实验一 小信号调谐放大器
调谐小信号放大器分析报告设计与仿真

实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师小信号调谐放大器预习报告一.实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二.实验内容调谐放大器的频率特性如图所示。
图1-1 调谐放大器的频率特性调谐放大器主要由放大器和调谐回路两部分组成。
因此,调谐放大器不仅有放大作用,而且还有选频作用。
本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。
二.单调谐放大器共发射极单调谐放大器原理电路如图1-2所示。
放大倍数fo f 1f K 0.7o K o K 2of ∆通频带f ∆2o f ∆2o f ∆图1-2图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。
C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。
三.双调谐回路放大器图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。
图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。
两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。
本次实验需做内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
高频小信号单调谐与双调谐放大器实验报告

高频小信号单调谐与双调谐放大器实验报告14044012 孙胤邦14 级电子一班•输出电压幅值U/mV1 \j \J____ ■实验表格及图像单调谐放大器的电压幅值输入信号频率f/fHz 5.45.55.65.75.85.96 6.16.26.36.46.56.66.76.86.9输出电压幅值U/m V 1.61.7622.162.42.73.123.844.86.327.928.087.526.084.83.84单调谐放大器幅频特性输入信号频率9 8 72 1如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )单调谐的峰值为8.08mV , 下降到0.707倍时的值为5.71mv 。
输入 信号 频率 f/MHz 48 55 25 45 6 5 7 5 8 5 9 66 162 63 64 65 66 67 68 6 9 7 7 1 输出 电压 幅值 U/mV 0 61 1 4257 46 85 85 45 66 47 27 46 24 43 62 2 81 6 81 41 1 2双调谐回路幅频特性如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )双调谐的峰值为7.40mV 和7.40mv 下降到0.707倍时的值为5.23mV 和5.23mV 。
这样看来,单调谐放大器优点是电路简单,缺点是通频带窄、选择性差、增益低。
双调谐放大器具有良好的选择性、 较宽的通频带。
而且由图可以看出双调谐的选 择性明显优于单调谐放大器。
值幅压电岀输2 3 4 5 输入信号频率6 7 88 7 6 54 3 2 1 0放大器输入电压与输出电压关系三、(纵坐标为输出电压V,横坐标为输入电压mV )。
当放大器的输入电压增加到一定的程度之后,输出的波形会失真,和输入波形不再一模一样。
二、实验结论及感想这是这一学期的第一次高频实验,通过低频放大的和高频所学内容,使我更真切地了解了高频小信号调谐放大器的工作原理,尤其是单级单调谐放大器和双级单调谐放大电路的原理,更是巩固了通电理论课上学到的谐振放大器电压增益、通频带、选择性的相关知识和计算方法,并在实验中测试了各组数据,验证了理论知识。
实验一调谐放大器

实验一单调谐高频小信号放大器一、实验目的1.熟悉电子元器件和高频电路实验箱。
2.熟悉谐振回路的幅频特性分析——通频带与选择性.3.熟悉和了解放大器的动态范围及测试方法。
4.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展.二、实验仪器1.双踪示波器SS-78042.扫频仪PD12503.高频信号发生器WY10524.万用表5.实验板1三、预习要求1、复习谐振回路的工作原理。
