Topological anomalies from the path integral measure in superspace

合集下载

The Subleading Isgur-Wise Form Factor $chi_3(vcdot v')$ to Order $alpha_s$ in QCD Sum Rules

The Subleading Isgur-Wise Form Factor $chi_3(vcdot v')$ to Order $alpha_s$ in QCD Sum Rules

a rXiv:h ep-ph/9212266v116Dec1992SLAC–PUB–6017WIS–92/99/Dec–PH December 1992T/E The Subleading Isgur-Wise Form Factor χ3(v ·v ′)to Order αs in QCD Sum Rules Matthias Neubert Stanford Linear Accelerator Center Stanford University,Stanford,California 94309Zoltan Ligeti and Yosef Nir Weizmann Institute of Science Physics Department,Rehovot 76100,Israel We calculate the contributions arising at order αs in the QCD sum rule for the spin-symmetry violating universal function χ3(v ·v ′),which appears at order 1/m Q in the heavy quark expansion of meson form factors.In particular,we derive the two-loop perturbative contribution to the sum rule.Over the kinematic range accessible in B →D (∗)ℓνdecays,we find that χ3(v ·v ′)does not exceed the level of ∼1%,indicating that power corrections induced by the chromo-magnetic operator in the heavy quark expansion are small.(submitted to Physical Review D)I.INTRODUCTIONIn the heavy quark effective theory(HQET),the hadronic matrix elements describing the semileptonic decays M(v)→M′(v′)ℓν,where M and M′are pseudoscalar or vector mesons containing a heavy quark,can be systematically expanded in inverse powers of the heavy quark masses[1–5].The coefficients in this expansion are m Q-independent,universal functions of the kinematic variable y=v·v′.These so-called Isgur-Wise form factors characterize the properties of the cloud of light quarks and gluons surrounding the heavy quarks,which act as static color sources.At leading order,a single functionξ(y)suffices to parameterize all matrix elements[6].This is expressed in the compact trace formula[5,7] M′(v′)|J(0)|M(v) =−ξ(y)tr{(2)m M P+ −γ5;pseudoscalar meson/ǫ;vector mesonis a spin wave function that describes correctly the transformation properties(under boosts and heavy quark spin rotations)of the meson states in the effective theory.P+=1g s2m Q O mag,O mag=M′(v′)ΓP+iσαβM(v) .(4)The mass parameter¯Λsets the canonical scale for power corrections in HQET.In the m Q→∞limit,it measures thefinite mass difference between a heavy meson and the heavy quark that it contains[11].By factoring out this parameter,χαβ(v,v′)becomes dimensionless.The most general decomposition of this form factor involves two real,scalar functionsχ2(y)andχ3(y)defined by[10]χαβ(v,v′)=(v′αγβ−v′βγα)χ2(y)−2iσαβχ3(y).(5)Irrespective of the structure of the current J ,the form factor χ3(y )appears always in the following combination with ξ(y ):ξ(y )+2Z ¯Λ d M m Q ′ χ3(y ),(6)where d P =3for a pseudoscalar and d V =−1for a vector meson.It thus effectively renormalizes the leading Isgur-Wise function,preserving its normalization at y =1since χ3(1)=0according to Luke’s theorem [10].Eq.(6)shows that knowledge of χ3(y )is needed if one wants to relate processes which are connected by the spin symmetry,such as B →D ℓνand B →D ∗ℓν.Being hadronic form factors,the universal functions in HQET can only be investigated using nonperturbative methods.QCD sum rules have become very popular for this purpose.They have been reformulated in the context of the effective theory and have been applied to the study of meson decay constants and the Isgur-Wise functions both in leading and next-to-leading order in the 1/m Q expansion [12–21].In particular,it has been shown that very simple predictions for the spin-symmetry violating form factors are obtained when terms of order αs are neglected,namely [17]χ2(y )=0,χ3(y )∝ ¯q g s σαβG αβq [1−ξ(y )].(7)In this approach χ3(y )is proportional to the mixed quark-gluon condensate,and it was estimated that χ3(y )∼1%for large recoil (y ∼1.5).In a recent work we have refined the prediction for χ2(y )by including contributions of order αs in the sum rule analysis [20].We found that these are as important as the contribution of the mixed condensate in (7).It is,therefore,worthwhile to include such effects also in the analysis of χ3(y ).This is the purpose of this article.II.DERIV ATION OF THE SUM RULEThe QCD sum rule analysis of the functions χ2(y )and χ3(y )is very similar.We shall,therefore,only briefly sketch the general procedure and refer for details to Refs.