特征方程法求解递推关系中的数列通项

特征方程法求解递推关系中的数列通项
特征方程法求解递推关系中的数列通项

特征方程法求解递推关系中的数列通项

一、(一阶线性递推式)设已知数列

{a n }的项满足a-\ = b, a n ca n d ,

其中c = 0, c = 1,求这个数列的通项公式。

采用数学归纳法可以求解这一问题, 然而这样做太过繁琐,而且在猜想 通项公式中容易出错,本文提出一种易于被学生掌握的解法一一特征方程 法:针对问题中的递推关系式作出一个方程 x =cx ? d,称之为特征方程;

借助这个特征方程的根快速求解通项公式

?下面以定理形式进行阐述.

定理1:设上述递推关系式的特征方程的根为

x 0,则当x 0 = a 1时,a n

为常数列,即a n 二a 1;当X 0二a 1时,a n 二b n ■ x°,其中{b n }是以c 为公比 的等比数列,即b n = 0亍」,0 = a 1-x 0? n 1 当X 。=a 1时,6=0 ,数列{b n }是以c 为公比的等比数列, 故b n -

当 x ° 二a 1 时,0=0, {b n }为 0 数列,故 a * =a1,n ? N.(证毕) F 面列举两例,说明定理 1的应用?

1

例1.已知数列

{a n

满足:a n^^a -2,- N?4,求a n .

1 3

--x -2,则X 。- -

3

当a1 =4时,

例2.已知数列{a n }满足递推关系:

a n ^(2a n - 3)i, n ,N,其中 i 为虚数

数列{b n } b n

讪-3

n -4

1

是 以 ——

3

11 1 n4

(),a n 2 3

-3 b

比数列?于是

证明:因为c = 0,1,由特征方程得x o

b"a n 「X 0 ? d —注乂K

d —?作换元

b n = a n - X ° ,贝U

1 -c

C (a n -X °) = cb n .

1 -c

解:作方程x

2 11

单位。当a i 取何值时,数列{a .}是常数数列?

a^ :-

,a 2二:给出的数列:a n 爲方程x 2 - px -q =0,叫做数列 :a n / 的

特征方程。

若X i , X 2是特征方程的两个根,当X i = X 2时,数列的通项为 a n = Ax ;」 Bx 2J ,其中 A ,B 由 a i m ,a 2 =2 决定(即把 a i ,a 2,X i ,X 2 和n =i,2,代入a .二Ax ;J Bx ;」,

得到关于A 、B 的方程组);当捲=x ? 时,数列^n 』的通项为a^ (A B)x i n J

,其中A ,B 由a i -「,a 2二:决 定(即把 a i , a 2, X i , X 2和 n =i,2,代入 a^(A - Bn)x7,得到关于 A 、B 的方程组)。 例

3

:

已 知 数 列

'a/

满 足

a i = a,a 2 = b,3a n 2 -5a n i ' 2a n = 0(n _ 0, n ? N),求数列:a n 的通项 公式。

解法一(待定系数——迭加法) 由 3a n .2 -5a n 1

2

a n =0,得

—2/ 、

a

n 2 a

n 1

- 3 (a n 1 a n ), 3

且玄2 _a 〔二b_a 。

则数列 a , -a n [是以b - a 为首项,-为公比的等比数列,于是

3

2

a n i -a n =(

b -a)(—)n *。把 n =1,2,3,…,n 代入,得

3

a i 作方程x =(2x ? 3)i,则冷=

X o

-6 3i 5

(二阶线性递推式)定理

3.要使a n 为常数,

5

2:对于由递推公式

即则必须

a

n 2

= P a n 1 qa n ,

解法二(特征根法):数列 「a n 1: 3a n .2 -5a n q ? 2a n 2

a^a,a 2二b 的特征方程是:3x-5x ^0。

聪-A B (

|厂。

‘A = 3b—2a

故 a n =3b -2a 3(^b)(-)n4

3

三、(分式递推式)定理3:如果数列{a n }满足下列条件: n ? N ,都有a . i 二卫如 q (其中p 、q 、

ra n +h

a 3 - a

2 a 4 _ a

3 =(b 一 a)(3)