2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间的关系.3、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f。
四、实验内容及步骤(一)单调谐回路谐振放大器。
1.实验电路见图1-1(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关ﻫ断电源再接线)(2)接线后仔细检查,确认无误后接通电源。
实验电路中选Re=1K测量各静态工作点,计算并填表1。
1实测实测计算根据VCE判断V是否工作在放大区原因VBV EIC VCE是否图1-1 单调谐回路谐振放大器原理图3。
动态研究(1)测放大器的动态范围V i~VO(在谐振点)选R=10K,Re=1k 。
把高频信号发生器接到电路输入端,电路输出端接示波器,ﻫ选择正常放大区的输入电压V i, 调节频率f 使其为10。
使回路谐ﻫ振,使输出电压幅度为最大。
此时调节7MHZ,调节CTV i由0。
02伏变到0.8伏,逐点记录V o电压,并填入表1.2.Vi的各点测量值可根据(各自)实测情况来确定。
仍选R=10K, Re=1K。
将扫频仪射频输出送入电路输入端,电路输出接至扫频仪检波器输入端。
观察回路谐振曲线(扫频仪输出衰减档位应根据实,使f0=10 。
7M际情况来选择适当的位置,如30dB),调回路电容CTHz 。
(3)测量放大器的频率特性当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输出端接至电路输入端,调节频率f使其为10。
实验一高频小信号调谐放大器实验

实验一高频小信号调谐放大器实验高频小信号调谐放大器实验一、实验目的1.熟悉高频电路实验箱,示波器,扫频仪的使用。
2.掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
3.熟悉谐振回路的调谐方法及幅频特性测试分析方法。
4.掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
二、实验内容1、谐振频率的调整与测定。
2、谐振回路的幅频特性的测量与分析--通频带与选择性。
3、主要技术性能指标的测定:谐振频率、谐振放大增益Avo及动态范围、通频带BW0.7、矩形系数Kr0.1。
三、实验原理1、单调谐小信号放大器高频信号放大器工作频率高,但带宽相对工作频率却很窄。
按器件分:BJT、FET、集成电路(IC) ;按带宽分:窄带、宽带;按电路形式分:单级、多级;按负载性质分:谐振、非谐振。
晶体管集电极负载通常是一个由LC组成的并联谐振电路。
由于LC并联谐振回路的阻抗是随着频率变化而变化。
理论上可以分析,并联谐振在谐振频率处呈现纯阻,并达到最大值,即放大器在回路谐振频率上将具有最大的电压增益。
若偏离谐振频率,输出增益减小。
调谐放大器不仅具有对特定频率信号的放大作用,同时一也起着滤波和选频的作用。
单调谐放大器电路原理图单调谐放大器质量指标谐振频率谐振增益AV 0 p1 p2 y fe g通频带选择性2、双调谐放大器电路原理图AV 0v0 p1 p2 y fe vi 2g双调谐回路放大器具有频带宽、选择性好的优点,并能较好地解决增益与通频带之间的矛盾,从而在通信接收设备中广泛应用。
在双调谐放大器中,被放大后的信号通过互感耦合回路加到下级放大器的输入端,若耦合回路初、次级本身的损耗很小,则均可被忽略。
p1 p2 y fe 电压增益为AV 0 2g 通频带为弱耦合时,谐振曲线为单峰;为强耦合时,谐振曲线出现双峰;临界耦合时,双调谐放大其的通频带BW2 f 0.7f0 2 QL四、实验步骤单调谐小信号放大器单元电路实验1、单频率谐振的调整断电状态下,按如下框图进行连线:单调谐小信号放大电路连线框图用示波器观测TP3,调节①号板信号源模块,使之输出幅度为200mV、频率为10.7MHz正弦波信号。
小信号调谐放大器

为什么说提高电压放大倍数Au0时,通频带2△f0.7会减小?一、实验目的①通过实验进一步熟悉小信号调谐放大器的工作原理,初步了解工程估算的方法。
②掌握调谐放大器的电压增益、选择性、通频带及动态范围的测试方法。
③掌握使用频率特性测试仪调整小信号谐振放大器谐振特性的方法。
二、实验原理小信号调谐放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由LC组成的并联谐振回路,如图1-1所示。
由于LC并联谐振回路的阻抗是随频率而变的,在谐振频率处其阻抗是纯电阻,达到最大值。
因此,用并联谐振回路作集电极负载的调谐放大器在回路的谐振频率上具有最大的电压增益。
稍离开此频率,电压增益迅速减小。
