2-x1)+e x1-x2-e x2-x1],令t=x2-x1,h(t)=2t-e t+e-t,因为当t>0时,h′(t)=2-e t-e-t=2-(e t+e-t)<0,所以h(t)在(0,+∞)上单调递减,所以当t>0时,h(t)<h(0)=0,又e x1+x2x2-x1>0,故f′x1+x22<0.例5.已知函数f(x)=12x2-(a+1)x+2(a-1)ln x,g(x)=-32x2+x+(4-2a)ln x.(1)若a>1,讨论函数f(x)的单调性;(2)是否存在实数a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,若存在,求出a的范围,若不存在,请说明理由;(3)记h(x)=f(x)+g(x),如果x1,x2是函数h(x)的两个零点,且x1<x2<4x1,h′(x)是h(x)的导函数,证明:h2x1+x23>0.【解析】解:(1)f(x)的定义域为(0,+∞),f (x)=x-(a+1)+2(a-1)1x =x2-(a+1)x+2(a-1)x=(x-2)[x-(a-1)]x,①若a-1=2,则a=3,f (x)=(x-2)2x>0,f(x)在(0,+∞)上单调递增;②若a-1<2,则a<3,而a>1,∴1<a<3,当x∈(a-1,2)时,f′(x)<0;当x∈(0,a-1)及(2,+∞)时f′(x)>0,所以f(x)在(a-1,2)上单调递减,在(0,a-1)及(2,+∞)单调递增;③若a-1>2,则a>3,同理可得f(x)在(2,a-1)上单调递减,在(0,2)及(a-1,+∞)单调递增.(2)假设存在a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,不妨设0<x1<x2,只要f(x2)-f(x1)x2-x1+a>0,即f(x2)+ax2>f(x1)+ax1,令g(x)=f(x)+ax,只要g(x)在(0,+∞)上为增函数,g(x)=12x2-x+2(a-1)ln xg (x)=x-1+2(a-1)x=x2-x+2(a-1)x=x-122+2a-94x,只要g′(x)≥0在(0,+∞)恒成立,只要2a-94≥0,a≥98,故存在a∈98,+∞时,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立.(3)证明:由题意知,h(x)=12x2-(a+1)x+2(a-1)ln x+-32x2+x+(4-2a)ln x=2ln x-x2-ax,h(x1)=2ln x1-x21-ax1=0,h(x2)=2ln x2-x22-ax2=0两式相减,整理得2ln x2x1+(x1-x2)(x1+x2)=a(x2-x1),所以a=2ln x2x1x2-x1-(x2+x1),又因为h (x)=2x-2x-a,所以h2x1+x23=62x1+x2-23(2x1+x2)-a=-2x2-x1lnx2x1-3x2x1-32+x2x1-13(x1-x2),令t=x2x1∈(1,4),φ(t)=ln t-3t-3t+2,则φ(t)=(t-1)(t-4)t(t+2)2<0,所以φ(t)在(1,4)上单调递减,故φ(t)<φ(1)=0,又-2x2-x1<0,-13(x1-x2)>0,所以h2x1+x23>0.例6.设函数f(x)=x2-a ln x,g(x)=(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数F(x)=f(x)-g(x)有两个零点x1,x2.(ⅰ)求满足条件的最小正整数a的值;(ⅱ)求证:F′x1+x22>0.【解析】解:(Ⅰ)f (x)=2x-ax=2x2-ax(x>0).⋯(1分)当a≤0时,f (x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间.⋯(2分)当a>0时,由f (x)>0,得x>2a2,f(x)<0,得0<x<2a2,所以函数f(x)的单调增区间为2a2,+∞,单调减区间为0,2a2.⋯(3分)(Ⅱ)(i)F (x)=2x-(a-2)-ax =2x2-(a-2)x-ax=(2x-a)(x+1)x(x>0).因为函数F(x)有两个零点,所以a>0,此时函数f(x)在a2,+∞单调递增,在0,a 2单调递减.⋯(4分)所以F(x)的最小值Fa2<0,即-a2+4a-4a ln a2<0.⋯(5分)因为a>0,所以a+4ln a2-4>0.令h(a)=a+4ln a2-4,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1=ln8116-1>0,所以存在a0∈(2,3),h(a0)=0.⋯(6分)当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.⋯(7分)又当a=3时,F(3)=3(2-ln3)>0,F(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.⋯(8分)(ii)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,即x21-(a-2)x1-a ln x1-x22+(a-2)x2+a ln x2=0,x21+2x1-x22-2x2=ax1+a ln x1-ax2-a ln x2=a(x1 +ln x1-x2-ln x2).所以a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.⋯(10分)因为Fa2=0,当x∈0,a2时,F (x)<0,当x∈a2,+∞时,F (x)>0,故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2,⋯(11分)即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2,也就是证ln x1x2<2x1-2x2x1+x2.⋯(12分)设t=x1x2(0<t<1).令m(t)=ln t-2t-2t+1,则m(t)=1t-4(t+1)2=(t-1)2t(t+1)2.因为t>0,所以m (t)≥0,⋯(13分)当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.⋯(14分)例7.设函数f(x)=x2-a ln x-(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)有两个零点x1,x2(1)求满足条件的最小正整数a的值;(2)求证:fx1+x22>0.【解析】解:(Ⅰ)f′(x)=2x-(a-2)-ax=(2x-a)(x+1)x,(x>0).当a≤0时,f′(x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间;当a>0时,由f′(x)>0,得x>a2,f′(x)<0,得0<x<a2,所以函数f(x)的单调增区间为a2,+∞,单调减区间为0,a2;(Ⅱ)(1)由(Ⅰ)可知函数f(x)有两个零点,所以a>0,f(x)的最小值f a2<0,即-a2+4a-4a ln a2<0,∵a>0,∴a-4+4ln a2>0,令h(a)=a-4+4ln a2,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1>0∴存在a0∈(2,3),h(a0)=0,当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.又当a=3时,f(3)=3(2-ln3)>0,f32=341-4ln32<0,f(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.(2)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,∴a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,因为f′a2=0,当x∈0,a2时,f′(x)<0;当x∈a2,+∞时,f′(x)>0.故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2.也就是证ln x1x2<2x1-2x2x1+x2.设x1x2=t∈(0,1).令m(t)=ln t-2t-2t+1,则m′(t)=1t-4(t+1)2=(t-1)2t(t+1)2.∵t>0,所以m (t)≥0,当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.例8.已知函数f(x)=e x-12ax2(a∈R),其中e为自然对数的底数,e=2.71828⋯.f(x0)是函数f(x)的极大值或极小值,则称x0为函数f(x)的极值点,极大值点与极小值点统称为极值点.(1)函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断函数f(x)的极值点的个数,并说明理由;(3)当函数f(x)有两个不相等的极值点x1和x2时,证明:x1x2<ln a.【解析】解:(1)f′(x)=e x-ax≥0在(0,+∞)上恒成立,即a≤e xx在(0,+∞)上恒成立,令g(x)=e xx,x∈(0,+∞),g′(x)=e x⋅x-e xx2=e x(x-1)x2,在(0,1)上,g′(x)<0,g(x)单调递减,在(1,+∞)上,g′(x)>0,g(x)单调递增,所以g(x)≥g(1)=e,所以a≤e.所以a的取值范围为(-∞,e].(2)f′(x)=e x-ax,令g(x)=e x-ax,则g′(x)=e x-a,①当a<0时,g′(x)=e x-a>0,f′(x)=e x-ax在(-∞,+∞)上单调递增,又f′(0)=1>0,f′1a=e1a-1<0,于是f′(x)=e x-ax在(-∞,+∞)上有一个零点x1,x(-∞,x1)x1(x1,+∞) f′(x)-0+f(x)↓极小值↑于是函数f(x)的有1个极值点,②当a=0时,f(x)=e x单调递增,于是函数f(x)没有极值点,③当0<a≤e时,由g′(x)=e x-a=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(x)≥0,当且仅当x=ln a时,取“=”号,所以函数f(x)在(-∞,+∞)上单调递增,所以函数f(x)没有极值点.④当a>e时,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(ln a)=a(1-ln a)<0,f′(0)=1>0,又因为a>ln a,所以f′(a)=e a-a2>a2-a2=0,于是,函数f′(x)在(-∞,ln a)和(ln a,+∞)上各有一个零点,分别为x2,x3,x(-∞,x2)x2(x2,x3)x3(x3,+∞) f′(x)+0-0+f(x)↑极大值↓极小值↑于是f(x)有2个极值点,综上,当a<0时,函数f(x)有1个极值点,当0≤a≤e时,函数f(x)没有极值点,当a>e时,函数f(x)有2个极值点.(3)证明:当函数f(x)有两个不等的极值点x1和x2时,由(2)知a>e且1<x1<ln a<x2,f′(x1)=f′(x2)=0,令F(x)=f′(x)-f′(2ln a-x),F′(x)=(e x-a)2 e x,由F′(x)=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) F′(x)+0+F(x)↑非极值点↑F(x1)<F(ln a)=0,即f′(x1)<f′(2ln a-x1),即f′(x2)<f′(2ln a-x1),因为x2>ln a,2ln a-x1>ln a,f′(x)在(ln a,+∞)上单调递增,所以x2<2ln a-x1,即x1+x2<2ln a,又x1+x2>2x1x2,所以x1x2<ln a.例9.已知函数f(x)=ln x-1x,g(x)=ax+b.(1)若函数h(x)=f(x)-g(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)若直线g(x)=ax+b是函数f(x)=ln x-1x图象的切线,求a+b的最小值;(3)当b=0时,若f(x)与g(x)的图象有两个交点A(x1,y1),B(x2,y2),求证:x1x2>2e2.(取e为2.8,取ln2为0.7,取2为1.4)【解析】(1)解:h(x)=f(x)-g(x)=ln x-1x-ax-b,则h (x)=1x+1x2-a,∵h(x)=f(x)-g(x)在(0,+∞)上单调递增,∴对∀x>0,都有h (x)=1x +1x2-a≥0,即对∀x >0,都有a ≤1x +1x2,∵1x +1x2>0,∴a ≤0,故实数a 的取值范围是(-∞,0];(2)解:设切点x 0,ln x 0-1x 0 ,则切线方程为y -ln x 0-1x 0=1x 0+1x 20(x -x 0),即y =1x 0+1x 20x -1x 0+1x 20 x 0+ln x 0-1x 0,亦即y =1x 0+1x 20x +ln x 0-2x 0-1,令1x 0=t >0,由题意得a =1x 0+1x 20=t +t 2,b =ln x 0-2x 0-1=-ln t -2t -1,令a +b =φ(t )=-ln t +t 2-t -1,则φ (t )=-1t +2t -1=(2t +1)(t -1)t,当t ∈(0,1)时,φ (t )<0,φ(t )在(0,1)上单调递减;当t ∈(1,+∞)时,φ (t )>0,φ(t )在(1,+∞)上单调递增,∴a +b =φ(t )≥φ(1)=-1,故a +b 的最小值为-1;(3)证明:由题意知ln x 1-1x 1=ax 1,ln x 2-1x 2=ax 2,两式相加得ln x 1x 2-x 1+x 2x 1x 2=a (x 1+x 2),两式相减得lnx 2x 1-x 1-x 2x 1x 2=a (x 2-x 1),即ln x2x 1x 2-x 1+1x 1x 2=a ,∴ln x 1x 2-x 1+x 2x 1x 2=ln x2x 1x 2-x 1+1x 1x 2 (x 1+x 2),即ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1,不妨令0<x 1<x 2,记t =x 2x 1>1,令F (t )=ln t -2(t -1)t +1(t >1),则F ′(t )=(t -1)2t (t +1)2>0,∴F (t )=ln t -2(t -1)t +1在(1,+∞)上单调递增,则F (t )=ln t -2(t -1)t +1>F (1)=0,∴ln t >2(t -1)t +1,则ln x 2x 1>2(x 2-x 1)x 1+x 2,∴ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1>2,又ln x 1x 2-2(x 1+x 2)x 1x 2<ln x 1x 2-4x 1x 2x 1x 2=ln x 1x 2-4x 1x 2=2ln x 1x 2-4x 1x 2,∴2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1,令G(x)=ln x-2x,则x>0时,G(x)=1x+2x2>0,∴G(x)在(0,+∞)上单调递增,又ln2e-22e=12ln2+1-2e≈0.85<1,∴G(x1x2)=ln x1x2-2x1x2>1>ln2e-22e,则x1x2>2e,即x1x2>2e2.【同步练习】1.已知函数f(x)=ln x+2x-ax2,a∈R.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)设g(x)=f(x)+(a-4)x,试讨论函数g(x)的单调性;(Ⅲ)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=x1+x2,求证:x1+x2>12.【解析】解:(Ⅰ)因为f(x)=ln x+2x-ax2,所以f′(x)=1x+2-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+2-2a=0,解得:a=3 2.验证:当a=32时,f′(x)=1x+2-3x=-(3x+1)(x-1)x(x>0),易得f(x)在x=1处取得极大值.(Ⅱ)因为g(x)=f(x)+(a-4)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(Ⅲ)证明:当a=-2时,f(x)=ln x+2x+2x2,因为f(x1)+f(x2)+3x1x2=x1+x2,所以ln x1+2x1+2x21+ln x2+2x2+2x22+3x1x2=x1+x2,即ln x1x2+2(x21+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以当x1+x2=12时,x1x2=1,此时不存在x1,x2满足条件,所以x1+x2>1 2.2.已知函数f(x)=ln x+x-ax2,a∈R.(1)若f(x)在x=1处取得极值,求a的值;(2)设g(x)=f(x)+(a-3)x,试讨论函数g(x)的单调性;(3)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=0,求证:x1+x2>12.【解析】(1)解:因为f(x)=ln x+x-ax2,所以f′(x)=1x+1-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+1-2a=0,解得:a=1.验证:当a=1时,f′(x)=1x+1-2x=-(x-1)(2x+1)x(x>0),易得f(x)在x=1处取得极大值.(2)解:因为g(x)=f(x)+(a-3)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(3)证明:当a=-2时,f(x)=ln x+x+2x2,因为f(x1)+f(x2)+3x1x2=0,所以ln x1+x1+2x12+ln x2+x2+2x22+3x1x2=0,即ln x1x2+2(x12+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以x1+x2≤-1,因为当x1+x2=12时,x1x2=1,不满足t∈(1,+∞),所以x1+x2>1 2.3.已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.【解析】(1)解:由函数的解析式可得f (x)=1-ln x-1=-ln x,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由b ln a-a ln b=a-b,得-1a ln1a+1bln1b=1b-1a,即1a1-ln1a=1b1-ln1b,由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令x1=1a,x2=1b,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2-x1>1,先证2<x1+x2,即证x2>2-x1,即证f(x2)=f(x1)<f(2-x1),令h(x)=f(x)-f(2-x),则h′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2-x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e-x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e-x1),令φ(x)=f(x)-f(e-x),x∈(0,1),则φ (x)=-ln[x(e-x)],令φ′(x0)=0,x∈(0,x0),φ (x)>0,φ(x)单调递增,x∈(x0,1),φ (x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故limx→0+φ(x)=0,φ(1)=f(1)-f(e-1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1-ln x1)=x2(1-ln x2),又x1∈(0,1),故1-ln x1>1,x1(1-ln x1)>x1,故x1+x2<x1(1-ln x1)+x2=x2(1-ln x2)+x2,x2∈(1,e),令g(x)=x(1-ln x)+x,g′(x)=1-ln x,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1-ln x2)+x2<e,所以x1+x2<e,得证,则2<1a+1b<e.4.已知函数f(x)=ln x-x.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a,b为两个不相等的正数,ln a-ln b=a-b,证明:ab<1.【解析】解:(I)f′(x)=1x-1=1-xx,x>0,当0<x<1时,f′(x)>0,函数f(x)单调递增,当x>1时,f′(x)<0,函数f(x)单调递减,故函数在(0,1)上单调递增,在(1,+∞)上单调递减,(II)证明:由ln a-ln b=a-b,得ln a-a=ln b-b,令x1=a,x2=b,则x1,x2是f(x)=x的两根,不妨令x1∈(0,1),x2∈(1,+∞),则0<x1<1,0<1x2<1,要证ab<1,即证x1<1x2,即f(x1)=f(x2)<f1x2,令h(x)=f(x)-f1x=2ln x+1x-x,则h′(x)=2x-1x2-1=-(x-1)2x2<0,所以h(x)在(1,+∞)单调递减,h(x)<h(1)=0,所以f(x1)=f(x2)<f1x2 ,所以ab<1,5.已知函数f(x)=xe-x(x∈R).(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x) >g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.【解析】解:(Ⅰ)解:f′(x)=(1-x)e-x令f′(x)=0,解得x=1当x变化时,f′(x),f(x)的变化情况如下表x(-∞,1)1(1,+∞)f′(x)+0-f(x)增极大值减所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=1 e.