, 3

= (b-a)(孑, a n -a n 」=(b -a )(2)

n

‘。 3 把以上各式相加,得 2 2 2 a n -a i =(b-a)[1 (―)「?(严]二

3 3 3

1召

才(b-a)。

1 -

3

a n 二

[3 -

n

」3b - 2a 。

n 」](b-a) a =3(a-

= 0(n 一 0,n N),

b=

3

、B =3(a — b)

已知a 1的值且对于

h 均为常数,且

h

ph 式qr,r 式0,印 式一-),那么, r 当特征方程有两个相同的根

a n = 1

■, n N,

b n

无穷数列{a n }不存在.

C n 弓-捫,n N.

5 5

右a 1 -■,则 a n - ■, n ? N;

b n a 1 —(n_ 1)—, n -; p

— r ■

N.特别地,当存在n° ? N,使b n 0 = 0时,

px +

q 可作特征方程 x 二

rx + h

■(称作特征根)时,

(1) a

(2)当特征方程有两个相异的根、、'2

(称作特征根)时,则

a n

'2Cn

一、

,n N,

C n -1 其中C n

冃」(匸卫)z,n. N ,(其中a 1 a 〔 _ 2

P _ 2「

—2

)?

例3、已知数列{a *}满足性质:对于 n ?N ,a nd

a n 4

亍,且a ^3,求

{a n }的通项公式.

x +4 解:依定理作特征方程x = ------------

2x 3,变形得2X2 ? 2x - 4 =0,其根为

'1 =1, '2 - -2 ?故特征方程有两个相异的根,使用定理

2的第(2)部分,

则有 a 1 —州 C n

a —

■■■■2

,p 订、

nd ( )

p 一 ’2r J T 2): n N. 3 2 1-2 2

13X — 25 2

解:作特征方程 X .变形得X 「

10X ? 25 = 0,

特征方程有两个相同的特征根

■ - 5.依定理2的第(i )部分解答.

-2 _1

5

5

2

(4i

5 5

,n N.

即a

n 二

(-5)° -4

,n ^ N. n '

2 (-5)n

例5. 已知数列{a n }满足:对于n ?N,都有a n i

_ 13a n -25

a n 3

(1 ) a i -5,求 a n ;

(2) a i =3,求 a n ;

(3) a i

=6,

求 a n ;

(4)

a i 取哪些值时,无穷数列{a .}不存在?

(1) ?? a i = 5,. a^ —,.?对于 n 二 N,都有 a n =,— 5;

a i 二

b n ai -

1 r

一 (n_i)— p _ r 扎

丄(n_1)

-- 3-5

13-1 5

1 n -1 =——十 ----

2

8

令b n

=0,得n =5.故数列{a n }从第5项开始都不存在,

当n w 4, n N 时,a n =丄 二切_仃

b n

n -5

⑶? a 〔二 6? ■ — 5, - - a 〔 = .?■..

1

r n —1

??? b n

(n -1)

1

,n N ? a 〔一九

p — h r

8

令 b n = 0,则 n - -7 ' n. ???对于 n N, b n = 0.

1 1

——+ A = ---------------------------

b

n

1 ?口

8

a 1 =5时,数列{a .}是存在的,当 a^ ■ - 5时,则有

1

r

1

n -1

b n

(n — 1)

, n N.令 b n = 0,贝U 得 a 1 - 丸

p - 灯 a 1 -5

8

(其中n ,N 且N > 2)时,数列{a n }从第n 项开始便不

存在?

于是知:当a 1在集合{ -3或5n 一13:

N,且n > 2}上取值时,无穷

n —1

数列{a n }都不存在. 练习题:

求下列数列的通项公式:

1、在数列{a n }中,a 1 =1, a 2 = 7, a n = 2az +3a n/(n 色 3),求 a n 。key :

2、在数列{a n }中,a 1 =1,a 2 =5,且 a^5a n 4

-4a n^,求 a .。(key :

1

a n =3(4n -1))

3

5n 43

,n N.