我们用这种放大器可以放大所需要的某一频率范围的信号,而抑制不需要的信号或外界干扰信号。
因此,调谐放大器在无线电通信系统中被广泛用作高频和中频放大器。
图1—1 小信号调谐放大器三、实验电路图1-1所示电路为实验电路,它是由共发射极组态的晶体管和并联谐振回路组成的单级单调谐放大器。
本实验电路要求完成单级调谐放大器的技术指标:中心频率f0=15MHz,通频带2△f0.7=4MHz,增益A>20dB,RL=1 kΩ。
电路主要元件参数:晶体管3DG6C,β=60,查手册知在f0=30MHz,I C=2mA,Vcc=9V条件下测得y参数为g ie=2mS,Cie=12PF,goe=250μs,Coe=4pF,yfc=40mS,yre=350μS。
如果工作条件发生变化,则上述参数值仅作为参考。
要得到晶体管的y参数也可由混合π参数计算出y参数。
中频变压器参数:L=4μH,Q0=100,P1=0.6,P2=0.3。
回路电容C1=10PF,C2=(5~20)PF,在调谐过程中使用微调电容C2,调整中心频率。
直流偏置由R b1、R b2、Rc实现,电阻器W1为47kΩ,用于调整静态工作点。
电路中的电容一般使用体积小的瓷片电容。
四、调谐放大器的调整与测试首先应调整每一级所需的直流工作点。
实验1:调谐放大器实验

实验一调谐放大器[实验目的]1.熟悉仿真软件Multisim的使用,学会用Multisim做谐振放大器实验。
2.熟悉谐振回路的幅频特性分析---通频带与选择性。
3.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4.熟悉和了解放大器的动态范围及其测试方法。
[实验原理及预习要求]1.预习有关EWB使用方法的内容,熟悉EWB的基本操作。
2.小信号谐振放大器的原理小信号谐振放大器是接收机和各种电子设备中广泛应用的一种电压放大器。
它的主要特点是晶体管的集电极(共发射极电路)负载不是纯电阻,而是由L、C组成的并联谐振回路。
调谐放大器具有较高的电压增益,良好的选择性,当元件器件性能合适和结构布局合理时,其工作频段可以做得很高。
小信号调谐放大器的类型很多,按调谐回路区分。
由单调谐回路,双调谐回路和参差调谐回路放大器。
按晶体管连接方法区分,有共基极、公发射极和公集电极放大器。
实用上,构成形式根据设计要求而不同。
典型的单调谐放大器电路如下图所示。
图中R1 ,R2 是直流偏置电阻,用以形成稳定的静态工作点;LC并联谐振回路为晶体管的集电极负载,由于LC回路有带阻作用,即对带内信号阻抗较大,因而有用信号成分可在其上形成信号电压;Re 为提高工作点的稳定性而接入的直流负反馈电阻,Ce 是对信号频率的旁路电容。
输入信号Us经电容器C1耦合到be“基射”之间。
放大后再耦合到外接负载上。
[实验内容及步骤]1.打开仿真软件Multisim,在工作区中建立单调谐回路谐振放大器,如图3所示图3 单调谐回路谐振放大器仿真也可以执行直流分析,由EWB直接得出各静态工作点。
3. 动态研究(1) 测放大器的动态范围Vi━V0(在谐振点)选R=10K,Re=1k。
把高频信号发生器接到电路输入端,电路输出端接毫伏表,选择正常放大区的输入电压Vi, 调节频率f使其为10.7MHZ,调节Cr使回路谐振,是使输出电压幅度为最大。
此时调节V1由0.02伏变到0.8伏,逐点记录V0电压,并填入表1.2。
【高频电子线路实验指导书】高频小信号调谐放大器试验
实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。
通过本实验,我们希望同学们能重点掌握以下几方面内容:1.静态工作点(直流工作状态)的调试. 小信号调谐放大器必需工作在甲类.2.小信号(交流工作状态)的定义. 输入信号必需小于5 毫伏.3.并联谐振回路的特性. 谐振曲线,通频带,矩形系数.4.放大特性. 电压放大倍数,动态特性(输入 ---- 输出电压特性).二、实验内容1、调节谐振回路使谐振放大器谐振在10.7MHz。
2、测量谐振放大器的电压增益。
3、测量谐振放大器的通频带。
4、测量谐振放大器的输入---- 输出电压特性5、判断谐振放大器选择性的优劣。
三、实验仪器1、20MHz模拟示波器一台2、数字万用表一块3、高频信号源一台四、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。
它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。
在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。