(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)e x-2令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)e x-2于是F (x)=(x-1)(e2x-2-1)e-x当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0,所以F′(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e-1-e-1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1-1)(x2-1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.(2)若(x1-1)(x2-1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.根据(1)(2)得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而f(x1)>f(2-x2).因为x2>1,所以2-x2<1,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.6.已知函数f(x)=x-e a+x(a∈R).(1)若a=1,求函数f(x)在x=0处的切线方程;(2)若f(x)有两个零点x1,x2,求实数a的取值范围,并证明:x1+x2>2.【解析】解:(1)f(x)=x-e1+x的导数为f′(x)=1-e1+x,则函数f(x)在x=0处的切线斜率为1-e,又切点为(0,-e),则切线的方程为y=(1-e)x-e,即(e-1)x+y+e=0;(2)设函数g(x)=x-ln x+a,与函数f(x)具有相同的零点,g (x)=x-1x,知函数g(x)在(0,1)上递减,(1,+∞)上递增,当x→0,g(x)→+∞;可证当x∈(0,+∞)时,ln x<x-1,即-ln x=ln 1x≤1x-1,即此时g(x)=x-ln x+a<x+1x+a-1,当x→+∞时,g(x)→+∞,f(x)有两个零点,只需g(1)<0,即a<-1;证明:方法一:设函数F(x)=g(x)-g(2-x),(1<x<2)则F(x)=2x-2-ln x+ln(2-x),且F (x)=2(x-1)2x(x-2)<0对x∈(1,2)恒成立即当x∈(1,2)时,F(x)单调递减,此时,F(x)<F(1)=0,即当x∈(1,2)时,g(x)<g(2-x),由已知0<x1<1<x2,则1-x1∈(1,2),则有g(2-x1)<g(2-2+x1)=g(x1)=g(x2)由于函数g(x)在(1,+∞)上递增,即2-x1<x2,即x1+x2>2.方法二:故x2-x1=ln x2-ln x1=ln x2 x1.设x2x1=t,则t>1,且x2=tx1x2-x1=ln t,解得x1=ln tt-1,x2=t ln tt-1.x1+x2=(t+1)ln tt-1,要证:x1+x2=(t+1)ln tt-1>2,即证明(t+1)ln t>2(t-1),即证明(t+1)ln t-2t+2>0,设g(t)=(t+1)ln t-2t+2(t>1),g (t)=ln t+1t-1,令h(t)=g (t),(t>1),则h (t)=t-1t2>0,∴h(t)在(1,+∞)上单调增,g (t)=h(t)>h(1)=0,∴g(t)在(1,+∞)上单调增,则g(t)>g(1)=0.即t>1时,(t+1)ln t-2t+2>0成立,7.已知函数f(x)=axe x-(a-1)(x+1)2(其中a∈R,e为自然对数的底数,e=2.718128⋯).(1)若f(x)仅有一个极值点,求a的取值范围;(2)证明:当0<a<12时,f(x)有两个零点x1,x2,且-3<x1+x2<-2.【解析】(1)解:f (x)=ae x+axe x-2(a-1)(x+1)=(x+1)(ae x-2a+2),由f (x)=0得到x=-1或ae x-2a+2=0(*)由于f(x)仅有一个极值点,关于x的方程(*)必无解,①当a=0时,(*)无解,符合题意,②当a≠0时,由(*)得e x=2a-2a,故由2a-2a≤0得0<a≤1,由于这两种情况都有,当x<-1时,f (x)<0,于是f(x)为减函数,当x>-1时,f (x)>0,于是f(x)为增函数,∴仅x=-1为f(x)的极值点,综上可得a的取值范围是[0,1];(2)证明:由(1)当0<a<12时,x=-1为f(x)的极小值点,又∵f(-2)=-2ae2-(a-1)=-2e2-1a+1>0对于0<a<12恒成立,f(-1)=-ae <0对于0<a<12恒成立,f(0)=-(a-1)>0对于0<a<12恒成立,∴当-2<x<-1时,f(x)有一个零点x1,当-1<x<0时,f(x)有另一个零点x2,即-2<x1<-1,-1<x2<0,且f(x1)=ax1e x1-(a-1)(x1+1)2=0,f(x2)=ax2e x2-(a-1)(x2+1)2=0,(#)所以-3<x1+x2<-1,下面再证明x1+x2<-2,即证x1<-2-x2,由-1<x2<0得-2<-2-x2<-1,由于x<-1,f(x)为减函数,于是只需证明f(x1)>f(-2-x2),也就是证明f(-2-x2)<0,f(-2-x2)=a(-2-x2)e-2-x2-(a-1)(-x2-1)2=a(-2-x2)e-2-x2 -(a-1)(x2+1)2,借助(#)代换可得f(-2-x2)=a(-2-x2)e-2-x2-ax2e x2=a[(-2-x2)e-2-x2-x2e x2],令g(x)=(-2-x)e-2-x-xe x(-1<x<0),则g (x)=(x+1)(e-2-x-e x),∵h(x)=e-2-x-e x为(-1,0)的减函数,且h(-1)=0,∴g (x)=(x+1)(e-2-x-e x)<0在(-1,0)恒成立,于是g(x)为(-1,0)的减函数,即g(x)<g(-1)=0,∴f(-2-x2)<0,这就证明了x1+x2<-2,综上所述,-3<x1+x2<-2.8.已知函数f(x)=e x-ax(a为常数),f′(x)是f(x)的导函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当x>0时,求证:f(ln a+x)>f(ln a-x);(Ⅲ)已知f(x)有两个零点x1,x2(x1<x2),求证:f/x1+x22<0.【解析】证明:(Ⅰ)∵f′(x)=e x-a.当a≤0时,则f′(x)=e x-a>0,即f(x)在R上是增函数,当a>0时,由f′(x)=e x-a=0,得x0=ln a.当x∈(-∞,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.即f(x)在(-∞,ln a)上是减函数,在(ln a,+∞)上是增函数,(Ⅱ)证明:设g(x)=f(ln a+x)-f(ln a-x)(x>0)=[e ln a+x-a(ln a+x)]-[e ln a-x-a(ln a-x)]= a(e x-e-x-2x),∴g′(x)=a(e x+e x-2)≥2a e x∙e-x-2a=0,当且仅当x=0时等号成立,但x>0,∴g′(x)>0,即g(x)在(0,+∞)上是增函数,所以g(x)>g(0)=0∴不等式f(x0+x)>f(x0-x)恒成立.(Ⅲ)由(I)知,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最小为f(ln a),且f(ln a)<0.设A(x1,0),B(x2,0),0<x1<x2,则0<x1<ln a<x2.由(II)得f(2ln a-x1)=f(ln a+ln a-x1)>f(x1)=0.∵2ln a-x1=ln a+(ln a-x1)>ln a,x2>ln a,且f(x)在(ln a,+∞)上是增函数又f(2ln a-x1)>0=f(x2),∴2ln a-x1>x2.于是x1+x22<ln a,∵f(x)在(-∞,ln a)上减函数,∴fx1+x22<0.9.设函数f(x)=e x-ax+a,a∈R,其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f (x1x2)<0.【解析】解:(1)∵f(x)=e x-ax+a,∴f (x)=e x-a,若a≤0,则f (x)>0,则函数f(x)是单调增函数,这与题设矛盾.∴a>0,令f (x)=0,则x=ln a,当f (x)<0时,x<ln a,f(x)是单调减函数,当f (x)>0时,x>ln a,f(x)是单调增函数,于是当x=ln a时,f(x)取得极小值,∵函数f(x)=e x-ax+a(a∈R)的图象与x轴交于两点A(x1,0),B(x2,0)(x1<x2),∴f(ln a)=a(2-ln a)<0,即a>e2,此时,存在1<ln a,f(1)=e>0,存在3ln a>ln a,f(3ln a)=a3-3a ln a+a>a3-3a2+a>0,又由f(x)在(-∞,ln a)及(ln a,+∞)上的单调性及曲线在R上不间断,可知a>e2为所求取值范围.(2)∵e x1-ax1+a=0 e x2-ax2+a=0 ,∴两式相减得a=e x2-e x1x2-x1,记x2-x12=s(s>0),则f′x1+x22=e x1+x22-e x2-e x1x2-x1=ex1+x222s[2s-(e s-e-s)],设g(s)=2s-(e s-e-s),则g (s)=2-(e s+e-s)<0,∴g(s)是单调减函数,则有g(s)<g(0)=0,而e x1+x222s>0,∴f′x1+x22<0.又f (x)=e x-a是单调增函数,且x1+x22>x1x2,∴f′(x1x2)<0.10.设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求f(x)的单调区间和极值点;(2)证明:f′(x1x2)<0(f′(x)是f(x)的导函数);(3)证明:x1x2<x1+x2.【解析】解:(1)设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,所以函数f(x)不单调,∵f (x)=e x-a=0有实数解,所以a>0,解得x=ln a,因为x<ln a,f (x)<0,f(x)单调递减,x>ln a时,f (x)>0,f(x)单调递增,且ln a是极小值点;f(ln a)极小值=e ln a-a ln a+a=2a2-ln a,由题意得,f(ln a)<0,所以a>e2,所以函数f(x)的单调递增区间(-∞,ln a),单调递减区间(ln a,+∞),极小值点是ln a,无极大值点,且a>e2.(2)证明:∵e x1-ax1+a=0 e x2-ax2+a=0 ,两式相减可得,a=e x2-e x1x2-x1,令s=ex2-x12(s>0),则fx1+x22=e x1+x22-e x2-e x1x2-x1,=e x1+x222s[2s-(e s-e-s)],令g(s)=2s-(e s-e-s),则g′(s)=2-(e s+e-s)<0,所以g(s)单调递减,g(s)<g(0)=0,而e x1+x222s>0,∴fx1+x22<0,又x1+x22>x1x2,∴f′(x1x2)<0;(3)证明:由e x1-ax1+a=0e x2-ax2+a=0,可得e x2-x1=x2-1x1-1,∴e(x2-1)-(x1-1)=x2-1 x1-1,令m=x1-1,n=x2-1,则0<m<1<n,∴e n-m=nm,设t=nm,则t>1,n=mt,∴e(t-1)m=t,∴m=ln tt-1,n=t ln tt-1,∴mn=t(ln t)2 (t-1)2,要证明:x1x2<x1+x2,等价于证明:(x1-1)(x2-1)<1,即证mn<1,即证t(ln t)2(t-1)2<1,即证ln tt-1<1t,即证ln t<t-1t ,令g(t)=2ln t-t+1t,(t>1),g′(t)=2t -1-1t2=-(t-1)2t2<0,∴g(t)在(1,+∞)上单调递减,∵t>1,故g(t)<0,∴2ln t-t+1t<0,∴ln t<t-1t,从而有:x1x2<x1+x2.11.已知函数f(x)=x2ln x+ax(a∈R)在x=1处的切线与直线x-y+2=0平行.(1)求实数a的值,并求f(x)的极值;(2)若方程f(x)=m有两个不相等的实根x1,x2,求证:x21+x22>2e.【解析】解:(1)函数f(x)的定义域为(0,+∞),f (x)=2x ln x+x-ax2,由题意知f′(1)=1-a=1,∴a=0.∴f′(x)=2x ln x+x=x(2ln x+1),令f′(x)=0,则x=e e,当x∈0,e e时,f′(x)<0;x∈e e,+∞时,f′(x)>0.∴f(x)的极小值为f ee=-12e,证明:(2)由(1)知f(x)=x2ln x,由f(x1)=f(x2)=m,得x12ln x1=x22ln x2,即2x12ln x1=2x22ln x2,所以x12ln x12=x22ln x22.∵x1≠x2,不妨设x1<x2,令t1=x12,t2=x22,h(t)=t ln t(t>0),则原题转化为h(t)=2m有两个实数根t1,t2(t1<t2),又h′(t)=1+ln t,令h′(t)>0,得t>e-1;令h′(t)<0,得t<e-1,∴h(t)在(0,e-1)上单调递减,在(e-1,+∞)上单调递增,又t→0+时,h(t)→0,h(1)=0,h(e-1)=-e-1,由h(t)图象可知,-e-1<2m<0,0<t1<e-1<t2<1.设g(t)=h(t)-h2e-t=t ln t-2e-tln2e-t,t∈0,1e,则g (t)=(ln t+1)--ln2e-t-1=2+ln t2e-t.当0<t<1e时,t2e-t=-t-1e2+1e2<1e2,则g′(t)<0∴g(t)在0,1 e上单调递减.又∵g1e=h1e -h2e-1e=0∴t∈0,1e时,g(t)>0,得到g(t1)=h(t1)-h2e-t1>0,即h(t1)>h2e-t1,又∵h(t1)=h(t2),∴h(t2)>h2e -t1,又0<t1<1e,则2e-t1>1e,且1>t2>1e,h(t)在1e,+∞上单调递增,∴t2>2e -t1,即t1+t2>2e,即x12+x22>2e.。
专题08 隐零点问题-冲刺2019年高考数学压轴题微切口突破(解析版)

专题08 隐零点问题有一种零点客观存在,但不可解,然而通过研究其取值范围、利用其满足的等量关系实现消元、换元以及降次达到解题的目的.这类问题就是隐零点问题.类型一 根据隐零点化简求范围典例1. 已知函数()ln f x ax x x =+的图像在点x e =(其中e 为自然对数的底数)处的切线斜率为3. (1)求实数a 的值; (2)若k Z ∈,且()1f x k x <-对任意1x >恒成立,求k 的最大值; 【答案】3【解析】解析:(1)()'1ln f x a x =++,由()3f e =解得1a =; (2)()ln f x x x x =+,()ln ()11f x x x xk g x x x +<=--,22ln '()(1)x xg x x --=-,令()2ln h x x x =--,有1'()10h x x=->,那么()(1)1h x h >=-. 不妨设0()0h x =,由(3)0h <,(4)0h <,则可知0(3,4)x ∈,且00ln 2x x =-. 因此,当()0h x >时,()'0g x >,0x x >;当()0h x <时,()'0g x <,0x x <; 即可知[]000000min 00(ln 1)(1)()()11x x x x g x g x x x x +-====--,所以0k x ≤,得到满足条件的k 的最大正整数为3.类型二 根据隐零点分区间讨论典例2 已知函数2()2ln (0)f x x t x t =->,t 为何值时,方程()2f x tx =有唯一解. 【答案】(,0){1}-∞ 【解析】222ln 22(ln )x t x tx t x x x -=⇔+=, 当ln 0x x +=时,有t R ∈; 设()ln u x x x =+,1'()10u x x =+>;又(1)10u =>,11()10u e e=-<,不妨设00ln 0x x +=, 则可知01(,1)x e∈. 当ln 0x x +≠时,得到22()ln x t g x x x=+; 2222ln (12ln )'()(ln )(ln )x x x x x x x g x x x x x -+-+==++, 令()12ln g x x x =-+,易知(1)0g =,且1x >时,()0g x >;1x <时,()0g x <;综上可知()g x 在区间00(0,),(,1)x x 上为减函数,在区间(1,)+∞上为增函数;画图函数图像:因此,可知所求t 的范围为(,0){1}-∞.类型三 根据隐零点构造新函数典例3 已知函数()21x f x e x ax =---,当0x ≥时,()0f x ≥,求实数a 的取值范围. 【答案】1(,]2-∞【解析】()'12x f x e ax =--,首先,当0a ≤时,在[0,)+∞上()'0f x ≥恒成立,则有()()00f x f ≥=. 其次,当0a >时,令()x g x e =,()21h x ax =+,由题1可知,当021a <≤,即102a <≤时,()()g x h x ≥.此时()'0f x ≥,同样有()0f x ≥.再者,当12a >时,函数()y g x =与()y h x =相交于点()0,1和()00,x y .同时,当()00,x x ∈时,()'0f x <;当()0,x x ∈+∞时,()'0f x >. 即可知()()02000min1x f x f x e x ax ⎡⎤==---⎣⎦,将0012x e ax =+代入得到:()00000112x x e f x e x x -=---⋅ ()00x >,令()112x xe F x e x x -=---⋅()0x >,则()()11'2x e x F x --=. 又由变式2可知()1xx e-+-≤,那么()1'02x x e e F x -⋅-≤≤,即()F x 在区间()0,+∞上递减,因此有()()000f x f <=,与()0f x ≥矛盾,故12a >不合题意. 综上可知,满足题意的实数a 的取值范围为1(,]2-∞.1.已知函数 , .( 且为常数, 为自然对数的底) (1)讨论函数 的极值点个数;(2)当 时, 对任意的 恒成立,求实数 的取值范围. 【答案】(1)当 时,无极值点;当 时,有且仅有1个极值点;(2) 【解析】(1) 的定义域为 ,,因为函数 在 上恒成立, 所以函数 在区间 上单调递增,且值域为 , ①当 时, 在区间 上恒成立, 即 ,故 在 上单调递增, 所以无极值点; ②当 时,方程 有唯一解,设为 , 当 时, ,函数 单调递减, 当 时, ,函数 单调递增, 所以 是函数 的极小值点, 即函数 只有1个极值点.(2)当 时,不等式 对任意的 恒成立, 即 对任意的 恒成立,即对任意的恒成立,记,,记,因为在恒成立,所以在上单调递增,且,,所以存在使得,且时,,,函数单调递减;当时,,,函数单调递增;. 所以,即,又因为,,,所以,因此,所以,解得.综上,实数的取值范围是.2.已知.(1)若是上的增函数,求的取值范围;(2)若函数有两个极值点,判断函数零点的个数.【答案】(1) (2) 三个零点【解析】(1)由得,由题意知恒成立,即,设,,时,递减,时,,递增;故,即,故的取值范围是.(2)当时,单调,无极值;当时,,一方面,,且在递减,所以在区间有一个零点. 另一方面,,设,则,从而在递增,则,即,又在递增,所以在区间有一个零点.因此,当时在和各有一个零点,将这两个零点记为,,当时,即;当时,即;当时,即:从而在递增,在递减,在递增;于是是函数的极大值点,是函数的极小值点.下面证明:,由得,即,由得,令,则,①当时,递减,则,而,故;②当时,递减,则,而,故;一方面,因为,又,且在递增,所以在上有一个零点,即在上有一个零点.另一方面,根据得,则有:,又,且在递增,故在上有一个零点,故在上有一个零点.又,故有三个零点.3.已知函数,.(Ⅰ)令①当时,求函数在点处的切线方程;②若时,恒成立,求的所有取值集合与的关系;(Ⅱ)记,是否存在,使得对任意的实数,函数在上有且仅有两个零点?若存在,求出满足条件的最小正整数,若不存在,请说明理由.【答案】(1)①;②见解析;(2)2【解析】(1)①由题意,可得,则,所以,所以在处的切线方程为②由,即则,,因为在上单调递减,所以,存在,使得,函数在上单调递增,在上单调递减,,由得,,∴,所以的所有取值集合包含于集合.(Ⅱ)令,(1),,由于,,,,,由零点存在性定理可知,,函数在定义域内有且仅有一个零点.(2),,,,,同理可知,函数在定义域内有且仅有一个零点.(3)假设存在,使得,则,消,得.令,,所以单调递增.∵,,∴,此时,所以满足条件的最小正整数.4.已知函数(为自然对数的底数).(1)记,求函数在区间上的最大值与最小值;(2)若,且对任意恒成立,求的最大值.【答案】(1)见解析;(2)【解析】(1)∵,∴,令,则,所以函数在区间上单调递减,在区间单调递增,∴,.(2)∵对任意恒成立,∴对任意恒成立,∴对任意恒成立.令,则.由于,所以在上单调递增.又,,所以存在唯一的,使得,且当时,,时,.即在单调递减,在上单调递增.∴.又,即,∴.∴.∵,∴.又∵对任意恒成立,∴,又,∴.5.己知函数.(1)讨论函数的单调性;(2)若函数有两个零点,,求的取值范围,并证明.【答案】(1)见解析;(2)见证明【解析】(1)解:因为,函数的定义域为,所以.当时,,所以函数在上单调递增.当时,由,得(负根舍去),当时,,当时,,所以函数在上单调递减;在上单调递增.综上所述,当时,函数在上单调递增;当时,函数在上单调递减,在上单调递增(2)先求的取值范围:方法1:由(1)知,当时,在上单调递增,不可能有两个零点,不满足条件.当时,函数在上单调递减,在上单调递增,所以,要使函数有两个零点,首先,解得.因为,且,下面证明.设,则.因为,所以.所以在上单调递增,所以.所以的取值范围是.方法2:由,得到.设,则.当时,,当时,,所以函数在上单调递减,在上单调递增.所以由.因为时,,且,要使函数有两个零点,必有.所以的取值范围是.再证明:方法1:因为,是函数的两个零点,不妨设,令,则.所以即.所以,即,,.要证,即证.即证,即证.因为,所以即证,或证.设,.即,.所以.所以在上单调递减,所以.所以.方法2:因为,是函数有两个零点,不妨设,令,则.所以即.所以,即,,.要证,需证.即证,即证.因为,所以即证.设,则,.所以在上单调递减,所以.所以.方法3:因为,是函数有两个零点,不妨设,令,则.所以即.要证,需证.只需证.即证,即证.即证.因为,所以,即.所以.而,所以成立.所以.方法4:因为,是函数有两个零点,不妨设,令,则.由已知得即.