(4)、显然当a j - -3时,数列从第 2项开始便不存在.由本题的第(1)小题

的解答过程知,

5n -13 a 1

,n n -1

???当耳二心

n —1 ■3n4 (T) n -2

3、在数列{a n }中,=3, a ? =7, a n = 3a n 」-2a n _2(n _ 3),求 a n °(key :

a n =2n1 -1)

(P =q ); a n =a 「(n - 1)b ) (p =q )

pz _0t 2

a n.(key:a n

二—-

a 1 (J 才■■-');若〉=

一:,

附定理3的证明

定理3(分式递推问题):如果数列{a n }满足下列条件:已知 a 1的值且对于

8、在数列{a n }中

,a 1, a 2 给定, a n = ba n J ca n/ .求 上式不能应用,此时, a n =(n - 1)a 2 : n J -(n

_2)aF 2

4、 在数列

{ a n

中,a 1 =

3, a

2

=

2, a

n 2

2

1

十 亍1

新,求

a n ( (key

:

5、 6、 7、 a n 1

(-1)2)

4 4 3

,

5

在数列{ a n }

中,a 1 = 3,去=3 , a n ::2

3

1

--(4a n 1 —a n ),求 a n ( (key : 3

在数列{a n }中,a 1 二 a,a 2 二 b, a n 2 = pa n 1 ■ qa n ,且 p ? q 二1?求 a n .

(key : q =1 时,a n =a (n — 1)(b —a) ; q=1 时,

a n

n _1

aq b -(b-a)(-q))

在数列{a n }中,a 1

=a, a ? =a b, pa n 2 - (p q)a n 1 qa n =0

(p,q 是非0常数)

.求 a n . (key : a n

nJ

p q 二 a [1-( )]b

p —q p

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

求递推数列的通项公式的十一种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法例1 在数列{n a }中,31=a ,) 1(1 1++=+n n a a n n ,求通项公式n a . 解:原递推式可化为:1111+- + =+n n a a n n 则,211112-+=a a 3 1 2123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故n a n 1 4-=. 二、作商求和法 例2 设数列{n a }是首项为1的正项数列,且0)1(12 2 1=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题) 解:原递推式可化为: )]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n 1 . 三、换元法 例3 已知数列{n a },其中913,3421== a a ,且当n ≥3时,)(3 1 211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编). 解:设11---=n n n a a b ,原递推式可化为: }{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31 .故 n n n n b b )31()31(91)31(2211==?=---.故n n n a a )31(1=--.由逐差法可得:n n a )3 1 (2123-=. 例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。解 由1221=+---n n n a a a 得:1)()(211=------n n n n a a a a ,令11---=n n n a a b ,则上式为 121=---n n b b ,因此}{n b 是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b 又2 ) 1(121-=+++-n n b b b n 所以)1(211-= -n n a n ,即)2(2 1 2+-=n n a n

特征方程特征根法求解数列通项公式 一:A(n+1)=pAn+q, p,q为常数. (1)通常设:A(n+1)-λ=p(An-λ), 则λ=q/(1-p). (2)此处如果用特征根法: 特征方程为:x=px+q,其根为x=q/(1-p) 注意:若用特征根法,λ的系数要是-1 例一:A(n+1)=2An+1 , 其中q=2,p=1,则 λ=1/(1-2)= -1那么 A(n+1)+1=2(An+1) 二:再来个有点意思的,三项之间的关系: A(n+2)=pA(n+1)+qAn,p,q为常数 (1)通常设:A(n+2)-mA(n+1)=k[pA(n+1)-mAn], 则m+k=p, mk=q (2)此处如果用特征根法: 特征方程是y×y=py+q(※) 注意: ①m n为(※)两根。 ②m n可以交换位置,但其结果或出现两种截然不同的数列形式,但同样都可以计算An,而且还会有意想不到的惊喜, ③m n交换位置后可以分别构造出两组An和A(n+1)的递推公式,这个时侯你会发现,这是一个关于An和A(n+1)的二元一次方程组,那么不就可以消去A(n+1),留下An,得了,An求出来了。 例二:A1=1,A2=1,A(n+2)= - 5A(n+1)+6An, 特征方程为:y×y= - 5y+6 那么,m=3,n=2,或者m=2,n=3 于是,A(n+2)-3A(n+1)=2[A(n+1)-3A] (1) A(n+2)-2A(n+1)=3[A(n+1)-2A] (2) 所以,A(n+1)-3A(n)= - 2 ^ n (3) A(n+1)-2A(n)= - 3 ^ (n-1) (4) you see 消元消去A(n+1),就是An勒 例三: 【斐波那挈数列通项公式的推导】斐波那契数列:0,1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列。 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2)=1 ∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2