晶体管的静态工作点由电阻R B1,R B2及R E决定,其计算方法与低频单管放大器相同。
图1-1 小信号调谐放大器放大器在高频情况下的等效电路如图1-2所示,晶体管的4个y 参数ie y ,oe y ,fe y 及re y 分别为输入导纳 ()e b e b b b e b e b ie jwc g r jwc g y '''''1+++≈(1-1) 输出导纳 ()e b e b e b b b e b b b m oe jwc jwc g r jwc r g y ''''''1+++≈ (1-2)正向传输导纳 ()e b e b b b m fe jwc g r g y '''1++≈ (1-3) 反向传输导纳 ()e b e b b b eb re jwc g r jwc y ''''1++-≈(1-4)图1-2 放大器的高频等效回路式中,m g ——晶体管的跨导,与发射极电流的关系为{}S mA I g E m 26= (1-5) e b g /——发射结电导,与晶体管的电流放大系数β及I E 有关,其关系为 {}S mA I r g E e b e b β261''== (1-6) b b r /——基极体电阻,一般为几十欧姆;c b C /——集电极电容,一般为几皮法;e b C /——发射结电容,一般为几十皮法至几百皮法。
高频小信号调谐放大器
使用注意事项一、所有的地均连通,但做实验时示波器探头地地线就近接地。
二、在进行信号连接时,应优先选择较短地信号连接线。
三、所提供地两只无感批,窄口用于调磁心为细地中周,宽口用于调磁心为粗地中周和可调电容。
四、调中周磁心时,应将无感批垂直放置,旋转无感批时不应用力过猛。
五、用手旋转电位器时,用力应均匀。
六、单元直流供电开关,只在所在单元工作时才打开,以免各实验单元之间互相影响。
七、为避免频率计对示波器观察波形时产生干扰,应尽量避免两者同时挂在信号的输入(输出)端。
实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。
在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数,通频带,矩形系数),进一步掌握高频小信号调谐放大器的工作原理。
学会小信号调谐放大器的设计方法。
二、实验仪器①BT-3(G)型频率特性测试仪(选项)一台②20MHz模拟模拟示波器一台③数字万用表一块④调试工具一套三、实验内容(实验中用到BT-3和频谱仪的地方选做)按照所附电路原理图G6,先调静态工作点,然后再调整谐振回路。
1、按照所附电路原理图G6,按下开关KAl,接通12V电源,此时LEDAl点亮。
2、调整晶体管的静态工作点:在不加输入信号(即u i=0),将测试点TTAl接地,用万用表直流电压档(20V档)测量三极管QAl 射极的电压(即测P6与G 两焊点之间的电压,见实验箱表面整机元件分布)调整可调电阻W A1,使u EQ =2.25V (即使I E =1.5mA )根据此电路计算此时的I E ,u EQ , u BQ ,及u CEQ 的值。
3、调谐放大器的谐振回路使它谐振在10.7MHz方法是用BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端TTAl 及测试端TTA2,通过调节y 轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率f 0=10.7MHz 所对应的幅值最大。
(一)小信号调谐放大器基本工作原理
实验室时间段座位号同组人翁洁意杭州电子科技大学信息工程学院通信电子线路实验报告实验名称小信号调谐放大器姓名王颖学号15934104指导老师刘建岚一.实验目的1.利用实验箱熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器在有负载和无负载的情况下的基本工作原理;3.掌握用点测法测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二.实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三.实验步骤1.实验准备在实验箱主板上插装好无线接收与变频模块,接通实验箱上电源开关,按下模块上白色电源开关(POWER),此时模块上电源指示灯亮。
2.单调谐回路谐振放大器幅频特性测量我们测量幅频特性使用的是点测法。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
点测法,其步骤如下:①2K1置“OFF”位,即断开集电极电阻2R3。