先证明,即证明.设,则.所以在上单调递增,所以,所证不等式成立.所以有.即.因为(),所以,即.所以.方法5:要证,其中,,即证.利用函数的单调性,只需证明.因为,所以只要证明,其中.构造函数,,则.因为(利用均值不等式),所以在上单调递减.所以.所以在上恒成立.所以要证的不等式成立.6.已知函数.(无理数)(1)若在单调递增,求实数的取值范围;(2)当时,设函数,证明:当时,.(参考数据)【答案】(1);(2)证明见解析.【解析】(1)函数f(x)的定义域为(0,+∞)在单调递增,在(1,+∞)恒成立,设h(x)=(x+x2)e x-1-,由题意h(x)≥0在(1,+∞)恒成立,h'(x)=e x-1(x2+3x+1),当x∈(1,+∞)时,x2+3x+1>0,故h'(x)>0,h(x)在(1,+∞)单调递增,所以h(x)>h(1)=2-,故2-≥0,≤2,综上∈(-∞,2].(2)当=0时,f(x)=xe x-1,g(x)=e x-x2-x,g'(x)=e x-2x-1,设m(x)=e x-2x-1,则m'(x)=e x-2,令m'(x)=0,解得x=ln2,当x∈(0,ln2)时,m'(x)<0,m(x)单调递减,当x∈(ln2,+∞)时,m'(x)>0,m(x)单调递增.因此m(x)≥m(ln2)=e ln2-2ln2-1=1-2ln2<0,即g'(ln2)=1-2ln2<0,,又g'(0)=0,,故存在x0∈(ln2,),使g'(x0)=0,即,.当x∈(0,x0)时,g'(x)<0,g(x)单调递减,x∈(x0,+∞)时,g'(x)>0,g(x)单调递增,,由于x0∈(ln2,),函数单调递减,故所以,当x>0时,.7.已知函数(1)若,求函数的极值和单调区间;(2)若,在区间上是否存在,使,若存在求出实数的取值范围;若不存在,请说明理由.【答案】(1) 函数的单调递减区间为,单调递增区间为极小值为3,无极大值(2)见解析【解析】(1)当时,,且时,时,有极小值故函数的单调递减区间为,单调递增区间为极小值为3,无极大值.(2)时,,时为函数的唯一极小值点又,当时在区间上若存在,使,则,解得当时,在为单调减函数,,不存在,使综上所述,在区间上存在,使,此时8.已知函数(1)若=1时,求函数的最小值;(2)若函数有两个零点,求实数a的取值范围.【答案】(1)0 (2)0【解析】解:(1),,则,当时,,函数单调递减,当时,为增,在处取最小值0.(2)由,得2,∴当时,2函数在0,上单调递减,∴当时,在0,上最多有一个零点.∵有两个零点,∴ .令2,,显然有一正根和一负根,∴在0,上只有一个零点,设这个零点为,当时,;当x,时,;∴函数在上单调递减,在x,上单调递增,要使函数在0,上有两个零点,只需要函数的极小值,即,22,2可得在0,上是增函数,且 ,∴ 0由,得∴0 2 2,即0 .9.设函数,其中为自然对数的底数.(1)若,求的单调区间;(2)若,,求证:无零点.【答案】(1)见解析;(2)见解析【解析】(1)若,则,.当时,,单调递减,当时,,单调递增.的单调递减区间为,单调递增区间为.(2)由可知,,当时,,显然没有零点;当时,设,,在单调递增,又h(0)=﹣a<0,h(2)=2e﹣a>0,∴h(x)在(0,2)上存在唯一一个零点,不妨设为x0,则x0a,∴当x∈(0,x0)时,h(x)<0,即g′(x)<0,当x∈(x0,+∞)时,h(x)>0,即g′(x)>0,∴g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,∴g(x)的最小值为g(x0)alnx0,∵x0a,∴﹣1,两边取对数可得x0﹣1=lna﹣lnx0,即lnx0=lna+1﹣x0,∴g(x0)a(lna+1﹣x0)ax0﹣alna﹣a≥2a﹣alna﹣a=a﹣alna,(当且仅当x0=1时取等号),令m(a)=a﹣alna,则m′(a)=﹣lna,∴当a∈(0,1)时,m′(a)>0,当a∈(1,e]时,m′(a)<0,∴m(a)在(0,1)上单调递增,在(1,e]上单调递减.∴当0<a≤e时,m(a)≥0,当且仅当a=e时取等号,由x0a可知当a=1时,x0=1,故当a=e时,x0≠1,故g(x0)>m(a)≥0,∴g(x0)>0.∴当0≤a≤e时,g(x)没有零点.10.已知函数(其中是自然对数的底数,,)在点处的切线方程是.(I)求函数的单调区间;(II)设函数,若在上恒成立,求实数的取值范围.【答案】(I)递减区间为,单调递增区间为;(II)【解析】(I)由条件可知,对函数求导得,于是,解得.所以,,令得,于是当时,,函数单调递减;当时,,函数单调递增.故函数的单调递减区间为,单调递增区间为(II)由(I)知,解法1:要使在上恒成立,等价于在上恒成立.令,则只需即可..令,则,所以在上单调递增,又,,所以有唯一的零点,且,在上单调递减,在上单调递增,因,两边同时取自然对数,则有,即,构造函数,则,所以函数在上单调递增,因,所以,即,所以,即,于是实数的取值范围是.解法2:要使在上恒成立,等价于在上恒成立.先证明,令,则.于是当时,,单调递减;当时,,单调递增,所以,故(当且仅当时取等号).所以当时,有,所以,即,当且仅当时取等号,于是实数的取值范围是.。
第13讲 函数的零点个数问题的求解方法-高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法.(2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组:(1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】【例1 】已知函数2()32(1)(2)f x x a x a a =+--+区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( )A .4B .5C .6D . 7【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1xe f x ax=+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个研究函数的单调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln ,1,02f x x m xg x x m x m =-=-+>. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是1(1)2,1(,12+;()f x 的单调减区间是1(,)2-∞-,1(,12-,(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得1x =±,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是因此()f x的单调增区间是1(1)2,1(,12;()f x 的单调减区间是1(,)2-∞-,1(,12--,(1)+∞; 【反馈检测3答案】(1)单调递增区间是)+∞, 单调递减区间是(;(2)1.学科@网【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x x f x x+∞=.当0x <<()'0f x <,函数()f x 单调递减,当x >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是)+∞, 单调递减区间是(.(2)令()()()()211l n ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,综上,函数()F x 有唯一零点,即两函数图象总有一个交点.。
高中数学选择性必修二 精讲精炼 拓展四 导与零点、不等式等综合运用(精练)(含答案)
拓展四 导数与零点、不等式等综合运用(精练)【题组一 零点问题】1.(2021·河北邢台·高二月考)已知函数()f x '满足()()()()43,00,11xxf x f x x f f e e -===+',则函数()()1F x f x =-的零点个数为( )A .0B .1C .2D .3【答案】B【解析】当0x ≠时,由()()43xxf x f x e x -=',可得()()3263xx f x x f x e x ='-,则()()3263x x f x x f x xe '-=,即()'3x f x x e ⎡⎤=⎢⎥⎣⎦,所以()3.x e f x C x =+因为()11f e =+,所以1=C ,故()()()310.xe f x x x =+≠因为()00f =,所以()()31xf x x e =+,则()()233.xe f x x x ⎡=+'⎤+⎣⎦设()()33x g x x e =++,则()()4x g x x e +'=, 所以()g x 在(),4-∞-上单调递减,在()4,-+∞上单调递增,所以()4min ()430e g x g -=-=-+>,所以()f x '0,则()f x 在(),-∞+∞上单调递增,()()1F x f x =-在(),-∞+∞上也单调递增,因为()()00110,F f =-=-<()()111110F f e e =-=+-=>, 所以(0)(1)0F F <,所以()F x 有且只有1个零点. 故选:B2.(2021·河南南阳·高二月考(理))已知函数2()(2)(2)f x x x a a =->,若函数()(()1)g x f f x =+恰有4个零点,则a 的取值范围是( ) A .(3,4) B .(3,)+∞ C .(2,3) D .(4,)+∞【答案】B【解析】因为2()(2)(2)f x x x a a =->的零点为0,2a,所以由()(()1)0g x f f x =+=,得()10f x +=或2a ,即()1f x =-或12a-.因为()2(3)(2)f x x x a a '=->,所以()f x 在(,0)-∞,,3a ⎛⎫+∞ ⎪⎝⎭上单调递增,在0,3a ⎛⎫⎪⎝⎭上单调递减,则()f x 的极大值为(0)0f =,极小值为3327a a f ⎛⎫=- ⎪⎝⎭.因为2a >,所以102a ->,所以结合()f x 的图象可得3127a-<-且102a ->,解得3a >.故选:B3.(2021·北京·首都师范大学附属中学高二期中)若函数()ln f x x ax =-有两个不同的零点,则实数a 的取值范围是( ) A .0,B .10,e ⎛⎫⎪⎝⎭C .()0,eD .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】解:因为函数()ln f x x ax =-有两个不同的零点, 所以方程ln 0x ax -=有两个不相等的实数根, 所以ln xa x=有两个不相等的实数根, 令ln x y x=,21ln 'xy x -=,所以当()0,x e ∈时,'0y >,函数ln xy x=为增函数, 当(),x e ∈+∞时,'0y <,函数ln xy x=为减函数, 由于当ln ln 0,,,0x xx x x x→→-∞→+∞→, 故函数ln xy x=的图像如图,、所以ln x a x =有两个不相等的实数根等价于10,a e ⎛⎫∈ ⎪⎝⎭. 故选:B4.(2021·陕西省洛南中学高二月考(理))函数3()12f x x x m =-++有三个零点,则m 的取值范围为_______. 【答案】(16,16)-【解析】因为函数3()12f x x x m =-++, 所以2()3123(2)(2)f x x x x '=-+=-+-,令()022()02f x x f x x ''>⇒-<<<⇒<-;或2x >,所以函数()f x 在()2-∞-,和(2),+∞上为减函数,在(22)-,上为增函数, 所以当2x =-时,()f x 取得极小值,且(2)16f m -=-, 当2x =时,()f x 取得极大值,且(2)16f m =+,又函数有三个零点,所以160160m m -<⎧⎨+>⎩,解得1616m -<<.故答案为:(1616)-,5.(2021·河北邢台·高二月考)已知方程e 0x x m --=有且只有1个实数根,则m =__________. 【答案】1【解析】设()e x f x x =-,则()e 1.xf x ='-令()0f x '=,得0x =,则()f x 在(),0-∞上单调递减,在()0,∞+上单调递增,所以()f x 在0x =处取得最小值()0 1.f =故若方程e 0x x m --=有且只有1个实数根,则 1.m =故答案为:16.(2021·福建·福州三中高二期中)已知函数1()x f x xe +=,若关于x 方程2()2()20()f x tf x t R -+=∈有两个不同的零点,则实数t 的取值范围为_______________.【答案】32⎫⎪⎭【解析】令1()x g x xe +=,111()(1)x x x g x e xe x e +++'=+=+,所以在(1,)-+∞上,()0g x '>,()g x 单调递增, 在(,1)-∞-上,()0g x '<,()g x 单调递减, 所以11()(1)1min g x g e -+=-=-=-, 又(0)0g =,所以作出()g x 与()f x 的图像如下:()11f -=,令()(0)k f x k =>,则方程2()2()20()f x tf x t R -+=∈为2220()k tk t R -+=∈,则2222k t k k k+==+, 令()2g k k k=+,作出()g k 的图像:当02t <<0t <<2y t =与()2g k k k=+没有交点, 所以方程22t k k=+无根,则()(0)k f x k =>无解,不合题意.当2t =t =时,2y t =与()2g k k k=+有1个交点,所以方程22t k k=+有1个根为k =()(0)k f x k =>有1个解,不合题意.当2t >t >2y t =与()2g k k k=+有2个交点,所以方程22t k k=+有2个根为10k <2k >若11k =时,则1()(0)k f x k =>有2个解,2()(0)k f x k =>有1个解, 所以()k f x =有3个解,不合题意.若101k <<时,则1()(0)k f x k =>有3个解,2()(0)k f x k =>有1个解, 所以()k f x =有4个解,不合题意.11k >>时,则1()(0)k f x k =>有1个解,2()(0)k f x k =>有1个解, 所以()k f x =有2个解,合题意. 因为22t k k=+,所以23t <32t <,综上所述,t 的取值范围为3)2.故答案为:3)2.7.(2021·安徽·芜湖一中高二期中(理))已知函数2()2ln x f x e x t -=--有四个零点,则实数t 的取值范围为___________. 【答案】()0,2ln 21-【解析】函数2()2ln x f x e x t -=--的零点个数,也就是22ln x y e x -=-与y t =的交点个数,设()22ln x g x ex -=-,显然函数的定义域为()0,∞+,()22x g x e x -'=-, 记()22x h x ex -=-,则有()20h =,()2220x h x e x-'=+>, ()h x ∴在()0,∞+上单调递增,所以当()0,2x ∈时,()0h x <,即()0g x '<, 所以()g x 在()0,2上单调递减,当()2,x ∈+∞时,()0h x >,即()0g x '>, 所以()g x 在()2,+∞上单调递增, 所以()()min 212ln 20g x g ==-<,同一直角坐标系中画出函数22ln x y e x -=-与y t =的大致图象,如图:由图可知,函数22ln x y e x -=-与y t =有四个交点,可得02ln 21t <<-. 故答案为:()0,2ln 21-8.(2021·江苏·无锡市青山高级中学高二期中)已知函数f (x )=3223,015,1x x m x mx x ⎧++≤≤⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为___. 【答案】()5,0-【解析】当01x ≤≤时,()3223f x x x m =++,则()2660f x x x '=+≥,故()f x 在[]0,1x ∈上是增函数.要使函数()f x 有两个不同的零点,则函数()f x 在[]0,1与(1,)+∞上各有1个零点,显然0m <.故()()0?1050f f m ⎧≤⎨+>⎩,解得:50m -<<,综上所述:实数m 的取值范围为()5,0-. 故答案为:()5,0-.9.(2021·河南·高二期中(理))已知函数()()3xx e x f a =-+.(1)当1a =时,求()f x 的最小值;(2)若()f x 有两个零点,求实数a 的取值范围. 【答案】(1)2-;(2)21,e ⎛⎫+∞ ⎪⎝⎭.【解析】(1)当1a =时,()3xf x e x =--,则()f x 的定义域为(),-∞+∞,且()1xf x e '=-,∴当(),0x ∈-∞时,()0f x '<;当()0,x ∈+∞时,()0f x '>;()f x ∴在(),0-∞上单调递减,在()0,∞+上单调递增, ()f x ∴的最小值为()02f =-.(2)由题意知:()f x 定义域为(),-∞+∞,()xf x e a '=-;①当0a ≤时,()0xf x e a '=->恒成立,()f x ∴在(),-∞+∞上单调递增,不符合题意;②当0a >时,令()0f x '=,解得:ln x a =,∴当(),ln x a ∈-∞时,()0f x '<,()f x 单调递减;当()ln ,x a ∈+∞时,()0f x '>,()f x 单调递增;即当0a >时,()f x 有极小值也是最小值为()()ln 2ln f a a a =-+. 又当x →-∞时,()f x →+∞;当x →+∞时,()f x →+∞;∴要使()f x 有两个零点,只需()ln 0f a <即可,则2ln 0a +>,解得:21a e >; 综上所述:若()f x 有两个零点,则a 的取值范围为21,e ⎛⎫+∞ ⎪⎝⎭.10.(2021·广东普宁·高二期中)设函数()cos x f x e x =,()'f x 为()f x 导函数. (1)求()f x 的单调区间;(2)令()()()2h x f x f x x π⎛⎫=+- ⎪⎝⎭',讨论当3,44x ππ⎡⎤∈⎢⎥⎣⎦时,函数()h x 的零点个数.【答案】(1)()f x 的单调递增区间为32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;(2)只有一个零点. 【解析】(1)由已知,有()(cos sin )x f x e x x '=-.当52,2()44x k k k ππππ⎛⎫∈++∈ ⎪⎝⎭Z 时,有sin cos x x >,得()0f x '<,则()f x 单调递减;当32,2()44x k k k ππππ⎛⎫∈-+∈ ⎪⎝⎭Z 时,有sin cos x x <,得()0f x '>,则()f x 单调递增. 所以()f x 的单调递增区间为32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (2)证明:由(1)有()e (cos sin )x f x x x '=-,令()()g x f x '=, 从而()2sin x g x e x '=-.当3,44x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<,故()()()()(1)()22h x f x g x x g x g x x ππ⎛⎫⎛⎫=+-+-=- ⎪ ⎪⎝⎭⎝'''⎭',因此,,42x ππ⎛⎫∈ ⎪⎝⎭时,()0h x '<,3,24x ππ⎛⎫∈ ⎪⎝⎭时,()0h x '>,()h x 在区间,42ππ⎛⎫ ⎪⎝⎭单调递减,在区间3,24ππ⎛⎫⎪⎝⎭单调递增.∴3,44x ππ⎛⎫∈ ⎪⎝⎭时,()02h x h π⎛⎫≥= ⎪⎝⎭.所以,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,函数()h x 只有一个零点. 11.(2021·江苏启东·高二期中)已知函数23(n )l f x x x c x d =-++,3(2)2f '=. (1)求()f x 的单调区间;(2)若2>d ,求证:()f x 只有1个零点.【答案】(1)单调增区间是10,2⎛⎫ ⎪⎝⎭和(1,)+∞;单调减区间是1,12⎛⎫⎪⎝⎭;(2)证明见解析.【解析】(1)依题意,函数()f x 的定义域为(0,)+∞, 由23(n )l f x x x c x d =-++,得()23cf x x x'=-+, 又()322f '=,即322322c ⨯-+= 计算得 1c =, 所以2231(21)(1)()x x x x f x x x-+--'==. 令()0f x '>,得102x <<或1x >;令()0f x '<,得112x <<, 所以()f x 的单调增区间是10,2⎛⎫ ⎪⎝⎭和(1,)+∞;单调减区间是1,12⎛⎫⎪⎝⎭;(2)由(1)知,()f x 在12x =处取极大值,在1x =处取极小值,当2>d 时,()f x 的极小值(1)20f d =->,所以()f x 在区间1,2⎛⎫+∞ ⎪⎝⎭上无零点.由于1(1)02f f ⎛⎫>> ⎪⎝⎭,而()2e e 3e e d d d df ----=-<3e 2e 0d d ---=-<,所以()f x 在区间10,2⎛⎫⎪⎝⎭上有且只有1个零点.所以2>d 时,()f x 只有1个零点. 【题组二 不等式证明问题】1.(2021·新疆·乌市八中高二月考(文))已知函数()ln f x x a x =-. (1)讨论的单调性;(2)若()1f x ≥恒成立,求a 的取值范围;(3)在(2)的条件下,()f x m =有两个不同的根12,x x ,求证:121x x m +>+. 【答案】(1)答案见解析;(2){}1;(3)证明见解析.