数列复习课(3)———常见递推数列通项公式的求法 主备人:刘莉苹 组长:李英 时间:2013-9-16 教学目标: 1.通过求出数列前几项,了解递推公式是给出数列的一种方法,并能根据特殊的递推公式求出数列的通项公式. 2.掌握把一些简单的数列变形转化为等差数列、等比数列的方法,体验解决数列问题的基本方法及理解运用的过程. 教学重点:处理递推关系的基本方法. 教学难点:通过变形转化成等差、等比数列的有关问题. 研讨互助 问题生成 引入新课: 由递推公式求数列的通项公式的类型: (1) (2) (3) (4)()n f pa a n n +=+1型数列(p 为常数) (5)n n n qa pa a +=++12(其中p ,q 均为常数)。 (6)递推公式为n S 与n a 的关系式()n n S f a = 即n a 与n s 的关系11(1)(2)n n n s n a s s n -=?=?-≥? (7)r n n pa a =+1)0,0(>>n a p (8)) ()()(1n h a n g a n f a n n n +=+ (9)周期型 思考:各类型通项公式的求法? 合作探究 问题解决 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 1() n n a a f n +=+1() n n a a f n +=?1(0,1) n n a pa q p p +=+≠≠

变式: 1. 已知数列{}n a 满足211=a ,112 n n a a +=+,求n a . 2.若数列{}n b 满足11b =,112n n n b b +??-= ???(1)n ≥,求数列{}n b 的通项公式. 3.已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 变式: 1. 已知31=a ,132n n a a += ,求n a 。 2.已知31=a ,n n a n n a 23131 +-=+ )1(≥n ,求n a 。

递推数列通项求解方法举隅 类型一:1n n a pa q +=+(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ……121(1n p a q p p -=++++…211)11n n q q p a p p p --??+=+ ?+ ? --??。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--?? ,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=??…… 1223(122n -=++++ (211) 332)12232112n n n --+??+=+?+=- ? --?? 。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则1 1342 2n n n a -++=?=,即123n n a +=-。 类型二:1()n n a a f n +=+ 思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+ ∑。

具有形如21n n n x ax bx ++=+ ①的递推公式的数列{}n x 叫做 线性递推数列 将①式两边同时加上1 n yx +-,即: 2111n n n n n x yx ax bx yx ++++-=+- 整理得: 211()()n n n n b x yx a y x x y a +++-=--- 令1n n n F x yx +=-为等比数列,则其公比q a y =-且满足b y y a =- 即满足:2y ay b =+ ② 设②式具有两个不相等的实数根r ,s ,则: 1n n n Y x rx +=- ③ 1n n n Z x sx +=- ④ 分别是公比为a r -,a s -的等比数列,并得: 121()()n n Y x rx a r -=-- 1 21()()n n Z x sx a s -=-- 且由③、④可得: ()n n n Y Z s r x -=- 又由韦达定理可得: r s a += rs b =- 于是有:

1121211121211121221 2122121()()()() () () n n n n n n n n n n n n n Y Z x rx a r x sx a s x s r s r x rx x x rx x sx s r s b r b C sx a r a s s r s r x rx x sx s r s b s b r r r C s ------------= =----= -------= -+---++++-== ⑤ 由以上推导可知,线性递推数列的通项公式⑤只与数列的第一、二项和方程 2y ay b =+的两根有关。也就是说,只需知道1x ,2x 和方程2y ay b =+的两根r ,s ,即可得出线性递推数列的通项公式。可见方程2y ay b =+包含了线性递推数列的重要信息,故将之称为线性递推数列的特征方程。 例:(斐波拉契数列)已知数列{}n x 满足: 121x x ==且21 (1,)n n n x x x n n N +++=+≥∈.求数列{}n x 的通项公式。 解:该数列属于线性递推数列,其特征方程为:21x x =+ 解之得:152r + =,152s - = 故可设数列的通项公式为 12151522n n n x C C ????+-=+ ? ? ? ????? 又1121515122x C C ????+-=+= ? ? ? ?????,222121515122x C C ????+-=+= ? ? ? ????? 解得:155C =,255C =-.故所求通项公式为: 51515522n n n x ?? ????+-??=- ? ? ? ????????? .

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

特征方程法求解递推关系中的数列通项 一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -= 作换元,0x a b n n -=则.)(110011 n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 1 11=∈--=+a n a a n n 求.n a 解:作方程.2 3 ,2310-=--=x x x 则 当41=a 时,.211 23,1101=+=≠a b x a 数列}{n b 是以3 1 -为公比的等比数列.于是 .N ,)3 1 (2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数

常见线性递推数列通项的求法 对于由递推式所确定的数列通项公式问题,往往将递推关系式变形转化为我们熟知的等差数列或等比数列,从而使问题简单明了。这类问题是高考数列命题的热点题型,下面介绍常见线性递推数列求通项的基本求法。 一、一阶递推数列 1、q pa a n n +=+1型 形如q pa a n n +=+1(q p 且1≠为不等于0的常数)的数列,可令)(1x a p x a n n +=++ 即x p pa a n n )1(1-+=+与q pa a n n +=+1比较得1-=p q x ,从而构造一个以1 1-+p q a 为首项以p 为公比的等比数列? ????? -+1p q a n 例1.在数列{a n }中,,13,111-?==+n n a a a 求n a . 解:在131-?=+n n a a 的两边同加待定数λ,得n n n a a a (3131?=+-?=++λλ+(λ-1)/3),令,3)1(-=λλ得).21(321.211-?=-∴-=+n n a a λ数列{}2 1-n a 是公比为3的等比数列, ∴a n 21-=).13(21,32 111+=∴?--n n n a 2、 ()n g a c a n n +?=+1型 (1)1=c 时:解题思路:利用累差迭加法,将)1(1-=--n g a a n n ,--1n a 2-n a =)2(-n g ,…,-2a 1a =)1(g ,各式相加,正负抵消,即得n a . 例2.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项n a . 解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n Λ,把以上各式相加,得 【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用 2,3,4,,2,1Λ--n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。 (2)1≠c 时: 例3.在数列{}n a 中,,3,1211n a a a n n +==+求通项n a . 解:作新数列}{n b ,使),(2C Bn An a b n n ++-=即),(2C Bn An b a n n +++=(A ,B ,C 为待定 常数)。由213n a a n n +=+可得:C n B n A b n ++++++)1()1(21=,)(322n C Bn An b n ++++ 所以,B A C n A B n A b b n n --+-+++=+2)22()12(321,设2A+1=0,2B-2A=0,2C-A-B=0,可