2K2置“单调谐”位,此时2C6被短路,放大器为单调谐回路。
高频信号源输出连接到调谐放大器的输入端(2P01)。
示波器CH1接放大器的输入端2TP01,示波器CH2接调谐放大器的输出端2TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰-峰值)为50mv(示波器CH1监测)。
调整12W,使放大器的输出为最2W和2大值(示波器CH2监测)。
此时回路谐振于6.3MHZ。
比较此时输入输出幅度大小,并算出放大倍数。
②按照表1-1改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为50mv(示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-1。
高频小信号调谐放大器试验报告
高频小信号调谐放大器试验报告通信电子电路实验实验一高频小信号调谐放大器实验报告学院:信息与通信工程学院班级:姓名:学号:班内序号:一.课题名称:高频小信号调谐放大器二.实验目的1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
三.仪器仪表四.实验内容及步骤实验中,电路部分元器件值,R2=10KΩ, R3=1KΩ, R10=2KΩ, R12=51Ω,R13=10KΩ,R24=2KΩ, R27=5.1KΩ, R28=18KΩ, R30=1.5KΩ, R31=1KΩ, R32=5.1KΩ, R33=18KΩ, R35=1.5KΩ,W3=47KΩ, W4=47KΩ,C20=1nF, C21=10nF, C23=10nF。
(一)、单级单调谐放大器1、计算选频回路的谐振频率范围如图1-1 所示,它是一个单级单调谐放大电路,输入信号由高频信号源或者振荡电路提供。
调节电位器W3 可改变放大电路的静态工作点,调节可调电容CC2 和中周T2 可改变谐振回路的幅频特性。
谐振回路的电感量L=1.8uH~2.4uH,回路总电容C=105 pF~125pF,根据公式范围。
,计算谐振回路谐振频率 f0 的图1-1 单级单调谐放大器实验原理图2、检查连线正确无误后,测量电源电压正常,电路中引入电压。
实验板中,注意TP9接地,TP8 接TP10;3、用万用表测三极管Q2 发射极对地的直流电压,调节可变电阻使此电压为5V。
4、用高频信号源产生频率为10.7MHz,峰峰值约400mV 的正弦信号,用示波器观察,调节电感电容的大小,适当调节静态工作点,使输出信号Vo的峰峰值Vop-p 最大不失真。
记录各数据,得到谐振时的放大倍数。
5、测量该放大器的通频带、矩形系数对放大器通频带的测量有两种方式:(1) 用扫频仪直接测量;(2) 用点频法来测量,最终在坐标纸上绘出幅频特性曲线。
在放大器的频率特性曲线上读取相对放大倍数下降为0.1 处的带宽BW0.1 或0.01 处的带宽BW0.01 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小信号调谐放大器实验目的、内容和步骤
一.实验目的
1.熟悉电子元器件和高频电子线路实验系统;
2.掌握单调谐和双调谐放大器的基本工作原理;
3.掌握测量放大器幅频特性的方法;
4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;
5.了解放大器动态范围的概念和测量方法。
二.实验内容
1.采用点测法测量单调谐和双调谐放大器的幅频特性;
2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;
3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;
4.用示波器观察放大器的动态范围;
5.观察集电极负载对放大器幅频特性的影响。
三.实验步骤
1.实验准备
在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量
测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1),将显示屏下方的“扫频仪”与小信号放大的输出(1P8)相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1)使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频
特性曲线如下图:
图1-5 扫频仪测量的幅频特性
(2)点测法,其步骤如下:
①通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
用鼠标点击1K2开关,1K2开关接通,且模块上对应的1K2指示灯点亮,此时1C19被短路,放大器为单调谐回路。
②将显示屏下方的高频信号源连接到小信号放大器输入端(1P1),示波器CHI接放大器输入端1TP2,示波器CH2接放大器输出端1TP7。
调整高频信号源频率为6.3MHZ(用鼠标点击原理图左侧“高放输入”,频率显示为6.3MHZ,高频信号源开机默认值为6.3MHZ。
)调整高频信号源输出幅度(峰-峰值)为200mv(示波器CHI监测),用鼠标点击原理图左侧“高放输入”,用鼠标调整幅度或直接调整显示屏下方右侧“幅度”旋钮,即可调整其幅度。
调整1w1和1W2,使放大器输出为最大值(示波器CH2监测),用鼠标点击1W1或1W2,相应指示灯点亮,拨动鼠标滑轮,即可调整其电位器阻值。
(注:旋转模块上编码器(1SS1)旋钮同样可以调整其电阻,首先按动编码器,使相应的指示灯点亮,然后再旋转旋钮就可调整其阻值。
我们建议用鼠标调整,因为长期用编码器调整,可能会造成编码器机械性损坏。
)调整1W1、1W2使放大器输出幅度达到最大时,此时放大器谐振回路谐振于6.3MHZ。
比较此时输入输出幅度大小,并算出放大倍数。
③按照表1-1改变高频信号源的频率,保持高频信号源输出幅度为200mv(示波器CHI监测),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-1。
调频率时,用鼠标点击原理图左侧“高放输入”,选择“步进调节”为100KHZ,旋转显示屏下方左侧“频率”旋转,每旋一档即改变100KHZ。
表1-1
④从横轴为频率,纵轴为电压幅值,按表1-1,画出单调放大器的幅频特性曲线。
3.观察集电极负载对单调谐放大器幅频特性的影响
当放大器工作于放大状态下,按照上述幅频特性的测量方法测出接通与不接通1R25的幅频特性曲线。
(用鼠标点击1K1,模块上1K1指示灯点亮时为接通,不亮时为断开)。
可以发现:当不接1R25时,集电极负载增大,幅频特性幅值加大,曲线变“瘦”,Q值增高,带宽减小。
而当接通1R25时,幅频特性幅值减小,曲线变“胖”,Q值降低,带宽加大。
用扫频仪测出接通与不接通2R3的幅频特性曲线,如下图:
不接1R25时的幅频特性曲线接1R25时的幅频特性曲线
4.双调谐回路谐振放大器幅频特性测量
与单调谐的测量方法完全相同,可用扫频法和点测法。
下图为用扫频仪测得的双调谐幅
频特性曲线。
用扫频仪测得的双调谐幅频特性曲线
点测法,步骤如下:
①1K2置“双调谐”,用鼠标点击1K2,1K2指示灯熄灭时,接通1C19,1K1至
“off”,(用鼠标点击1K1,使1K1指示灯熄灭)。
高频信号源输出频率6.3MHZ,幅度200mv,然后接入调谐放大器的输入端(1P1)。
示波器CH1接1TP2,示波器CH2接放大器的输出(1TP7)端。
②按照表1-2改变高频信号源的频率,保持高频信号源输出幅度峰-峰值为200mv
(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入表1-2。
1-2
③测出两峰之间凹陷点的大致频率是多少?
④以横轴为频率,纵轴为幅度,按照表1-2,画出双调谐放大器的幅频特性曲线。
⑤调整1C19的电容,按照上述方法测出改变1C19时幅频特性曲线。
下图为用扫频仪测得的不同1C19时的幅频特性曲线。
耦合电容减小扫频曲线耦合电容1C19为某一值时扫频曲线 耦合电容1C19增大时扫频曲线
5.
放大器动态范围测量
1K1置“OFF ”,用鼠标点击1K1,使1K1指示灯熄灭。
1K2置“单调谐”,鼠标点击1K2,使1K2指示灯点亮。
高频信号源输出接调谐放大器的输入端(1P1),调整高频信号源频率至6.3MHZ ,幅度100mv 。
示波器CH1接1TP2,示波器CH2接调谐放大器的输出(1TP7)端,(调整1W1、1WW2使放大器输出为最大)。
按照表1-3放大器输入幅度,改变高频信号源的输出幅度(由CH1监测)。
从示波器CH2读出放大器输出幅度值,并把数据填入表1-3,且计算放大器电压放大倍数值。
可以发现,当放大器的输入增大到一定数值时,放大倍数开始下降,输出波形开始畸变(失真)。
表1-3
四.实验报告要求
1.画出单调谐和双调谐的幅频特性,计算幅值从最大值下降到0.707时的带宽,并由此说
明其优缺点。
比较单调谐和双调谐在特性曲线上有何不同?
2.画出放大器电压放大倍数与输入电压幅度之间的关系曲线。
3.当放大器输入幅度增大到一定程度时,输出波形会发生什么变化?为什么?4.总结由本实验所获得的体会。