【解析】解:(1)()ln f x x a x =-,则()()10a x a f x x x x-'=-=>, 当0a ≤时,()0f x '>恒成立,所以()f x 在()0,∞+上单调递增,当0a >时,令()0f x '=,得x a =,所以x a >时,()0f x '>;0x a <<时,()0f x '<, 所以()f x 在()0,a 上单调递减,在(),a +∞上单调递增; 综上:当0a ≤时,()f x 在()0,∞+上单调递增,当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增;(2)()f x 的定义域为(0,)+∞,且()1a x a f x x x'-=-=, 当0a =时,()f x x =,()f x 在()0,∞+上单调递增, 所以()1f x ≥不恒成立,不合题意;当0a <时,()0f x '>,()f x 在()0,∞+上单调递增, 且当0x →时,()f x →-∞,不合题意; 当0a >时,由()0f x '=得x a =,所以()f x 在()0,a 上单调递减,在(,)a +∞上单调递增, 所以()f x 在x a =处取到极小值,也是最小值()ln f a a a a =-, 由题意得()ln 1f a a a a =-≥恒成立, 令()ln g x x x x =-,()ln g x x '=-,()g x 在()0,1上单调递增,在(1,)+∞上单调递减,所以()()ln 11g x x x x g =-≤=,所以()ln 1f a a a a =-=,即1a =. (3)()ln f x x x =-,且()f x 在1x =处取到极小值1,又0x →时,()f x →+∞,x →+∞时,()f x →+∞,故1m 且1201x x <<<, 要证明:121x x m +>+,只需证明211x m x >+-,又2111x m x >+->, 故只需证明:()()211f x f m x >+-,即证:()11m f m x >+-, 即证:()111ln 1m m x m x >+--+-,即证:()111ln 1ln 0x x ---<,设()()()1ln 1ln 01h x x x x =---<<,则()()()11ln 11ln 1ln x x x h x x x x x -+'=-+=--,因为01x <<,所以()1ln 0x x ->,由(2)知ln 1≤-x x 恒成立, 所以11ln 1,ln 1x x x x x≤--≤-,即1ln 0x x x -+≥,所以()h x 在01x <<上为增函数,所以()()10h x h <=,即命题成立. 2.(2021·重庆十八中高二月考)已知函数()ln 11x aF x x x =--+. (1)设2a =,1x >,试比较()()()1h x x F x =-与0的大小; (2)若()0F x >恒成立,求实数a 的取值范围;(3)若a 使()F x 有两个不同的零点12 ,x x ,求证:21||a a x x e e --<-. 【答案】(1)()0h x >; (2)(,2]-∞; (3)证明见解析. 【解析】(1)当2a =时,()()ln (1)1()ln ,1111x a a x h x x x x x x x -=--=->-++, 可得()2222212(1)2(1)(1)4(1)(1)(1)(1)x x x x x h x x x x x x x x +-----'=-==+++,当1x >时,()0h x '>,所以()h x 在(1,)+∞上为单调递增函数, 因为(1)0h =,所以()(1)0h x h >=.(2)设函数()(1)ln 1a x f x x x -=-+,则()222(1)1ln (1)x a x f x x x x +-+'=-+,令()22(1)1g x x a x =+-+,当1a ≤时,当0x >时,()0g x >,当12a <≤时,2480a a ∆=-≤,可得()0g x ≥,所以当2a ≤时,()f x 在(0,)+∞上单调递增函数,且()10f =, 所以有()101f x x >-,可得()0F x >, 当2a >时,有2480a a ∆=->,此时()g x 有两个零点,设为12,t t ,且12t t <, 又因为122(1)0t t a +=->且121t t =,所以1201t t <<<, 在2(1,)t 上,()f x 为单调递减函数, 所以此时有()0f x <,即(1)ln 1a x x x -<+,可得ln 011x ax x -<-+,此时()0F x >不恒成立,综上可得2a ≤,即实数a 的取值范围是(,2]-∞. (3)若()F x 有两个不同的零点12,x x ,不妨设12x x <, 则12,x x 为()(1)ln 1a x f x x x -=-+的两个零点,且121,1x x ≠≠, 由(2)知此时2a >,并且()f x 在12(0,),(,)t t +∞为单调递增函数, 在12(,)t t 上为单调递减函数,且()10f =,所以12()0,()0f t f t ><,因为()()220,0,111aaa a a aa a f e f e e e e e --=-<=-><<++,且()f x 的图象连续不断, 所以1122(,),(,)a a x e t x t e -∈∈,所以2121a at t x x e e --<-<-,因为21t t -==综上可得:21||a a x x e e -<-<-.3.(2021·山东任城·高二期中)已知函数()ln ()R f x x a x a =-∈ (1)求()f x 的极值;(2)若()1f x ≥,求a 的值,并证明:()2.x f x x e >-【答案】(1)当0a ≤时,()f x 无极值;当0a >时,()f x 的极小值为()ln f a a a a =-,无极大值;(2)1,证明见解析.【解析】解:(1)()1(0)a x a f x x x x-∴=-=>' ①当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增. ()f x ∴在()0,∞+上无极值.②当0a >时,令()0f x '>得x a >;令()0f x '<得0x a <<. ()f x ∴在(0,)a 上单调递减,在(,)a +∞上单调递增. ()f x ∴的极小值为()ln f a a a a =-,无极大值.综上,当0a ≤时,()f x 无极值;当0a >时,()f x 的极小值为()ln f a a a a =-,无极大值. (2)由(1)可知,①当0a ≤时,()f x 在(0,)+∞上单调递增,而(1)1f =,∴当(0,1)x ∈时,()1f x <,即()1f x ≥不恒成立.②当0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.min ()()ln 1.f x f a a a a ∴==-≥令()ln (0)g a a a a a =->,则()1(ln 1)ln .g a a a '=-+=-当(0,1)∈a 时,()0g a '>,()g a 在(0,1)上单调递增; 当(1,)∈+∞a 时,()0g a '<,()g a 在(1,)+∞上单调递减.()(1) 1.g a g ∴≤=1.a ∴=设()()2ln (0)x x h x f x x e x x e x =-+=--+>,下面证明()0.h x > 当1a =时,()ln 1f x x x =-≥,即ln 1.x x ≤- ln 21,x x x ∴+≤-∴只要证21(*).x x e -<令()21,0x q x e x x =-+>,则'() 2.x q x e =-∴当(0,ln 2)x ∈时,'()0q x <,()q x 在(0,ln 2)上单调递减;当(ln 2,)x ∈+∞时,'()0q x >,()q x 在(ln 2,)+∞上单调递增. 3()(ln 2)3ln 4ln ln 40.q x q e ∴≥=-=-> (*)∴式成立,即()2x f x x e >-成立.4.(2021·河北邢台·高二月考)已知函数()21f x ax x=+. (1)当4a =-时,求()f x 的极值点.(2)当2a =时,若()()12f x f x =,且120x x <,证明21:3x x -.【答案】(1)极大值点为12-,无极小值点;(2)证明见解析.【解析】(1)当4a =-时,()214f x x x=-+,定义域为()(),00,-∞⋃+∞. 则()3221818.x f x x x x +=--=-'令()0f x '=,解得12x =-则函数()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,在()1,0,02∞⎛⎫-+ ⎪⎝⎭上单调递减.所以12x =-为()f x 的极大值点,所以()f x 的极大值点为12-,无极小值点.(2)当2a =时,()212f x x x=+,定义域为()(),00,-∞⋃+∞, 则()()22112212112,2f x x f x x x x =+=+因为()()12f x f x =,所以2212121122x x x x +=+, 整理得()()121212122.x x x x x x x x -+-=因为120x x <,所以()121212x x x x +=, 所以()()22212112122121444x x x x x x x x x x -=+-=-.设1210t x x =<,则()()322212214148,422t x x g t t g t t t t t '+-==-=+=. 令()0g t '=,解得2t =-,则()2144g t t t=-在(),2-∞-上单调递减,在()2,0-上单调递增,所以()()23g t g -=,即2213x x -,故213x x -.5(2021·山西晋中·高二期末(文))已知()ln f x ax x =-,()a ∈R (1)讨论()f x 的单调性;(2)求证:当1a =时,()xe f x ex ≥.【答案】(1)答案见解析;(2)证明见解析. 【解析】(1)()11ax f x a x x-'=-=,()0,x ∈+∞ 当a ≤0时,()0f x '<,()f x 在()0,∞+上单调递减; a >0时,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增.(2)证明:当a =1时,原不等式等价于()ln xe x x ex -≥欲证()ln xe x x ex -≥,只需证ln xex x x e -≥设()ln h x x x =-,()xexg x e =,()0x >()111x h x x x-'=-=,当()0,1x ∈ 时,()0h x '<,()h x 单调递减; 当()1,x ∈+∞时,()0h x '>,()h x 单调递增,∴()()min 11h x h ==()()1xe x g x e-'=,当()0,1x ∈)时,()0h x '>,()h x 单调递增; 当()1,x ∈+∞时,()0h x '<,()h x 单调递减,∴()()max 11g x g == 所以()()h x g x ≥,即原命题成立.6.(2021·河北·邯山区新思路学本文化辅导学校高二期中)已知函数()2ln xf x me x =-.(1)若1x =是()f x 的极值点,求m 的值,并判断()f x 的单调性. (2)当1m 时,证明:()2f x >. 【答案】(1)212m e=,()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)证明见解析. 【解析】(1)解:()212xf x me x'=-. 因为1x =是()f x 的极值点,所以()20121me f '=-=,得212m e =. 此时()221ln 2x e f x e x =-,()2211x e xf x e '=-. 令()()()2211,0,x e x e x m x f x =-∈'=+∞,则()222210x e m x e x=+'>', 所以()m x 在()0,∞+上单调递增,且()2211101e e m =-= 因此01x <<时,()0m x <;当1x >时()0m x >. 故当01x <<时()0f x '<;当1x >时()0f x '>.所以()f x 在()0,1上单调递减,在()1,+∞上单调递增.因此1x =是()f x 的极值点,故212m e =;()f x 在()0,1上单调递减,在()1,+∞上单调递增(2)证明:当1m 时,因为()222ln 2ln 2x xme x x e x f -=-->--,所以只需证2ln 20x e x -->即可.令()2ln 2x g e x x =--,则()()2211221xx g e xe x xx '=-=-. 令()()2210x h e x x x =->,则()22240x xh e x xe '=+>,因为12111042h e ⎛⎫=-< ⎪⎝⎭,1102h e ⎛⎫=-> ⎪⎝⎭,所以存在011,42x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,即020210xx e -=,即02012x e x =,也可化为002ln 20x x +=,即00ln 2ln 2x x =--. 所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()()0022000min 01ln 22ln 222x x g x g x e x e x x ==--==++-. 因为()12ln 222n x x x =++-在11,42⎛⎫⎪⎝⎭上单调递增, 所以()11ln 2042n x n ⎛⎫>=+> ⎪⎝⎭,故()min 0g x >,即()2f x >. 【题组三 恒成立问题】1.(2021·重庆十八中高二月考)设函数()2ln f x a x bx =-.(1)若12b =,讨论函数()f x 的单调性; (2)当0b =时,若不等式()f x m x ≥+对所有的31,2a ⎡⎤∈⎢⎥⎣⎦,(21,x e ⎤∈⎦恒成立,求实数m 的取值范围. 【答案】(1)答案见解析;(2)(22e ⎤-∞-⎦,.【解析】解:(1)若12b =,()21ln 2f x a x x =-()>0x ,则2()a a x f x x x x-'=-=,当0a ≤时,()0f x '<,所以函数()f x 在()0+∞,上单调递减, 当>0a 时,令()0f x '=,得x =负值舍去),当0x <<()0f x '>,函数()f x在(0上单调递增,当x ()0f x '<,函数()f x在)+∞上单调递减;(2)当0b =时,()ln f x a x =.若不等式()f x m x ≥+对所有的(231,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,则ln a x m x ≥+对所有的(231,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,即ln m a x x ≤-,对所有的(231,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立, 令()ln h a a x x =-,则()h a 为一次函数,min ()m h a ≤, (21,x e ⎤∈⎦,ln 0x ∴>,()h a ∴在3[1,]2a ∈上单调递增,min ()(1)ln h a h x x ∴==-,ln m x x ∴≤-对所有的(21,x e ⎤∈⎦都成立,令()ln g x x x =-,则()111x g x x x -'=-=,因为21x e <≤,所以()10xg x x-'=<,所以函数()ln g x x x =-在(21,e ⎤⎦单调递减,所以()()22222ln g x g e ee e -==-≥, 2min ()2m g x e ∴≤=-,所以实数m 的取值范围为(22e ⎤-∞-⎦,.2.(2021·江西省南昌县莲塘三中高二月考(理))已知函数32()f x ax bx cx d =+++为奇函数,且在1x =-处取得极大值2. (1)求()f x 的解析式;(2)若()()()221xf x m x x e ++≤-对于任意的[0,)x ∈+∞恒成立,求实数m 的取值范围.【答案】(1)()33f x x x =-;(2)1m .【解析】(1)由于()f x 为奇函数,所以0b d ==,()3f x ax cx =+,()'23f x ax c =+,所以()()1211303f a c a f a c c ⎧-=--==⎧⎪⇒⎨⎨-=+==-⎪⎩'⎩,所以()()()()3'23,33311f x x x f x x x x =-=-=+-,所以()f x 在区间()(),1,1,-∞-+∞上()()'0,f x f x >递增,在区间()1,1-上()()'0,f x f x <递减,在1x =-处取得极小值,符合题意.(2)依题意()()()221xf x m x x e ++≤-对于任意的[0,)x ∈+∞恒成立,即()()32321xx x m x x e -++≤-①.当0x =时,①恒成立.当0x >时,①可化为21x m xe x x ≤--+,构造函数()21x h x xe x x =--+,()01h =,()()()''121,00x h x x e x h =+--=,()()()()''''2221,00x x x h x x e xe e h =+-=+-=,当0x >时,()''0h x >,()'h x 递增,所以在区间()0,∞+上,()'0h x >,所以在区间()0,∞+上,()1h x >. 所以1m .。
2021届高中数学新人教版高中数学第一册方程的根与函数的零点含解析
3.1.1方程的根与函数的零点课标要点课标要点学考要求高考要求1.函数零点的概念a b2.f(x)=0有实根与y=f(x)有零点的关系b c3.函数零点的判定b c知识导图学法指导1.会用因式分解、公式法等求一元二次方程的根,并明白与相应二次函数图象间的关系.2.熟悉基本函数(一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数)的图象与性质,能根据图象判断零点的情况.知识点一函数的零点1.零点的定义对于函数y=f(x),把f(x)=0的实数x,叫做函数y=f(x)的零点.函数的零点不是一个点,而是一个实数,当自变量取该值时,其函数值等于零.2.方程的根与函数零点的关系知识点二函数零点的判定函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,.(3,4)(2)判断下列函数是否存在零点,如果存在,请求出.①f(x)=-x2-4x-4;②f(x)=4x+5;③f(x)=log3(x+1).=f(x)的图象,图见解析方程f(x)=0的实数根的个数就是函数思路二:画出函数图象,依据图象与x上是一条连续不断的)内至少有一个零解析:方法一 方程x +2=0(x <0)的根为x =-2,方程x 2-1=0(x >0)的根为x =1,所以函数f (x )有2个零点-2与1.方法二 画出函数f (x )=⎩⎪⎨⎪⎧x +2,x <0,x 2-1,x >0的图象,如图所示,观察图象可知,f (x )的图象与x 轴有2个交点,所以函数f (x )有2个零点.答案:C解决分段函数的零点个数问题的关键在于“对号入座”,即根据分段函数中自变量的取值范围,代入相应的解析式求解零点,注意自变量的取值范围.类型三 判断函数的零点所在的大致区间例3 设x 0是函数f (x )=ln x +x -4的零点,则x 0所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)【解析】 因为f (2)=ln 2+2-4=ln 2-2<0,f (3)=ln 3-1>ln e -1=0,f (2)·f (3)<0.由零点存在性定理,得x 0所在的区间为(2,3).【答案】 C根据零点存在性定理,对照选项,只需验证区间端点函数值的符号,或可借助于图象分析.方法归纳判断函数零点所在区间的三个步骤(1)代入:将区间端点值代入函数求出函数的值. (2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.跟踪训练3 函数f (x )=2x -1+x -5的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解析:f (2)=22-1+2-5<0,f (3)=23-1+3-5>0,故f (2)·f (3)<0,又f (x )在定义域内是增函数,则函数f (x )=2x -1+x -5只有一个零点,且零点所在的区间为(2,3).答案:C利用f(a)·f(b)<0求零点区间.[能力提升](20分钟,40分)11.二次函数f(x)=ax2+bx+c(x∈R)的部分对应值如下表:x -3-2-10123 4y 6m -4-6-6-4n 6 不求a,b,c的值,判断方程ax2+bx+c=0的两根所在的区间是()A.(-3,-1)和(2,4) B.(-3,-1)和(-1,1)C.(-1,1)和(1,2) D.(-∞,-3)和(4,+∞)解析:因为f(-3)=6>0,f(-1)=-4<0,所以在(-3,-1)内必有根,又由f(2)=-4<0,f(4)=6>0,所以在(2,4)内必有根.答案:A12.函数f(x)=ln x+x2-3的零点的个数是________.解析:方法一函数对应的方程为ln x+x2-3=0,所以原函数零点的个数即为函数y=ln x与y=3-x2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y=3-x2与y=ln x的图象只有一个交点.从而ln x+x2-3=0有一个根,即函数f(x)=ln x+x2-3有一个零点.方法二因为f(1)=-2,f(2)=ln 2+1>0.所以f(1)·f(2)<0,又f(x)=ln x+x2-3的图象在(1,2)上是不间断的,所以f(x)在(1,2)上必有零点,又f(x)在(0,+∞)上是递增的,所以零点只有一个.答案:113.函数f(x)=x2-2|x|+a-1有四个不同的零点,求实数a的取值范围.解析:由f(x)=0得a-1=2|x|-x2,因为函数f(x)=x2-2|x|+a-1有四个不同的零点,所以函数y=a-1与y=2|x|-x2的图象有四个交点,画出函数y =2|x|-x2的图象,如图所示,观察图象可知,0<a-1<1,所以1<a<2.即a的取值范围为(1,2).。
2022届高中数学导数通关练习专题10 利用导数研究函数零点问题(解析版)
22.已知函数 f (x) (x 2)ex a(x 1)2 . (1)讨论 f (x) 的单调性; (2)若 f (x) 有两个零点,求 a 的取值范围
学科 网(北 京)股 份有限 公司
1 D. ln x1
1 ln x2
2
三、填空题
13.已知函数 f (x) ln x x a 1有零点,则实数 a 的取值范围为___________.