特征方程法求解递推关系中的数列通项 曾建国 当()f x x =时,x 的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。 典型例子:1n n n aa b a ca d ++= + 令 ax b x cx d +=+,即2 ()0cx d a x b +--= ,令此方程的两个根为12,x x , (1)若12x x =,则有11111n n p a x a x +=+-- (其中2c p a d =+) (2)若12x x ≠,则有111122 n n n n a x a x q a x a x ++--=-- (其中12a cx q a cx -=-) 例题1:设23 ()27 x f x x -+=-, (1)求函数()y f x =的不动点; (2)对(1)中的二个不动点,()a b a b <,求使()()f x a x a k f x b x b --=--恒成立的常数k 的值; (3)对由111,()n n a a f a -==(2)n ≥定义的数列{}n a ,求其通项公式n a 解析:(1)设函数()f x 的不动点为0x ,则00023 27 x x x -+= - 解得012x =-或03x = (2)由231111 ()1272222238248(3)83327 x x x x x x x x x x -++---++ -= ==?-++----- 可知使()()f x a x a k f x b x b --=--恒成立的常数18k =。 (3)由(2)可知1111122383 n n n n a a a a --++=?--, 所以 123n n a a ??+????-????是以34-为首项,18为公比的等比数列。即 11312()348n n n a a -+=-?-?11 911()482311()48 n n n a ---=+ 例2.已知数列}{n a 满足性质:对于14 N,,23 n n n a n a a ++∈= + 且,31=a 求}{n a 的通项公式. 解:依定理作特征方程,3 24 ++= x x x 变形得,04222=-+x x 其根为.2,121-==λλ 故特征方程有两个相异的根,则有114 1 12342311 142446510 52223 n n n n n n n n n n n n n n a a a a a a a a a a a a a a +++--++---+-====-+++++++++ 即1111 1252n n n n a a a a ++--=-++ 又1 113122325 a a --==++ ∴数列12n n a a ??-??+?? 是以25为首项,15-为公比的等比数列 1121()255 n n n a a --=-+ 1 141()1 (5)455,N.212(5)1()55 n n n n n a n ---+--==∈+---

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a =,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

递推数列特征方程的来源与应用 递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。 关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 , 令d t c =-)1(,即1 -=c d t ,当1≠c 时可得 )1 (11-+=-++c d a c c d a n n 知数列??????-+ 1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+∴n n c c d a c d a 将b a =1代入并整理,得 ()1 1---+=-c d c b d bc a n n n 对于二阶线性递推数列,许多文章都采用特征方程法[2]: 设递推公式为,11-++=n n n qa pa a 其特征方程为02 2=--+=q px x q px x 即, 1、 若方程有两相异根A 、B ,则n n n B c A c a 21+= 2、 若方程有两等根,B A =则n n A nc c a )(21+= 其中1c 、2c 可由初始条件确定。 很明显,如果将以上结论作为此类问题的统一解法直接呈现出来,学生是难以接受

考点20 递推公式求通项(第二课时) 【题组一 构造等差数列】 1.在数列中,若,,则 。 {}n a 12a =()*121 n n n a a n a += ∈+N n a = 2.若数列中,,则这个数列的 。 {}n a 11113n n n a a a a ,+== +n a = 3.已知数列满足 ,则数列的通项公式_______. {}n a ()* 112,222,n n n a a a n n N -==+≥ò{}n a n a =

4.在数列中,,且满足,则=________ {}n a 13 2a = 11 3(2)32n n n a a n a --=≥+n a 【题组二 构造等比数列】 1.已知数列中,,则数列通项公式为_____. {}n a () * 111,34,2n n a a a n N n -==+∈≥且{}n a

2.在数列{a n}中,a1=3,且点P n(a n,a n+1)(n∈N*)在直线4x-y+1=0上,则数列{a n}的通项公式为________. 3.在数列{a n}中,a1=3,a n+1=2a n﹣1(n∈N*),则数列{a n}的通项公式为。

4.已知数列满足,,则等于 。 {}n a 1a 1=n 1n a 3a 4+=+n a 【题组三 周期数列】 1.已知数列中,, (),则等于 。 {}n a 12a =11 1n n a a -=- 2n ≥2018a

2.已知数列满足,且 ,则 。 {}n a 1(1)1n n a a +?-=11 2a =- 2020a = 3.设数列满足:,,则______. {}n a 112a = ()1 111n n n a a n a ++=≥-2016a = 4.数列中,,,(),则______. {}n a 11a =25a =21n n n a a a ++=-N n *∈2012a =