14.已知函数
f
x
x2 ex
4a 有三个零点,则实数
a
的取值范围是_______________.
15.若函数 f (x) xex ln x x a 存在零点,则 a 的取值范围为___________.
2
4
2
5
6
所以要使 a
ln x x
f
x有
4
个整数解,则解为 x
2,3, 4,5 ,故应使 a
x
A.
,
e2
1 e
B.
,
e2
1 e
C.
e2
1 e
,
D.
e2
1 e
,
5.已知函数 f x m ln x m 在区间 e1, e 内有唯一零点,则实数 m 的取值范围为( ) x
A.
e e2
1
,
e 2
1
B.
1 e 1
,
e
e
1
C.
e e 1
,1
D.
1,
e 2
1
6.已知函数 f (x) a x2 2x 1 有且仅有两个零点,则实数 a ( ) x
2023年新高考数学一轮总复习核心考点分层训练 利用导数探究函数的零点问题带讲解
第21讲 利用导数探究函数的零点问题学校:___________姓名:___________班级:___________考号:___________【基础巩固】1.(2022·重庆·一模)定义在()0,∞+上的函数()f x 满足:当(]0,1x ∈时,()ln 1f x x x =+,当1x >时,()()10f x f a a x ⎛⎫⋅=> ⎪⎝⎭,若关于x 的方程()2f x =有两个不等实根,则a 的取值范围是( )A .()0,eB .()1,2C .22,2e ⎛⎫- ⎪⎝⎭ D .22,e ⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】解:当(]0,1x ∈时,()ln 1f x x '=+,故()f x 在10,e ⎛⎫⎪⎝⎭上单调递减,在1,1e ⎛⎤ ⎥⎝⎦上单调递增,111e e f ⎛⎫=- ⎪⎝⎭,()11f =,0x →时()1f x →,当1x >时()10f x f a x ⎛⎫⋅=> ⎪⎝⎭,故()f x 在()1,e 上单调递增,在()e,+∞上单调递减,1x →时()f x a →,x →+∞时()f x a →,故()2f x =有两个不等实根只需()2e a f <<,即1212e a ⎛⎫-<< ⎪⎝⎭.故选:C2.(2022·河北·模拟预测)已知实数1x ,2x 满足131e e x x =,()622ln 3e x x -=,则12x x =( )A .2eB .5eC .6eD .7e【答案】C【解析】解:由条件得1>0x ,32e x >,令2ln 3t x =-,0t >,则32e t x +=,由条件622(ln 3)e x x -=,则633e e e e t t t t +==,令()e x f x x =,(0)x >,则()(1)e x f x x '=+,显然当0x >时,()0f x '>,()f x 在()0,∞+上单调递增.故由131e e x x =,3e e t t =可得12ln 3x t x ==-,61222(ln 3)e x x x x ∴=-=.故选:C .3.(2022·湖北·襄阳五中模拟预测)已知函数()()2e 1,0ln 1,0x x f x x x -⎧-<⎪=⎨+≥⎪⎩,若关于x 的方程()0f x kx -=有两个不同的实数根,则k 的取值范围为( ) A .()(),20,1-∞-⋃ B .()(),10,1-∞-⋃ C .()(),00,1-∞⋃ D .()(),00,∞-+∞【答案】A【解析】对函数2e 1x y -=-求导得22e x y -'=-,对函数()ln 1y x =+求导得11y x '=+, 作出函数()f x 的图象如下图所示:当直线y kx =与曲线()ln 1y x =+相切于原点时,1101k ==+, 当直线y kx =与曲线2e 1x y -=-相切于原点时,2k =-.结合图象可知,当2k <-或01k <<时,直线y kx =与函数()f x 的图象有两个交点, 故选:A.4.(2022·天津·南开中学模拟预测)设函数21()2nxf x x ex a x=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是A .21(0]e e ,-B .21(0]e e+,C .21[)e e-+∞, D .21(]e e-∞+,【答案】D 令()2ln 20x f x x ex a x =--+=,则2ln 2(0)x a x ex x x =-++>,设()2ln 2x h x x ex x=-++,令()212h x x ex =-+, ()2ln x h x x=,则()'221ln x h x x -=,发现函数()()12,h x h x 在()0,e 上都是单调递增,在[),e +∞上都是单调递减,故函数()2ln 2xh x x ex x =-++在()0,e 上单调递增,在[),e +∞上单调递减,故当x e =时,得()2max 1h x e e =+,所以函数()f x 至少存在一个零点需满足()maxa h x ≤,即21a e e≤+.应选答案D .点睛:解答本题时充分运用等价转化与化归的数学思想,先将函数解析式()2ln 2xf x x ex a x=--+中的参数a 分离出来,得到2ln 2(0x a x ex x x =-++>,然后构造函数()2ln 2x h x x ex x=-++,分别研究函数()212h x x ex =-+, ()2ln x h x x =的单调性,从而确定函数()2ln 2x h x x ex x=-++在()0,e 上单调递增,在[),e +∞上单调递减,故当x e =时,得()2max 1h x e e =+,所以函数()f x 至少存在一个零点等价于()max a h x ≤,即21a e e≤+.使得问题获解.5.(2022·江苏南京·模拟预测)已知函数()2xmf x xe mx =-+在(0,)+∞上有两个零点,则m 的取值范围是( ) A .()0,e B .()0,2eC .(,)e +∞D .(2,)e +∞【答案】D【解析】解:函数()2xmf x xe mx =-+在(0,)+∞上有两个零点,等价于()x h x xe =与1()()2g x m x =-有两个不同的交点,()g x 恒过点1(,0)2,设()g x 与()h x 相切时切点为(,)a a ae ,因为'()(1)x h x e x =+,所以切线斜率为(1)a e a +,则切线方程为(1)()a a y ae a e x a -=+-,当切线经过点1(,0)2时,解得1a =或12a =-(舍),此时切线斜率为2e ,由函数图像特征可知:函数()2xmf x xe mx =-+在(0,)+∞上有两个零点,则实数m 的取值范围是(2,)e +∞. 故选:D.6.(2022·辽宁沈阳·一模)若函数()322x f x e x x ax =+--,则a e >是()f x 在()0,∞+有两个不同零点的( ) A .充分不必要条件 B .必要不充分条件 C .充分且必要条件D .既不充分也不必要条件【答案】A 【解析】32()e 2(0)x f x x x ax x =+-->,令()0f x =, 则2e 2x a x x x =+-,令2e ()2(0)x g x x x x x =+->,322e e 22()x x x x xx x g -+-'=,令()0g x '=, 得322()(e e 2210e 2)x x x x x x x x -+-+=-=,解得1x =, 所以当1x >时,()0g x '>,()g x 单调递增,当01x <<时,()0g x '<,()g x 单调递减, 又0lim ()x g x +→=+∞,所以min ()(1)e 1g x g ==-, ()f x 在(0)+∞,有2个不同零点的充要条件为函数()y g x =与y a =图象在第一象限有2个交点,所以e 1a >-,即()f x 有2个零点的充要条件为e 1a >-, 又e a >是e 1a >-的充分不必要条件,所以“e a >”是“()f x 有2个零点在(0)+∞,”的充分而不必要条件, 故选:A7.(2022·河北·模拟预测)我们定义:方程()()f x f x '=的实数根0x 叫做函数()f x 的“新驻点”,()sin ,(0,),(),()ln ,()()()(1)f x x x g x x h x x x g x h x x πϕ=∈===>,若(),(),(),()f x g x h x x ϕ的“新驻点”分别为,,,αβγμ,则下列选项中正确的有( )A .34πα=B .βγ>C.D .(2,e)μ∈【答案】C【解析】1()cos ,(0,),()1,(),()ln 1(1)f x x x g x h x x x x xπϕ''''=∈===+>,由“新驻点”的概念可知,,1,4παβ==故A 错误,C 正确.令1()ln x x x ε=-,211()0x x x ε'=+>,故1()ln x x xε=-在(0,)+∞单调递增,又1(1)10,(3)ln 303εε=-<=->,故13βγ=<<,故B 错误,令()11()ln ln 11ln 1()ln ln 1x x x x x x x x x x x xωω-'=--=--=+=-+,,由上可知()x ω'在(0,)+∞单调递增,故()x ω在(0,)+∞先减后增,又2212()=10e e ω->,11()0e eω=-<,(2)ln 210,(e)e 20ωω=-<=->,所以(2,e)μ∈或211(,)e eμ∈, 故D 错.故选:C8.(2022·浙江·镇海中学模拟预测)已知函数2ln 1,e()e e 1,22e x x x f x x x ⎧≥⎪⎪=⎨⎪--<⎪⎩,设关于x 的方程()()()210R f x af x a +-=∈有m 个不同的实数解,则m 的所有可能的值为( )A .3B .4C .2或3或4或5D .2或3或4或5或6【答案】A【解析】根据题意作出函数()f x 的图象:2ln 1ln x xx x'-⎛⎫= ⎪⎝⎭,当1,e e x ⎡⎫∈⎪⎢⎣⎭,函数ln xx单调递增, 当()e,+x ∈∞时,函数ln xx 单调递减,所以ln 1e,e x x ⎡⎤∈-⎢⎥⎣⎦; 函数2e e22x --,1e x <时单调递减,所以()2e e ,e 22x --∈-∞-,对于方程()()()210R f x af x a +-=∈,令()t f x =,则210t at +-=,所以240=∆+>a ,即方程必有两个不同的实数根120t t >>,且12121t t at t +=-⎧⎨=-⎩,当11et ≥时,2e 0t -≤<,3个交点;当110et <<时,2e t <-,也是3个交点;故选:A .9.(2022·湖南·长郡中学模拟预测)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()e +=+x g x h x x ,若函数()()12e 12λλ-=+--xf xg x 有唯一零点,则正实数λ的值为( ) A .13B .12C .1D .2【答案】C 【解析】由题设,()()()()()()e e xxg x h x x g x h x x g x h x -⎧+=+⎪⎨-+-=-=-⎪⎩,可得:()e e 2x xg x -+=, 由()()12e12λλ-=+--x f x g x ,易知:()f x 关于1x =对称.当1≥x 时,1112()e (e e )22x x x f x λλ---=++-,则111()e (e e )02x x x f x λ---'=+->,所以()f x 单调递增,故1x <时()f x 单调递减,且当x 趋向于正负无穷大时()f x 都趋向于正无穷大, 所以()f x 仅有一个极小值点1,则要使函数只有一个零点,即()10f =,解得1λ=. 故选:C10.(2022·山东济宁·二模)已知函数(),0ln ,0x x f x a x x ≤⎧=⎨>⎩,若函数()()()g x f x f x =--有5个零点,则实数a 的取值范围是( ) A .()e,0- B .1,0e ⎛⎫- ⎪⎝⎭C .(),e -∞-D .1,e⎛⎫-∞- ⎪⎝⎭【答案】C【解析】()y f x =-与()y f x =关于y 轴对称,且()00f =, 要想()()()g x f x f x =--有5个零点,则当0x >时,ln x a x -=要有2个根,结合对称性可知0x <时也有2个零点, 故满足有5个零点,当1x =时,10,不合题意; 当1x ≠时,此时ln xa x=- 令()ln xg x x=-,定义域为()()0,11,+∞,()()21ln ln xg x x -'=,令()0g x '>得:01x <<,1<x<e ,令()0g x '<得:e x >, 故()ln xg x x=-在()()0,1,1,e 上单调递增,在()e,+∞上单调递减, 且当()0,1x ∈时,()0ln xg x x=->恒成立, ()ln x g x x =-在e x =处取得极大值,其中()e e g =-,故(),e a ∈-∞-,此时与()ln x g x x=-有两个交点. 故选:C11.(多选)(2022·重庆·模拟预测)已知函数()e 1xaf x x =--有唯一零点,则实数a 的值可以是( ) A .1- B .12-C .0D .1【答案】AD【解析】令()e 01xaf x x =-=-,则有()e 1x a x =-(1)x ≠,令()()e 1x h x x =-,则有()e x h x x '=, 所以()h x 在(0)-∞,上单减,在(0)+∞, 上单增,当x →-∞时()0h x →,(0)1h =-,(1)0h =,当x →+∞时()h x →+∞,故()f x 有唯一零点即1a =-或0a >.故选:AD12.(2022·重庆南开中学模拟预测)若关于x 的方程2e (0)x ax x =>有解,则实数a 的取值范围为________.【答案】2e ,4∞⎡⎫+⎪⎢⎣⎭【解析】2e (0)xax x =>有解,即2e (0)xa x x=>,令()()2e 0x x x f x =>,()()24e 2=x x x fx x'-,令()0f x '>,解得2x >,令()0f x '<,解得02x <<,所以()f x 在()0,2上单调递减,在()2,+∞上单调递增,又()2e 24f =,所以()f x 的值域为2e ,4⎡⎫+∞⎪⎢⎣⎭,故a的取值范围为2e ,4⎡⎫+∞⎪⎢⎣⎭.故答案为:2e ,4⎡⎫+∞⎪⎢⎣⎭.13.(2022·湖北·模拟预测)已知函数(),0e ,0x kx x f x x x≤⎧⎪=⎨>⎪⎩,若函数()()()g x f x f x =+-有5个零点,则实数k 的取值范围为______.【答案】2e ,4∞⎛⎫+ ⎪⎝⎭【解析】解:因为()()()g x f x f x =+-,所以()()()()g x f x f x g x -=-+=, 所以函数()g x 为偶函数,又()()0200g f ==, 所以()g x 在()0,∞+上有两个零点,即()()e 0x f x f x kx x +-=-=有两个不同的正实数解,即()2e 0xk x x=>,令()2e xx x ϕ=,则()()3e 2x x x xϕ-'=,()()3e 20,2x x x x x ϕ-'=>∴>;()()3e 20,02x x x x x ϕ-'=<∴<<.故()x ϕ在()0,2上递减,()2,+∞上递增, 故()2mine (2)4x g ϕ==.画出图像如图所示从而2e 4k >.故答案为:2e ,4∞⎛⎫+ ⎪⎝⎭. 14.(2022·江苏·南京市江宁高级中学模拟预测)若函数()()3221f x x ax a =--∈R 在(),0∞-内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为_______.【答案】3【解析】当0x <时,由()0f x =可得212a x x =-,令()212g x x x =-,其中0x <,则()()3332122x g x x x+'=+=,由()0g x '=,可得1x =-,列表如下:如下图所示:因为()()3221f x x ax a =--∈R 在(),0∞-内有且只有一个零点,则3a =-,所以,()32231f x x x =+-,则()()26661f x x x x x '=+=+,当10x -<<时,()0f x '<,此时函数()f x 单调递减, 当01x <<时,()0f x '>,此时函数()f x 单调递增, 则当[]1,1x ∈-时,()()min 01f x f ==-,又因为()10f -=,()14f =,所以,()max 4f x =, 因此,()f x 在[]1,1-上的最大值与最小值的和为143-+=.故答案为:3.15.(2022·广东茂名·模拟预测)已知函数()()222x x x x f x a a e e ⎛⎫=+-+- ⎪⎝⎭有三个不同的零点1x ,2x ,3x ,其中123x x x <<,则3122312111x x x x x x e e e ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为________. 【答案】1 【解析】设()xx g x e=,()1x xg x e -'=,当1x <时,()0g x '>;当1x >时,()0g x '<,故()g x 在(),1-∞上单调递增,在()1,+∞上单调递减,且0x >时,()0g x >;0x <时,()0g x <, ∴()()max 11g x g e==,作出()g x 的图象,如图要使()()222x x x x f x a a e e ⎛⎫=+-+- ⎪⎝⎭有三个不同的零点1x ,2x ,3x 其中123x x x <<令x xt e=,则()2220t a t a +-+-=需要有两个不同的实数根12,t t (其中12t t <) 则()()22420a a ∆=--->,即2a >或2a <-,且121222t t at t a +=-⎧⎨⋅=-⎩若2a >,则12122020t t a t t a +=-<⎧⎨⋅=-<⎩,∴12t t <,∴10t <,则210,t e ⎛⎫∈ ⎪⎝⎭∴1210t t e <<<,则12301x x x <<<<,且()()232g x g x t ==∴3122312111x x x x x x e e e ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭=()21221(1)(1)t t t =---()212121t t t t =-++⎡⎤⎣⎦()2122a a =--+-⎡⎤⎣⎦1=若2a <-,则12122424t t a t t a +=->⎧⎨⋅=->⎩,因为()()max11g x g e ==,且210,t e ⎛⎫∈ ⎪⎝⎭, ∴()12max 4t t +<,故不符合题意,舍去 综上3122312111x x x x x x e e e ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭1=故答案为:116.(2022·广东·深圳市光明区高级中学模拟预测)已知函数()e sin 1xf x ax x =-+-.(1)当2a =时,求函数()f x 的极值点; (2)当12a ≤<时,试讨论函数()f x 的零点个数.【解】(1)当2a =时,()e 2sin 1x f x x x =-+-,则()e 2cos xf x x =-+', 令 ()e 2cos xg x x =-+,则()e sin xg x x '=-.当,()0x ∈+∞时,e 1x >,()1sin 0g x x '∴>-≥,()()f x g x '∴=在(0,)+∞上单调递增,()()00f x f ''∴>=,()f x ∴在(0,)+∞上单调递增.当(],0x ∈-∞时,可得e 1x ≤,()e 2cos 1cos 0x f x x x '∴=-+≤-+≤,()f x ∴在(],0-∞单调递减;综上,函数()f x 的极值点为0x =.(2)当0x =时,()00e 01sin00f =--+=,0x ∴=是()f x 的一个零点,令()()e cos x h x f x a x -+'==,可得()e sin xh x x '=-.因为12a ≤<,∴当,()0x ∈+∞时,e 1x >,()1sin 0h x x '∴>-≥,()f x '∴在(0,)+∞单调递增,()()020f x f a ''∴>=->, ()f x ∴在(0,)+∞单调递增,()()00f x f ∴>=,此时()f x 在(0,)+∞无零点.∴当(],πx ∞∈--时,πax -≥,有()e sin 1e πsin 10x xf x ax x x =-+-≥++->, 此时()f x 在(],π∞--无零点.∴当()π,0x ∈-时,sin 0x <,()e sin 0xh x x =->',()f x '∴在()π,0-单调递增,又()020f a '=->,()ππe 10f a -'-=--<,由零点存在性定理知,存在唯一()0π,0x ∈-,使得()00f x '=. 当()0π,x x ∈-时,()0f x '<,()f x 在()0π,x -单调递减; 当()0,0x x ∈时,()0f x '>,()f x 在()0,0x 单调递增;又()e 10f a πππ--=+->,()()000f x f <=,所以()f x 在()π,0-上有1个零点.综上,当12a ≤<时,()f x 有2个零点.17.(2022·辽宁·大连二十四中模拟预测)已知函数()()()()223e ,ln R xf x x xg x a x a =-=∈.(1)求()f x 的最小值;(2)记()f x '为()f x 的导函数,设函数()()()23f x h xg x x '=-+有且只有一个零点,求a 的取值范围. 【解】(1)由题得2()(23)e (1)(23)e x x x x f x x x '=-+=+-,∴当3(,)2x ∈-∞-时,()0f x '>,()f x 单调递增,当3(,1)2x ∈-时,()0f x '<,()f x 单调递减,当(1,)x ∈+∞时,()0f x '>,()f x 单调递增, 所以1x =是()f x 的极小值点; 又当0x <时,()0f x >,当302x <<时,()0f x <,当32x >时,()0f x >,所以()f x 只能在30,2⎛⎫⎪⎝⎭内取得最小值,因为1x =是()f x 在(0,32)内的极小值点,也是最小值点,所以min ()(1)e f x f ==-.(2)由题可得()(1)e ln xh x x a x =--(0x >),∴2e ()e x xa x ah x x x x-=-=' ∴当0a 时,()0h x '>,函数()h x 在(0,)+∞上单调递增, 又∴(1)0h =,∴函数()h x 有且仅有1个零点,∴0a 符合题意;∴当0a >时,令2()e x m x x a =-(0)x >,2()(2)e 0x m x x x '=+>,函数()m x 在(0,)+∞上单调递增,因为(0)0,0m a m a a =-=-><,∴存在唯一的实数0(0,)x ∈+∞,使得0()0m x =,即020e xx a =,当0(0,)x x ∈时,()0h x '<,()h x 单调递减;0(,)x x ∈+∞时,()0h x '>,()h x 单调递增; 又∴0x +→时,()h x →+∞,x →+∞时,()h x →+∞,且(1)0h =, ∴当函数()h x 有且仅有1个零点时,01x =, ∴211e e a ⋅==符合题意综上可知,a 的取值范围是0a 或e a =.【素养提升】1.(2022·江苏·南京市第五高级中学模拟预测)已知2a >,()()xf x e x a x a =-++,有如下结论:∴()f x 有两个极值点; ∴()f x 有3个零点;∴()f x 的所有零点之和等于零. 则正确结论的个数是( ) A .0 B .1C .2D .3【答案】D 【解析】()()x f x e x a x a =-++,则()()11x f x x a e '=-++,()()2x f x x a e ''=-+.当2x a <-时,()0f x ''<,此时函数()y f x '=单调递减; 当2x a >-时,()0f x ''>,此时函数()y f x '=单调递增.所以,函数()y f x '=的最小值为()()2min 21a f x f a e -''=-=-. 2a >,()()2min 210a f x f a e -''∴=-=-<.令()1xg x e x =--,当0x >时,()10x g x e '=->,则函数()y g x =在()0,∞+上单调递增,则()()00g x g >=,所以,当0x >时,1x e x >+. ()()1222111101a aa a af a e e e e a +'--=-=->->⋅+,()10a f a e '=+>, 由零点存在定理可知,函数()y f x '=在(),2-∞-a 和()2,a -+∞上各有一个零点, 所以,函数()y f x =有两个极值点,命题∴正确;设函数()y f x =的极大值点为1x ,极小值点为2x ,则122x a x <-<,则()()()()121122110110xx f x x a e f x x a e ⎧=-++=⎪⎨=-++=''⎪⎩,所以121211x x x a e x a e --⎧-=--⎨-=--⎩, 函数()y f x =的极大值为()()()()111111112x xf x e x a x a e x a x a x =-++=---+()()11111111122x x x x x e e e x e e x ---=-----+=-+,构造函数()2x xh x e e x -=-+,则()()220x x h x e e -'=-+≤-=,所以,函数()y h x =在R 上单调递减,当0x <时,()()00h x h >=;当0x >时,()()00h x h <=.()020f a '=-<,()10f x '=,10x ∴<,则()10h x >,即()10f x >.同理可知,函数()y f x =的极小值为()222220x xf x e e x -=-+<.()121110a a f a e ++--=--<,()20f a a =>. 由零点存在定理可知,函数()y f x =在区间()11,a x --、()12,x x 、()2,x a 上各存在一个零点, 所以,函数()y f x =有3个零点,命题∴正确;令()0f x =,得xa x e a x+=-,()xa x x e a x ϕ+=--,则()00ϕ=,令()0xa x x e a x ϕ+=-=-,则()10x x a x a xx e a x e a xϕ----=-=-=++, 所以,函数()y f x =所有零点之和等于零,命题∴正确. 故选:D.2.(2022·重庆·二模)已知函数()|1||1|2cos f x x x x =++-+,若函数()()g x f x a =-恰有三个零点时,m n a +=(其中m ,n 为正实数),则72812m n +++的最小值为( ) A .9 B .7C .307D .4【答案】A【解析】()22cos ,1112cos 22cos ,1122cos ,1x x x f x x x x x x x x x -+<-⎧⎪=++-+=+-≤≤⎨⎪+>⎩当1x <-时,()22sin 0f x x '=--≤恒成立,∴()f x 在()1-∞-,上单调递减, ∴()()()()122cos 122cos13,4f x f >-=+-=+∈,当11x -≤≤时,()22cos f x x =+为偶函数,在[)1,0-上单调递增,在(]0,1上单调, ∴()()()1,0f x f f ∈⎡⎤⎣⎦,即()[](]22cos1,43,4f x ∈+⊆,当1x >时,()22sin 0f x x '=-≥恒成立,∴()f x 在()1,+∞上单调递增, ∴()()()122cos13,4f x f >=+∈, 由此作出函数()f x 的草图如下所示,由函数()()g x f x a =-恰有三个零点可得4a =,即4m n +=,所以()()41728172821251271212m n m n m n m n m n ++⎛⎫+=++++=++ ⎪++++++⎝⎭59≥+=, 即72812m n +++的最小值为9,当且仅当43m =,83n =时,等号成立,故选:A.3.(2022·湖北·黄冈中学模拟预测)函数()ln 1f x x ax =-+有两个零点1212()x x x x <,,下列说法错误的是( ) A .01a << B .121x x a>C .2111x x a->- D .122x x a+<【答案】B【解析】因为函数()ln 1f x x ax =-+有两个零点1212()x x x x <,,所以ln 10x ax -+=有两个根,即11nx a x+=,即y a =与11nx y x +=有两个交点,画出函数图像如下图所示:设()()110nx g x x x+=>,所以()21nxg x x'=-,当()0g x '>时,解得01x <<, 函数()g x 单调递增;当()0g x '<时,解得1x >,函数()g x 单调递减, 所以()()11max g x g ==,当x →+∞时,()0g x →,当0x →时,()g x →-∞, 所以当01a <<时,y a =与11nx y x+=有两个交点, 即函数()ln 1f x x ax =-+有两个零点,故A 正确;结合图像可知1211ex x <<<,因为11122212ln 1=0ln ln ln 1=0x ax x x a x ax x x -+⎧-⇒=⎨-+-⎩,要证明122x x a +<,即证明()111222ln l 2n x x x x x x --+<,整理得11212122120ln 11x x x x x x x x +⎛⎫<<< ⎝-⎪⎭,令12x t x =,所以()()21ln 011t t t t -><<+,设()()()21ln 011t g t t t t -=-<<+,所以()()()()2210011t g t t t t -'=><<+恒成立,所以()g t 在()0,1单调递增,所以()()10g t g >=,即()()21ln 011t t t t -><<+,故D 正确; 由D 选项正确,即()12122ln 2x x x x aa++=<,即121x x <成立, 因为01a <<,所以11a >,所以121x x a<,故B 不正确; 因为221ln 1x x a a +=>,1211e x x <<<,可得11x ->-,可得2111x x a->-,故C 选项正确.故选:B.4.(多选)(2022·湖北·鄂南高中模拟预测)若关于x 的方程()()2213e 12e 0x xx x t t +-++=有两个实数根,则t 的取值可以是( ) A .2e- B .1e-C .1eD .2e【答案】ABD 【解析】()()()2222213e 12e 0(1)31e 2e 0xxxxx x t t x t x t +-++=⇔+-++=2211320e e x x x x t t ++⎛⎫⎛⎫⇔-+= ⎪ ⎪⎝⎭⎝⎭1120e e x x x x t t ++⎛⎫⎛⎫⇔--= ⎪⎪⎝⎭⎝⎭相当于用y t =和2y t =这两条水平的直线去截函数()1e x x f x +=的图像一共要有两个交点. ()e xxf x '=-,所以当0x <时,()0f x '<;当0x >时,()0f x '>; 所以函数的增区间为(,0),-∞减区间为(0,)+∞.且当x 取-∞时,()0f x <,当x 取+∞时,()0f x >,max ()(0)1f x f ==. 所以函数()1e xx f x +=图象如图所示,当2e t =-时,42et =-,2e y =-和4e y =-和函数的图象各有一个交点,共有两个交点,满足题意;当1e t =-时,22e t =-,1e y =-和2e y =-和函数的图象各有一个交点,共有两个交点,满足题意;当1t e =时,22e t =,1ey =和2e y =和函数的图象各有两个交点,共有四个交点,不满足题意;当2et =时,42e t =,2e y =和4e y =和函数的图象各有两个交点和零个交点,共有两个交点,满足题意.故选:ABD5.(多选)(2022·山东泰安·三模)已知函数()22ln f x ax x =+(a ∈R )有两个不同的零点1x ,2x ,符号[x ]表示不超过x 的最大整数,如[0.5]=0,[1.2]=1,则下列结论正确的是( ) A .a 的取值范围为1,e ⎛⎫-+∞ ⎪⎝⎭B .a 的取值范围为1,0e ⎛⎫- ⎪⎝⎭C .[][]123x x +≥D .若[][]124x x +=,则a 的取值范围为2ln 3ln 2,94⎡⎫--⎪⎢⎣⎭ 【答案】BD【解析】函数()22ln f x ax x =+的定义域为(0,)+∞,()()221122ax f x ax x x+'=+=,当0a ≥时,()0f x '≥,函数()22ln f x ax x =+在(0,)+∞上单调递增,函数()22ln f x ax x =+在(0,)+∞上至多只有一个零点,与条件矛盾,当0a <时,由()0f x '=可得x x =,当0x <()0f x '>,函数()22ln f x ax x =+单调递增,+x <∞,()0f x '<,函数()22ln f x ax x =+单调递减,因为函数()22ln f x ax x =+有两个不同的零点1x ,2x 可得0f >所以20a ⨯+>,所以1ln 1a ⎛⎫-< ⎪⎝⎭, 所以10ea -<<,B 对,不妨设12x x <,>,(1)0f a =<,所以1,x ⎛∈ ⎝1,2x >2≥时,[][]1212x x ≥≥,,则[][]123x x +≥2时,则11e 4a -<<-所以(2)42ln 2f a =+,当1a e-<<-(2)0f <,此时2[]=1x ,[][]12=2x x +,C 错, 因为[][]124x x +=,若[]11x =则[]23x =,(2)0f >,(3)0f ≥,(4)0f < 所以42ln 20a +>,92ln30a +≥,162ln 40a +<, 所以ln 22ln 3ln 2,,294a a a >->-<-, 所以2ln 3ln 294a -<<-,若[]12x =,则[]22x =,(2)0f <,(3)0f <,且23< 所以42ln 20a +<,92ln30a +<,1149a -<<-所以ln 22ln 3,29a a <-<-,1149a -<<- 所以ln 22a <-,1149a -<<-又1ln 22>,所以1ln 22-<-,所以ln 2124-<-,故满足条件的a 不存在, 所以a 的取值范围为2ln 3ln 2,94⎡⎫--⎪⎢⎣⎭,D 对,故选:BD.6.(2022·湖南衡阳·三模)已知函数()()e ,02e 1,0xx a ax x f x x x -⎧++<⎪=⎨⎪->⎩(e 2.71828≈),若函数()f x 的极值为0,则实数=a __________;若函数()()()F x f x f x =+-有且仅有四个不同的零点,则实数a 的取值范围是__________.【答案】 32e ()2e,+∞【解析】当0x >时,()e 0x f x x '=>,即()f x 递增,无极值; 当0x <时,()e x f x a -'=-,若1a ≤时,()0f x '<,即()f x 递减,无极值;若1a >时,(,ln )a -∞-时()0f x '<,()f x 递减,(ln ,0)a -时()0f x '>,()f x 递增,此时()f x 有极小值(ln )f a -;综上,在0x <且1a >时,3(ln )ln 02af a a a -=-=,可得32e a =; 由题设,e ,02()e ,02xx a x ax x F x a x ax x -⎧-+>⎪⎪=⎨⎪-++<⎪⎩,显然()()F x F x =-即()F x 为偶函数,要()F x 有且仅有四个不同的零点,则()F x 在0x >上有两个零点,即()F x '存在变号零点, 所以0x >时()(1)e x F x x a '=+-,()(2)e 0x F x x ''=+>,故()F x '递增;而x 趋向正无穷时()F x '趋于正无穷,故(0)10F a '=-<,即1a >,而(ln )ln 0F a a a '=>,存在(0,ln )m a a ∈使得()(+1)e 0m F m m a '=-=,即(1)e m a m =+,且()F x 在(0,)m 上递减,在(,)m +∞上递增, 由(0)02a F =>,x 趋向+∞时()F x 趋于+∞,故2111()e ()()e 0222m m F m m m a m m =+-=+-<,只需211022m m +-<,则1m 或12m <-(舍), 而(1)e m y m =+,则(2)e 0m y m '=+>,即y 递增,所以(1)e 2e m a m =+>. 综上,a 的取值范围()2e,∞+. 故答案为:32e ;()2e,∞+7.(2022·浙江温州·二模)已知0a >,函数()432f x x x ax a =+++有且仅有两个不同的零点,则a 的取值范围是_________. 【答案】(0,1)【解析】因为函数()432f x x x ax a =+++有且仅有两个不同的零点,所以方程()4320f x x x ax a =++=+有且仅有两个不同的实数根,由432430()x x ax a a x a x x =⇒=-+++++, 设43(),()g x x y x x a a ==-++,问题转化为函数43()x g x x =+的图象与直线()y a x a =-+有两个不同的交点,433()(1)x x g x x x ==++,显然(0)(1)0g g =-=,由43322()()43(43)g x g x x x x x x x '=⇒=+=++, 当34x <-时,()0,()g x g x '<单调递减,当304x -<<时,()0,()'>g x g x 单调递增,当0x >时,()0,()'>g x g x 单调递增,而(0)0g =,所以当34x <-时,()g x 单调递减,当34x >-时,()g x 单调递增,,因为0a >,所以直线()y a x a =-+的斜率为负值且恒过横轴负半轴上一点(,0)a -, 如图所示:设函数43()x g x x =+的切点为000(,)(0)x y x <,过该切点的斜率为320043x x +,切线方程为43323243000000000()(43)()(43)32y x x x x x x y x x x x x -+=+-⇒=+--,当该切线方程为()y a x a =-+时,有3200432004332x x a x x a ⎧+=-⎨--=-⎩,消去a 得: 323222000000000008123108843108(1)(1)(41)0x x x x x x x x x x x ++-=⇒+++-=⇒+++-=20000(1)(841)0x x x x ⇒++-=⇒=0x (舍去),或01x =-, 当01x =-时,1a =,此时方程的切线方程为:1y x =--,当0x =时,18a =-,不符合0a >, 因此要想函数43()x g x x =+的图象与直线()y a x a =-+有两个不同的交点, 所以有1001a a -<-<⇒<<,故答案为: (0,1)8.(2022·河北衡水中学一模)已知函数(),0ln ,0x e x f x x x ⎧≤=⎨>⎩,()()1g x f x mx =--,当实数m 的取值范围为________时,()g x 的零点最多. 【答案】210m e << 【解析】解:作出函数()f x 的图象如图:由()0g x =得() +1f x mx =,设+1y mx =,当0m =时,+1y mx =与()f x 有2个交点;当0m <时,+1y mx =与()f x 有2个交点;.当>0m 时,设+1y mx =与x y e =相切,切点为()11,x x e,则'e x y =,所以切线的斜率为11x k e =,其切线方程为:()111x x y e e x x -=-, 又因切线恒过点()01,,所以()11110x x e e x -=-,解得10x =,所以切线的斜率为011k e ==,当>0m 时,设+1y mx =与ln y x =相切,切点为()22,ln x x ,则'1y x=,所以切线的斜率为221k x =, 其切线方程为:()2221ln y x x x x -=-, 又因切线恒过点()01,,所以()22211ln 0x x x -=-,解得22x e =,所以切线的斜率为221k e =, 所以当m 1≥时,+1y mx =与()f x 有1个交点;当211m e<<时,+1y mx =与()f x 有2个交点; 当21m e =时,+1y mx =与()f x 有3个交点; 当210m e <<时,+1y mx =与()f x 有4个交点; 所以实数m 的取值范围为210m e <<时,()g x 的零点最多, 故答案为:210m e <<.9.(2022·江苏·南京市天印高级中学模拟预测)已知函数()()cos ln 1f x x x =++.(1)求函数()f x 的图象在0x =处的切线方程;(2)判断函数()f x 的零点个数,并说明理由.【解】(1)1()sin 1f x x x =+'-+,(0)1,(0)1f f '== 所以函数()f x 的图象在0x =处的切线方程为1y x -=,即1y x =+.(2)设()()1sin 1g x f x x x'==-++,则()()21cos 1g x x x '=--+, ∴当1,2x π⎛⎫∈- ⎪⎝⎭时,()0g x '<,所以()()g x f x '=单调递减; 且()()0010g f '==>,022g f ππ⎛⎫⎛⎫'=< ⎪ ⎪⎝⎭⎝⎭, 由零点存在定理可知,在区间1,2π⎛⎫- ⎪⎝⎭存在唯一的α,使()()0g f αα'== 又当()1,x α∈-时,()()0g x f x '=>;当,2x α⎛π⎫∈ ⎪⎝⎭时,()()0g x f x '=<, 所以()()cos ln 1f x x x =++在()1,α-上单调递增,且()010f =>,222211111cos 1ln cos 120e e e e f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以()f x 在()1,α-上有唯一零点;当,2x α⎛π⎫∈ ⎪⎝⎭时,()f x 单调递减,且ln 1022f ππ⎛⎫⎛⎫=+> ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在,2απ⎛⎫ ⎪⎝⎭上没有零点. ∴当,2x ππ⎛⎫∈ ⎪⎝⎭时, ()g x '单调递增,02g π⎛⎫'< ⎪⎝⎭, ()()21101g ππ'=->+,所以()g x '在区间,2ππ⎛⎫ ⎪⎝⎭有唯一零点,设为x β=, 当,2πβ⎛⎫∈ ⎪⎝⎭x 时,()0g x '<,此时()()g x f x '=单调递减; 当(),x ∈βπ时,()0g x '>,此时()()g x f x '=单调递增;在区间,2πβ⎛⎫ ⎪⎝⎭上()0g x '<,此时()()g x f x '=单调递减, 且022g f ππ⎛⎫⎛⎫'=< ⎪ ⎪⎝⎭⎝⎭,故有()0f x '<,此时()f x 单调递减,且ln 1022f ππ⎛⎫⎛⎫=+> ⎪ ⎪⎝⎭⎝⎭, 由()0g β'=,得()21cos 1ββ=-+,所以()()()()()2111cos ln 1ln 1ln 1ln 20121f βββββββ=++=+->+->->++. 