几种分式型递推数列的通项求法 李云皓 (湖北省宜昌市夷陵中学,湖北宜昌 443000) 1.1 引言 数列是高中数学中的重要内容之一,是高考的热点,而递推数列又是数列的重要内容。数列中蕴含着丰富的数学思想,递推数列的通项问题也具有很强的逻辑性和一定的技巧性,因此此类问题也经常渗透在高考试题和数学竞赛中。本文对分式型递推数列求通项问题作一些探求,希望对大家有所启发。 2.1 基本概念 设数列的首项为,且 其中为常数,同时,我们称这个递推公式为 分式递推式,而数列称为由分式递推式给定的数列。显然,该数列的递推式也可写成 2.2 递推式的特征方程与特征根 我们先来看一个引例: 首项为,由递推式给定的数列的通项公式我们是会求的: 即 为常系数等比差数列(由递推式给定的数列,其中为常数),

该数列的通项是熟知的,为 于是考虑能不能变型后让②中的没有,即让①中的没有。我们可以利用 递推式的特征方程来解决这个问题。 下面给出特征方程推导过程: 数列的递推式为 两边同时减去得 通分后得 令 即 方程③保留了原递推式的特征,故称为该递推式的特征方程,为特征根。 3.1 例题(第一部分) 下面我们通过几个例题来说明特征方程的应用。

两式相除得 故当方程③有两不等实根时,可用此方法求出通项公式。 两边同乘3得 两边取倒数 故当方程③有两相等实根时,也可用此方法求出通项公式。

两式相除得 由此,当方程③有两虚数根时,用此方法求通项公式也是正确的。 3.2 例题(第二部分) 下面我们来看另一类型的分式递推式。

还要两边再取倒数还原,请读者自己完成化简 令 令 下面的递推请读者自己完成 4.1 练习

递推数列特征方程的发现 一、问题的提出 递推(迭代)是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和方法。 在递推数列中占有重要一席的斐波那契数列,又称兔子数列,是学生非常乐意探讨的递推问题,许多学生都会不约而同地向教师提出,这个数列有通项公式吗?如有,怎样求它的通项公式?笔者就曾碰到过一位喜爱钻研的学生,带着参考书上的解法而向我请教: 已知斐波那契数列,3,2(,11121=+===-+n a a a a a n n n …),求通项公式n a 。 参考书上的解法是这样的: 解 此数列对应特征方程为12 +=x x 即012 =--x x ,解得2 5 1±= x , 设此数列的通项公式为n n n c c a )2 51()251( 21-++=, 由初始条件121==a a 可知, ???????=-++=-++1)251()251(1251251222121c c c c ,解之得?????? ?-==51 5121c c , 所以?? ? ???--+=n n n a )251(251( 55)。 这位学生坦率地表示,尽管参考书上介绍了利用特征方程求通项公式的一些结论, 用上述方法得到的通项公式也是正确的,但他还是“看不懂”。换句话说,这种解法的依据是什么?特征方程是怎样来的?我虽然深知这是特征方程惹的祸,但由于现行教材只字未提特征方程,我也从未在课堂上作过补充,如果将有关利用特征方程求递推数列通项的一些结论直接呈现出来,或者以“高考不作要求”为由来搪塞,学生是难以接受的,也是不负责任的。面对一头雾水的数学尖子,我在充分肯定其善于思考、勇于探索的可贵品质的同时,也在苦苦寻觅解答这一问题的良策。其后不久,一次偶然的数学探究活动,竟使这一长期困惑我们教学活动的尴尬问题迎刃而解。 二、研究与探索 问题的解决源于对一阶线性递推数列通项公式的探求: 若数列{}n a 满足),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的

由递推公式求通项公式的常用方法 由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 方法一:累加法 形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。有时若不能直接用,可变形成这种形式,然后利用这种方法求解。 例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列 (1)求c 的值 (2)求{a n }的通项公式 解:(1)a1,a2,a3成公比不为1的等比数列 2 022)2(2)() ,3,2,1(111113 12 2===++?=+∴=+=?=∴+c c a c c a a c a n cn a a a a a n n 因此(舍去)或解得又 (2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 ) 1(2322 2121342312-=-?=-?=-?=--n a a a a a a a a n n 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2 -n 又a 1=2,a n =n 2 -n +2 方法二:累乘法 形如 a n +1 a n =g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。

相关文档
最新文档