当(),x ∈βπ时, ()0g x '>,所以()g x 单调递增,又225511cos 066551166g ππππ⎛⎫'=--=> ⎪⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,故()5,6πβπ∈,55111sin 0556621166g ππππ⎛⎫=-+=-+< ⎪⎝⎭++,()101g ππ=>+,所以存在5,6πγπ⎛⎫∈ ⎪⎝⎭,使()0g γ=,即()0f γ'=,故x γ=为()f x 的极小值点.此时()()5cos ln 1ln 1cos 1cos 06f πγγγγγ⎛⎫=++>++>+≥ ⎪⎝⎭. 所以()f x 在,2ππ⎛⎫ ⎪⎝⎭上没有零点. ∴当(),x π∈+∞时,()()ln 1ln 11x π+>+>,所以()()cos ln 11cos 0f x x x x =++>+≥,所以()f x 在区间(),π+∞上没有零点. 综上()f x 在区间()1,-+∞上有且仅有一个零点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第17讲 零点问题高考预测一:三次函数零点问题 1.已知函数32()(,)f x x ax b a b R =++∈(1)若函数()f x 在1x =处取得极值2,求a ,b 的值; (2)求试讨论()f x 的单调性;(3)若b c a =-(实数c 是a 与无关的常数),当函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞,求c 的值. 【解析】解:(1)32()f x x ax b =++,2()32f x x ax '=+, 若函数()f x 在1x =处取得极值2, 则(1)320(1)12f a f a b '=+=⎧⎨=++=⎩,解得:3252a b ⎧=-⎪⎪⎨⎪=⎪⎩;(2)2()32(32)f x x ax x x a '=+=+,0a >时,令()0f x '>,解得:0x >或23x a <-,()f x ∴在2(,)3a -∞-递增,在2(3a -,0)递减,在(0,)+∞递增,0a =时,()0f x ',()f x 在R 递增,0a <时,令()0f x '>,解得:0x <或23x a >-,()f x ∴在(,0)-∞递增,在2(0,)3a -递减,在2(3a -,)+∞递增;(3)由(2)得:函数()f x 有2个极值, 分别是:(0)f b =,324()327f a a b -=+,则函数()f x 有3个零点等价于324(0)()()0327f f a b a b -=+<,∴304027a a b >⎧⎪⎨-<<⎪⎩或304027a b a <⎧⎪⎨<<-⎪⎩,又b c a =-,0a ∴>时,34027a a c -+>或0a <时,34027a a c -+<, 设g (a )3427a a c =-+,函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞, (,3)∴-∞-上,g (a )0<,在(1,33)(22⋃,)+∞上,g (a )0>均恒成立,从而(3)10g c -=-,且3()102g c =-,故1c =;此时,322()1(1)[(1)1]f x x ax a x x a x a =++-=++-+-,()f x 有3个零点,则2(1)10x a x a +-+-=有2个异于1-的不等实根, ∴△22(1)4(1)230a a a a =---=+->,且2(1)(1)10a a ---+-≠, 解得:33(,3)(1,)(,)22a ∈-∞-+∞, 综上:1c =.2.已知函数21()(),()4lnxf x x a a Rg x x x=-+-∈=. (1)当a 为何值时,x 轴为曲线()y f x =的切线,(2)用{max m ,}n 表示m ,n 中的最大值,设函数(){()h x max xf x =,()}(0)xg x x >,当03a <<时,讨论()h x 零点的个数.【解析】解:(1)设曲线()y f x =与x 轴相切与点0(x ,0),则00()0()0f x f x =⎧⎨'=⎩,即20020201041204x a x x x ⎧-+-=⎪⎪⎨⎪-+=⎪⎩,∴01234x a ⎧=⎪⎪⎨⎪=⎪⎩,∴当34a =时,x 轴为曲线()y f x =的切线. (2)令211()()4f x xf x x ax ==-+-,1()()(0)g x xg x lnx x ==>,则1(){()h x max f x =,1()}g x ,21()3f x x a '=-+,由1()0f x '=,得x = ∴当x ∈时,1()0fx '>,1()f x 为增函数; 当x ∈)+∞时,1()f x '为减函数,03a <<,01∴<, ①当10f <,即304a <<时,()h x 有一个零点; ②当10f =,即34a =时,()h x 有两个零点; ③当110()0f f x ⎧>⎪⎨⎪<⎩,即3544a <<时,()h x 有三个零点; ④当110()0f f x ⎧>⎪⎨⎪=⎩,即54a =时,()h x 有两个零点; ⑤当11(1)0f f ⎧>⎪⎨⎪>⎩,即534a <<时,()h x 有一个零点, 综上,304a <<或534a <<时,()h x 有一个零点; 当34a =或54a =时,()h x 有两个零点; 当3544a <<,()h x 有三个零点. 高考预测二:含超越函数的零点问题3.已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.【解析】证明:(1)()f x 的定义域为(1,)-+∞, 1()cos 1f x x x'=-+,21()sin (1)f x x x ''=-++,令21()sin (1)g x x x =-++,则32()cos 0(1)g x x x '=--<+在(1,)2π-恒成立, ()f x ∴''在(1,)2π-上为减函数, 又(0)1f ''=,21()11102(1)2f ππ''=-+<-+=+,由零点存在定理可知, 函数()f x ''在(1,)2π-上存在唯一的零点0x ,结合单调性可得,()f x '在0(1,)x -上单调递增,在0(x ,)2π上单调递减,可得()f x '在区间(1,)2π-存在唯一极大值点;(2)由(1)知,当(1,0)x ∈-时,()f x '单调递增,()(0)0f x f '<'=,()f x 单调递减; 当0(0,)x x ∈时,()f x '单调递增,()(0)0f x f '>'=,()f x 单调递增;由于()f x '在0(x ,)2π上单调递减,且0()0f x '>,1()0212f ππ'=-<+,由零点存在定理可知,函数()f x '在0(x ,)2π上存在唯一零点1x ,结合单调性可知,当0(x x ∈,1)x 时,()f x '单调递减,1()()0f x f x '>'=,()f x 单调递增; 当1(,)2x x π∈时,()f x '单调递减,1()()0f x f x '<'=,()f x 单调递减.当(2x π∈,)π时,cos 0x <,101x -<+,于是1()cos 01f x x x'=-<+,()f x 单调递减,其中 3.2()1(1)1(1)1 2.610222f ln ln ln lne ππ=-+>-+=->-=,()(1)30f ln ln ππ=-+<-<.于是可得下表:结合单调性可知,函数()f x 在(1-,]2π上有且只有一个零点0,由函数零点存在性定理可知,()f x 在(2π,)π上有且只有一个零点2x ,当[x π∈,)+∞时,sin 1(1)x ln x <+,则()sin (1)0f x x ln x =-+<恒成立, 因此函数()f x 在[π,)+∞上无零点. 综上,()f x 有且仅有2个零点. 4.已知函数1()1x f x lnx x +=--. (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线. 【解析】解析:(1)函数1()1x f x lnx x +=--.定义域为:(0,1)(1⋃,)+∞;212()0(1)f x x x '=+>-,(0x >且1)x ≠, ()f x ∴在(0,1)和(1,)+∞上单调递增,①在(0,1)区间取值有21e,1e 代入函数,由函数零点的定义得, 21()0f e <,1()0f e >,211()()0f f e e<, ()f x ∴在(0,1)有且仅有一个零点,②在(1,)+∞区间,区间取值有e ,2e 代入函数,由函数零点的定义得, 又f (e )0<,2()0f e >,f (e )2()0f e <,()f x ∴在(1,)+∞上有且仅有一个零点,故()f x 在定义域内有且仅有两个零点; (2)0x 是()f x 的一个零点,则有00011x lnx x +=-, 曲线y lnx =,则有1y x'=; 由直线的点斜式可得曲线的切线方程,曲线y lnx =在点0(A x ,0)lnx 处的切线方程为:0001()y lnx x x x -=-, 即:0011y x lnx x =-+,将00011x lnx x +=-代入, 即有:00121y x x x =+-, 而曲线x y e =的切线中,在点01(ln x ,01)x 处的切线方程为:00000011111()y x ln x lnx x x x x x -=-=+, 将00011x lnx x +=-代入化简,即:00121y x x x =+-, 故曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线. 故得证.5.已知函数1()1x xf x e x+=+-.( 2.71828e =⋯⋯ 1.64872)⋯⋯ (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线x y e =在点00(,)xA x e 处的切线也是曲线y lnx =的切线. 【解析】解:(1)()f x 的定义域为{|1}x x ≠22()0(1)x f x e x '=+>-所以()f x 在(,1)-∞,(1,)+∞上单调递增.又3223(2)30,()502f e f e =->=-<,所以()f x 在区间(1,)+∞有唯一零点1x ,即()1111101x x f x e x +=⋅=-即, 又1111111111111,()0111x x x x x f x e x x x -----<--=+=+=+++, 所以()f x 在区间(,1)-∞有唯一零点1x -. 综上所述,()f x 有且仅有两个零点. (2)因为00x lne x -=-,所以点00(,)x B ex --在曲线y lnx =上.由题设()000010,1x x f x e x +==-即 所以直线AB 的斜率00000000000111111x x x x x e x x x k e x x x e x x -+++-+====----+.因为曲线x y e =在点00(,)xA x e 处切线的斜率是0x e , 曲线y lnx =在点00(,)x B ex --处切线的斜率也是0x e ,所以曲线x y e =在点00(,)xA x e 处的切线也是曲线y lnx =的切线. 6.已知函数2()(21)f x lnx ax a x =+++.(1)若函数()f x 在1x =处取得极值,求曲线()y f x =在点(2,f (2))处的切线方程; (2)讨论函数()f x 的单调性;(3)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,且两个零点互为倒数. 【解析】解:(1)1()221f x ax a x'=+++,(0)x >, 由已知有f '(1)0=,即12210a a +++=,所以12a =-(经验证成立),切点为3(2,22),(2)2ln k f '-==-,故切线方程为:3122y x ln =-++;(2)()f x 的定义域为(0,)+∞, 1(21)(1)()221ax x f x ax a x x++'=+++=, 若0a ,则当(0,)x ∈+∞时,()0f x '>, 故()f x 在(0,)+∞上单调递增, 若0a <,则当1(0,),()02x f x a '∈->;当1(,),()02x f x a'∈-+∞<, 故()f x 在1(0,)2a-上单调递增,在1(,)2a -+∞上单调递减;综上:0a 时,()f x 在(0,)+∞上单调递增, 0a <时,()f x 在1(0,)2a-上单调递增,在1(,)2a -+∞上单调递减;(3)证明:2()(1)()1(1)1g x x f x x x lnx x =---=---, 1()g x lnx x'=-,因为y lnx =在(0,)+∞上递增,1y x =在(0,)+∞递减,所以()g x '在(0,)+∞上递增,又141(1)10,(2)2022ln g g ln -''=-<=-=>, 故存在唯一0(1,2)x ∈使得0()0g x '=,所以()g x 在0(0,)x 上递减,在0(x ,)+∞上递增, 又220()(1)2,()30g x g g e e <=-=->,所以()0g x =在0(x ,)+∞内存在唯一根α, 由01x α<<,得:011x α<<,又1111()()(1)10g g ln αααααα=---==,故1α是()0g x =在0(0,)x 上的唯一零点, 综上,函数()g x 有且仅有两个零点,且两个零点互为倒数.7.已知函数2()67(f x lnx ax x b a =--+,b 为常数),且2x =为()f x 的一个极值点. (1)求a ;(2)求函数()f x 的单调区间;(3)若()y f x =的图象与x 轴有且只有3个交点,求b 的取值范围.(20.693, 1.50.405)ln ln == 【解析】解:(1)2()67f x lnx ax x b =--+,6()27f x ax x∴'=--, 又2x =是()f x 的一个极值点f ∴'(2)3470a =--=,则1a =-.(2)函数()f x 的定义域为(0,)+∞. 由(1)知2()67f x lnx x x b =+-+. 6(2)(23)()27x x f x x x x--∴'=+-=. 由()0f x '>可得2x >或32x <,由()0f x '<可得322x <<. ∴函数()f x 的单调递增区间为3(0,)2和(2,)+∞,单调递减区间为3(2,2).(3)由(2)可知函数()f x 在3(0,)2单调递增,在3(2,2)单调递减,在(2,)+∞单调递增.且当2x =或32x =时,()0f x '=. ()f x ∴的极大值为3333()6224f ln b =-+,()f x '的极小值为f (2)6210ln b =-+.当x 充分接近0时,()0f x '<.当x 充分大时,()0f x >. ∴要使的()f x '图象与x 轴正半轴有且仅有三个不同的交点,只需3()2f f (2)0<,即333(6)(6210)024ln b ln b -+-+<,解得:3336106242ln b ln -<<-. 8.已知函数2()8f x x x =-+,()6g x lnx m =+. (Ⅰ)求()f x 在区间[t ,1]t +上的最大值()h t ;(Ⅱ)是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由.【解析】解:22()()8(4)16I f x x x x =-+=--+. 当14t +<,即3t <时,()f x 在[t ,1]t +上单调递增,22()(1)(1)8(1)67h t f t t t t t =+=-+++=-++;当41t t +,即34t 时,()h t f =(4)16=; 当4t >时,()f x 在[t ,1]t +上单调递减,2()()8h t f t t t ==-+.综上,2267,3()16,348,4t t t h t t t t t ⎧-++<⎪=⎨⎪-+>⎩()II 函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数()()()m x g x f x =-的图象与x 轴的正半轴有且只有三个不同的交点.2()86m x x x lnx m =-++,∴262862(1)(3)()28(0)x x x x m x x x x x x-+--'=-+==>,当(0,1)x ∈时,()0m x '>,()m x 是增函数; 当(1,3)x ∈时,()0m x '<,()m x 是减函数; 当(3,)x ∈+∞时,()0m x '>,()m x 是增函数; 当1x =,或3x =时,()0m x '=.()m x m ∴=极大值(1)7m =-,()m x m =极小值(3)6315m ln =+-.当x 充分接近0时,()0m x <,当x 充分大时,()0m x >.∴要使()m x 的图象与x 轴正半轴有三个不同的交点,必须且只须()70()63150m x m m x m ln =->⎧⎨=+-<⎩极大值极小值即71563m ln <<-.∴存在实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m 的取值范围为(7,1563)ln -.9.已知函数()f x x alnx =+(Ⅰ)当1a =时,求曲线()y f x =在点(1,f (1))处的切线方程; (Ⅱ)求()f x 的单调区间;(Ⅲ)若函数()f x 没有零点,求a 的取值范围.【解析】解:()I 当1a =时,()f x x lnx =+,1()1(0)f x x x'=+>,f ∴(1)1=,f '(1)2=,∴曲线()y f x =在点(1,f (1))处的切线方程为210x y --=;()II 函数()f x x alnx =+,()(0)x af x x x+'=>.当0a 时,在(0,)x ∈+∞时()0f x '>,()f x ∴的单调增区间是(0,)+∞; 当0a <时,函数()f x 与()f x '在定义域上的情况如下:()f x ∴的单调减区间为(0,)a -,单调增区间为(,)a -+∞. ∴当0a 时()f x 的单调增区间是(0,)+∞;当0a <时,()f x 的单调减区间为(0,)a -,单调增区间为(,)a -+∞. ()III 由()II 可知,①当0a >时,(0,)+∞是函数()f x 的单调增区间, 且有11()1110aaf e e--=-<-=,f (1)10=>,此时函数有零点,不符合题意;②当0a =时,函数()f x x =,在定义域(0,)+∞上没零点;③当0a <时,()f a -是函数()f x 的极小值,也是函数()f x 的最小值, ∴当()(()1)0f a a ln a -=-->,即a e >-时,函数()f x 没有零点.综上所述,当0e a -<时,()f x 没有零点. 10.已知关于x 的函数()(0)xax af x a e -=≠. (1)当1a =-时,求函数()f x 在点(0,1)处的切线方程; (2)设()()x g x e f x lnx '=+,讨论函数()g x 的单调区间; (3)若函数()()1F x f x =+没有零点,求实数a 的取值范围. 【解析】解:(1)当1a =-时,1()xx f x e-+=, ∴2(1)112()()x x x x x e e x x x f x e e e ---+-+--'===,∴002(0)2f e -'==-, (0)1f =, 12y x ∴-=-,即()f x 在(0,1)处的切线方程为210y x +-=.(2)2()()2(0)()x x xx ae e ax a g x e lnx ax a lnx a e --=+=-++≠, ∴1()g x a x'=-+, 当0a <时,()0g x '>在(0,)+∞上恒成立, ()g x ∴在(0,)+∞上单调递增;当0a >时,令()0g x '>,解得10x a<<, 令()0g x '<,解得1x a>, ()g x ∴在1(0,)a 单调递增,在1(,)a+∞单调递减.(3)()0xxax a e F x e-+==没有零点, 即(1)x e a x =--无解,∴1x y e =与2(1)y a x =--两图象无交点,设两图象相切于(,)m n 两点, ∴(1)m n e a m e a ⎧=--⎨=-⎩,2m ∴=,2a e =-,两图象无交点,2(a e ∴∈-,0).11.已知函数2()(2)(1)x f x x e a x =---,a R ∈. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】解:(1)由2()(2)(1)x f x x e a x =---, 可得()(1)2(1)(1)(2)x x f x x e a x x e a '=---=--,①当0a 时,由()0f x '>,可得1x >;由()0f x '<,可得1x <, 即有()f x 在(,1)-∞递减;在(1,)+∞递增;②当0a >时,由()0f x '=,解得1x =或2x ln a =, 若2ea =,则()0f x '恒成立,即有()f x 在R 上递增;若02ea <<时,由()0f x '>,可得1x >或(2)x ln a <; 由()0f x '<,可得(2)1ln a x <<; 即有()f x 在(-∞,(2))ln a ,(1,)+∞递增, 在((2)ln a ,1)递减; 若2ea >,由()0f x '>,可得1x <或(2)x ln a >; 由()0f x '<,可得1(2)x ln a <<即有()f x 在(,1)-∞,((2)ln a ,)+∞递增;在(1,(2))ln a 递减; 综上:当0a 时,()f x 在(,1)-∞递减;在(1,)+∞递增; 当0a >时,2ea =时,()f x 在R 上递增; 02ea <<时,()f x 在(-∞,(2))ln a ,(1,)+∞递增,在((2)ln a ,1)递减; 2ea >时,()f x 在(,1)-∞,((2)ln a ,)+∞递增;在(1,(2))ln a 递减. (2)①由(1)可得,当0a <时,()f x 在(,1)-∞递减;在(1,)+∞递增, 且f (1)0e =-<,f (2)0a =->,故()f x 在(1,2)上存在1个零点, 取b 满足0b <,且()2ab ln <-,则f (b )223(2)(1)(2)(1)()022b a b e a b b a b ab b =--->----=-->,故()f x 在(,1)b 是也存在1个零点, 故0a <时,()f x 有2个零点;②当0a =时,()(2)x f x x e =-,所以()f x 只有一个零点2x =,不合题意; ③当0a >时,若2ea =时,()f x 在R 递增,()f x 不存在2个零点,不合题意; 若02ea <<,()f x 在(1,)+∞递增,又当1x 时,()0f x <,()f x 不存在2个零点,不合题意,当2ea >时,()f x 在(,1)-∞单调增,在(1,(2))ln a 递减,在((2)ln a ,)+∞递增, ()f x 极大值f =(1)0e =-<,故()f x 不存在2个零点,不合题意;综上,()f x 有两个零点时,a 的取值范围为(,0)-∞. 12.已知函数21()2f x lnx ax =-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】解:(1)()f x 的定义域为(0,)+∞,且21()ax f x x-'=,当0a 时,()0f x '>,此时()f x 在(0,)+∞上单调递增;当0a >时,由()0f x '>解得0x <,由()0f x '<解得x >,此时()f x 在上单调递增,在)+∞上单调递减; 综上,当0a 时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在上单调递增,在)+∞上单调递减; (2)由(1)知,当0a 时,()f x 在(0,)+∞上单调递增,函数()f x 至多一个零点,不合题意;当0a >时,()f x 在上单调递增,在)+∞上单调递减,则211()(1)22max f x f a ln a ==⋅⋅=-+,当1ae时,1()(1)02max f x f ln a ==-+,函数()f x 至多有一个零点,不合题意;当10a e<<时,1()(1)02max f x f ln a ==-+>,由于1∈,且211(1)11022f ln a a =-⋅⋅=-<,由零点存在性定理可知,()f x 在上存在唯一零点,由于2a >222122222()()02f ln a ln a a a a a a a =-⋅⋅=-<-=(由于)lnx x <, 由零点存在性定理可知,()f x 在)+∞上存在唯一零点;综上,实数a 的取值范围为1(0,)e.13.已知函数2()(2)x x f x ae a e x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】解:(1)由2()(2)x x f x ae a e x =+--,求导2()2(2)1x x f x ae a e '=+--, 当0a =时,()210x f x e '=--<, ∴当x R ∈,()f x 单调递减,当0a >时,11()(21)(1)2()()2x x x x f x e ae a e e a '=+-=+-,令()0f x '=,解得:1x ln a =,当()0f x '>,解得:1x ln a >,当()0f x '<,解得:1x ln a<,1(,)x ln a ∴∈-∞时,()f x 单调递减,1(x ln a ∈,)+∞单调递增;当0a <时,11()2()()02x x f x a e e a '=+-<,恒成立,∴当x R ∈,()f x 单调递减,综上可知:当0a 时,()f x 在R 单调减函数,当0a >时,()f x 在1(,)ln a -∞是减函数,在1(ln a,)+∞是增函数;(2)①若0a 时,由(1)可知:()f x 最多有一个零点, 当0a >时,2()(2)x x f x ae a e x =+--, 当x →-∞时,20x e →,0x e →, ∴当x →-∞时,()f x →+∞,当x →∞,2x e →+∞,且远远大于x e 和x , ∴当x →∞,()f x →+∞,∴函数有两个零点,()f x 的最小值小于0即可,由()f x 在1(,)ln a -∞是减函数,在1(ln a ,)+∞是增函数,21111()()()(2)0min f x f ln a a ln a a a a ∴==⨯+-⨯-<,1110ln a a ∴--<,即1110ln a a+->, 设1t a=,则()1g t lnt t =+-,(0)t >, 求导1()1g t t '=+,由g (1)0=,11t a∴=>,解得:01a <<, a ∴的取值范围(0,1).方法二:(1)由2()(2)x x f x ae a e x =+--,求导2()2(2)1x x f x ae a e '=+--,当0a =时,()210x f x e '=--<, ∴当x R ∈,()f x 单调递减,当0a >时,11()(21)(1)2()()2x x x x f x e ae a e e a'=+-=+-,令()0f x '=,解得:x lna =-, 当()0f x '>,解得:x lna >-, 当()0f x '<,解得:x lna <-,(,)x lna ∴∈-∞-时,()f x 单调递减,(,)x lna ∈-+∞单调递增; 当0a <时,11()2()()02x x f x a e e a '=+-<,恒成立,∴当x R ∈,()f x 单调递减,综上可知:当0a 时,()f x 在R 单调减函数,当0a >时,()f x 在(,)lna -∞-是减函数,在(,)lna -+∞是增函数; (2)①若0a 时,由(1)可知:()f x 最多有一个零点,②当0a >时,由(1)可知:当x lna =-时,()f x 取得最小值,11()()1min f x f lna ln a a=-=--, 当1a =,时,()0f lna -=,故()f x 只有一个零点, 当(1,)a ∈+∞时,由1110ln a a-->,即()0f lna ->, 故()f x 没有零点, 当(0,1)a ∈时,1110ln a a--<,()0f lna -<, 由422(2)(2)2220f ae a e e ----=+-+>-+>, 故()f x 在(,)lna -∞-有一个零点,假设存在正整数0n ,满足03(1)n ln a >-,则00000000()(2)20n n n nf n e ae a n e n n =+-->->->,由3(1)ln lna a->-,因此在(,)lna -+∞有一个零点.a ∴的取值范围(0,1).14.已知函数2()x f x e ax =-.(1)若1a =,证明:当0x 时,()1f x ; (2)若()f x 在(0,)+∞只有一个零点,求a .【解析】解:(1)证明:当1a =时,函数2()x f x e x =-. 则()2x f x e x '=-,令()2x g x e x =-,则()2x g x e '=-, 令()0g x '=,得2x ln =.当(0,2)x ln ∈时,()0g x '<,当(2,)x ln ∈+∞时,()0g x '>,2()(2)222220ln g x g ln e ln ln ∴=-⋅=->,()f x ∴在[0,)+∞单调递增,()(0)1f x f ∴=.(2)方法一:()f x 在(0,)+∞只有一个零点⇔方程20x e ax -=在(0,)+∞只有一个根,2xe a x⇔=在(0,)+∞只有一个根,即函数y a =与2()xe G x x =的图象在(0,)+∞只有一个交点.3(2)()x e x G x x -'=, 当(0,2)x ∈时,()0G x '<,当(2,)∈+∞时,()0G x '>, ()G x ∴在(0,2)递减,在(2,)+∞递增,当0→时,()G x →+∞,当→+∞时,()G x →+∞,()f x ∴在(0,)+∞只有一个零点时,a G =(2)24e =.方法二:①当0a 时,2()0x f x e ax =->,()f x 在(0,)+∞没有零点..②当0a >时,设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点()h x ⇔在(0,)+∞只有一个零点.()(2)x h x ax x e -'=-,当(0,2)x ∈时,()0h x '<,当(2,)x ∈+∞时,()0h x '>,()h x ∴在(0,2)递减,在(2,)+∞递增,∴24()(2)1min ah x h e==-,(0)x . 当h (2)0<时,即24e a >,()i 由于(0)1h =,当0x >时,2x e x >,可得33342241616161(4)11110()(2)a a a a a h a e e a a =-=->-=->. ()h x 在(0,)+∞有2个零点()ii 当h (2)0>时,即24e a <,()h x 在(0,)+∞没有零点,()iii 当h (2)0=时,即24e a =,()h x 在(0,)+∞只有一个零点,综上,()f x 在(0,)+∞只有一个零点时,24e a =.15.已知函数32()(1)(5)f x x k x k x d =+-+++. (1)若1k =-,求函数()f x 的单调区间;(2)若函数()f x 在区间(0,3)上不单调,求实数k 的取值范围;(3)求证:2k <-或7k >是函数()f x 在R 上有三个不同零点的必要不充分条件. 【解析】解:(1)若1k =-,则32()24f x x x x d =-++,2()344f x x x ∴'=-+由于△16480=-<,2()3440f x x x ∴'=-+>∴函数()f x 的单调递增区间为(,)-∞+∞,没有单调递减区间.(2)32()(1)(5)f x x k x k x d =+-+++,2()32(1)5f x x k x k ∴'=+-++,()f x 在区间(0,3)上不单调,由题意知,当[0x ∈,3]时,()0max f x '>,且()0min f x '<, 函数()f x '的对称轴为直线13kx -=, ①当103k-<,即1k >时, 由()max f x f '='(3)0>,得267k >-,由()(0)0min f x f '='<得5k <-, 此时解集为空集; ②当133k->,即8k <-时, 由()(0)0max f x f '='>得5k >-, 由()min f x f '='(3)0<得267k <-, 此时解集为空集; 1370,1322k k -<<-<<③若则, 由()max f x f '='(3)0>,得267k >-, 由1()()03min kf x f -'='<,得2k <-或7k >,此时解集为7(,2)2--;④若3173,8232k k -<-<-则,由()(0)0max f x f '='>得5k >-, 由()0min f x '<得2k <-或7k >, 此时解集为7(5,]2--综上可得,k 的取值范围是(5,2)--. (3)证明:2()32(1)5f x x k x k '=+-++∴当△224(1)12(5)4(514)0k k k k =--+=--,即27k -时函数()f x 在R 上单调递增故()f x 在R 上不可能有三个不同零点∴若()f x 在R 上有三个不同零点,则必有△0>,即2k <-或7k >是()f x 在R 上有三个不同零点的必要条件;而当0d =,3k =+2k <-或7k >但322()(1)(5)(1f x x k x k x x x =+-++=+ 即此时()f x 只有两个不同零点同样,当3k =-2k <-或7k >,但322()(1)(5)(1f x x k x k x x x =+-++=+- 即此时()f x 也只有两个不同零点,2k ∴<-,或7k >是()f x 在R 上有三个不同零点的不充分条件,故2k <-或7k >是()f x 在R 上有三个不同零点的必要不充分条件. 16.设函数()23(0)f x alnx ax a =-+≠ (1)设1a =-,求()f x 的极值;(2)在(1)的条件下,若321()[()]3g x x x f x m =+'+在(1,3)上不是单调函数,求m 的范围;(3)求()(3)x f x x e =-的单调递增区间.【解析】解:(1)当1a =-,()23(0)f x lnx x x =-++>,1()2f x x-'=+,⋯(2分) ()f x ∴的单调递减区间为1(0,)2,单调递增区间为1(2,)+∞⋯(4分),()f x ∴的极小值是111()2324222f ln ln =-+⨯+=+.⋯(6分)(2)3211()(2)3g x x x m x=+-++,2()(42)1g x x m x '=++-,⋯(8分)()g x ∴在区间(1,3)上不是单调函数,且(0)1g '=-,∴(1)0(3)0g g '<⎧⋯⎨'>⎩(10分)∴4202060m m +<⎧⎨+>⎩,即:1023m -<<-. 故m 的取值范围10(,2)3--⋯(12分) (3)()(3)x f x x e =-,()(3)(3)()(2)x x x f x x e x e x e ∴'=-'+-'=-,令()0f x '>,解得2x >. 即函数单调递增区间为(2,)+∞.17.设常数0a >,函数2()1x f x alnx x=-+(Ⅰ)当34a =时,求()f x 的最小值; (Ⅱ)求证:()f x 有唯一的极值点. 【解析】解:(Ⅰ)()f x 的定义域是(0,)+∞,322(2)2()(1)x a x ax a f x x x +---'=+,34a =时,322224563(1)(493)()4(1)4(1)x x x x x x f x x x x x +---++'==++, 0x >,∴2249304(1)x x x x ++>+, 令()0f x '>,解得:1x >,令()0f x '<,解得:01x <<, ()f x ∴在(0,1)递减,在(1,)+∞递增, 1x ∴=时,()f x 最小,最小值是f (1)12=;(Ⅱ)由(Ⅰ)得:322(2)2()(1)x a x ax af x x x +---'=+, 令32()(2)2g x x a x ax a =+---,要证()f x 有唯一的极值点,即证()g x 在(0,)+∞有唯一的变号零点, 而2()3(42)2g x x a x a '=+--,令()0g x '=,解得:1x =,2x =其中10x <,20x >,(0)20g a '=-<,且()g x '的图象开口向上,故在区间2(0,)x 上,()0g x '<,()g x 递减, 2()(0)0g x g a ∴<=-<,在区间2(x ,)+∞上,()0g x '>,()g x 递增,2()()2()g x x x a x x a a =-+--, 2(1)(1)20g a a a ∴+=+++>,2()(1)0g x g a ∴+<,即()g x 在(0,)+∞上有唯一零点,即()f x 在(0,)+∞上有唯一的极值点且是极小值点.18.已知函数3()1()h x ax a R =-∈,()g x lnx =,()()3()(f x h x xg x e =+为自然对数的底数). ()I 若()f x 图象过点(1,1)-,求()f x 的单调区间;()II 若()f x 在区间1(e,)e 上有且只有一个极值点,求实数a 的取值范围;()III 函数3211()()32F x a x x g =-+(a )()1h x --,当103a e >时,函数()F x 过点(1,)A m 的切线至少有2条,求实数m 的值.【解析】解:(Ⅰ)由已知3()()3()13f x h x xg x ax xlnx =+=-+, 又()f x 过点(1,1)-,所以0a =, ()31f x xlnx ∴=-,且定义域为(0,)+∞, ()333(1)f x lnx lnx '=+=+,令()0f x '>,解得:1x e >,令()0f x '<,解得:10x e <<,故()31f x xlnx =-在1(0,)e 上是减函数,在1(e,)+∞上是增函数;(Ⅱ)函数3()31f x ax xlnx =+-的定义域为(0,)+∞,2()3(1)f x ax lnx '=++,令2()1r x ax lnx =++,则2121()2ax r x ax x x+'=+=,当0a >时,()0r x '>在(0,)+∞恒成立, 故2()3(1)f x ax lnx '=++在(0,)+∞上是增函数, 而213()0af e e'=>,故当1(x e∈,)e 时,()0f x '>恒成立,故()f x 在区间1(e ,)e 上单调递增,故()f x 在区间1(e,)e 上没有极值点;当0a =时,由(Ⅰ)知,()f x 在区间1(e,)e 上没有极值点;当0a <时,令2210ax x +=,解得,x故2()1r x ax lnx =++在上是增函数,在)+∞上是减函数,①当r (e )1()0r e <,即220a e-<<时,()r x 在1(e ,)e 上有且只有一个零点,且在该零点两侧异号,②令1()0r e =,得20ae=,不成立;③令r (e )0=,得22a e =-1(e ,)e ,而1()0222e e r r ln ==+>,又1()0r e<, 所以()r x 在1(e,)e 上有且只有一个零点,且在该零点两侧异号,综上所述,实数a 的取值范围是22[e -,0). (Ⅲ)函数3211()()32F x a x x g =-+(a )()1h x --,由函数()F x 过点(1,)A m 的切线,所以3200011(1)32m x lna x x lna =-++,(*)②据题意,原命题等价于关于0x 的方程(*)至少有2个不同的解. 设3221()(1)32x x lna x xlna ϕ=-++, 2()2(2)(1)(2)x x lna x lna x x lna ϕ'=-++=--,因为103a e >,所以15123lna >>,当(,1)x ∈-∞和1(2lna ,)+∞时,()0x ϕ'>,()x ϕ为增函数;当1(1,)2x lna ∈时,()0x ϕ'<,()x ϕ为减函数;所以()x ϕ的极大值为ϕ(1)1123lna =-,()x ϕ的极小值为32111()2244lna ln a ln a ϕ=-+, 设lna t =,103t >, 则原命题等价于3232111123231111244244m lna t m ln a ln a t t ⎧-=-⎪⎪⎨⎪-+=-+⎪⎩对103t >恒成立,所以由1123m t -对103t >恒成立,得43m ; (1) 记3211()244s t t t =-+,21111()(1)8224s t t t t t '=-+=-, 所以103t >时,()s t 的最大值为s (4)43=,由3211244m t t -+对103t >恒成立,得43m . (2)由(1)(2)得,43m =. 综上,当103a e >,实数m 的值为43时,函数()F x 过点(1,)A m 的切线至少有2条. 19.在平面直角坐标系xOy 中,已知函数()()f x clnx c R =∈的图象与直线2y x e=相切,其中e 是自然对数的底数. (1)求实数c 的值;(2)设函数()()a h x ax f x x=--在区间1(e,)e 内有两个极值点.①求实数a 的取值范围;②设函数()h x 的极大值和极小值的差为M ,求实数M 的取值范围.【解析】解:(1)()cf x x'=,设切点0(P x ,0)y ,则0c k x =,所以过原点的切线方程为:0c y x x =,且000clnx c x x =, 所以0x e =,由题意:c y x e =与2y x e=是同一条直线,所以2c =;(2)由(1)知,①()2ah x ax lnx x=--, 设函数()h x 在区间1(e,)e 内有两个极值点分别为1x ,2x ,12()x x <,22222()(0)a ax x ah x a x x x x-+'=+-=>, 由题意()0h x '=则220ax x a -+=,2()2m x ax x a =-+,121x x =, 所以只需020()a m e >⎧⎪⎪>⎨⎪⎪⎩,所以2211e a e <<+②因为121x x =,所以21211221111112111112()()2()2(2)22a a a a a M f x f x ax lnx ax lnx ax lnx ax ln ax lnx x x x x x x =-=-----=-----=--,由21120ax x a -+=,12121x a x ∴=+,且111x e<<, 所以1222211111122111222111224()112x x x x M x lnx lnx x x x +-=--=-++,设21x t =,211t e<<, 令11()4()12t g t lnt t -=-+,222212(1)()4[]0(1)2(1)t g t t t t t --'=-=<++, 所以()g t 在21(e ,1)单调递减, 从而g (1)21()()g t g e <<, 所以实数M 的取值范围28(0,)1e +.。