[17,20].Our starting point is the correlatord x d x ′d ze i (k ′·x ′−k ·x ) 0|T[¯q ΓM ′P ′+ΓP +iσαβP +ΓM+Ξ3(ω,ω′,y )tr 2σαβ2(1+/v ′),and we omit the velocity labels in h and h ′for simplicity.The heavy-light currents interpolate pseudoscalar or vector mesons,depending on the choice ΓM =−γ5or ΓM =γµ−v µ,respectively.The external momenta k and k ′in (8)are the “residual”off-shell momenta of the heavy quarks.Due to the phase redefinition of the effective heavy quark fields in HQET,they are related to the total momenta P and P ′by k =P −m Q v and k ′=P ′−m Q ′v ′[3].The coefficient functions Ξi are analytic in ω=2v ·k and ω′=2v ′·k ′,with discontinuities for positive values of these variables.They can be saturated by intermediate states which couple to the heavy-light currents.In particular,there is a double-pole contribution from the ground-state mesons M and M ′.To leading order in the 1/m Q expansion the pole position is at ω=ω′=2¯Λ.In the case of Ξ2,the residue of the pole is proportional to the universal function χ2(y ).For Ξ3the situation is more complicated,however,since insertions of the chromo-magnetic operator not only renormalize the leading Isgur-Wise function,but also the coupling of the heavy mesons to the interpolating heavy-light currents (i.e.,the meson decay constants)and the physical meson masses,which define the position of the pole.1The correct expression for the pole contribution to Ξ3is [17]Ξpole 3(ω,ω′,y )=F 2(ω−2¯Λ+iǫ) .(9)Here F is the analog of the meson decay constant in the effective theory (F ∼f M√m QδΛ2+... , 0|j (0)|M (v ) =iF2G 2tr 2σαβΓP +σαβM (v ) ,where the ellipses represent spin-symmetry conserving or higher order power corrections,and j =¯q Γh (v ).In terms of the vector–pseudoscalar mass splitting,the parameter δΛ2isgiven by m 2V −m 2P =−8¯ΛδΛ2.For not too small,negative values of ωand ω′,the coefficient function Ξ3can be approx-imated as a perturbative series in αs ,supplemented by the leading power corrections in 1/ωand 1/ω′,which are proportional to vacuum expectation values of local quark-gluon opera-tors,the so-called condensates [22].This is how nonperturbative corrections are incorporated in this approach.The idea of QCD sum rules is to match this theoretical representation of Ξ3to the phenomenological pole contribution given in (9).To this end,one first writes the theoretical expression in terms of a double dispersion integral,Ξth 3(ω,ω′,y )= d νd ν′ρth 3(ν,ν′,y )1Thereare no such additional terms for Ξ2because of the peculiar trace structure associated with this coefficient function.possible subtraction terms.Because of theflavor symmetry it is natural to set the Borel parameters associated withωandω′equal:τ=τ′=2T.One then introduces new variables ω±=12T ξ(y) F2e−2¯Λ/T=ω0dω+e−ω+/T ρth3(ω+,y)≡K(T,ω0,y).(12)The effective spectral density ρth3arises after integration of the double spectral density over ω−.Note that for each contribution to it the dependence onω+is known on dimensionalgrounds.It thus suffices to calculate directly the Borel transform of the individual con-tributions toΞth3,corresponding to the limitω0→∞in(12).Theω0-dependence can be recovered at the end of the calculation.When terms of orderαs are neglected,contributions to the sum rule forΞ3can only be proportional to condensates involving the gluonfield,since there is no way to contract the gluon contained in O mag.The leading power correction of this type is represented by the diagram shown in Fig.1(d).It is proportional to the mixed quark-gluon condensate and,as shown in Ref.[17],leads to(7).Here we are interested in the additional contributions arising at orderαs.They are shown in Fig.1(a)-(c).Besides a two-loop perturbative contribution, one encounters further nonperturbative corrections proportional to the quark and the gluon condensate.Let usfirst present the result for the nonperturbative power corrections.WefindK cond(T,ω0,y)=αs ¯q q TT + αs GG y+1− ¯q g sσαβGαβq√y2−1),δn(x)=1(4π)D×1dλλ1−D∞λd u1∞1/λd u2(u1u2−1)D/2−2where C F=(N2c−1)/2N c,and D is the dimension of space-time.For D=4,the integrand diverges asλ→0.To regulate the integral,we assume D<2and use a triple integration by parts inλto obtain an expression which can be analytically continued to the vicinity of D=4.Next we set D=4+2ǫ,expand inǫ,write the result as an integral overω+,and introduce back the continuum threshold.This givesK pert(T,ω0,y)=−αsy+1 2ω0dω+ω3+e−ω+/T(16)× 12−23∂µ+3αs9π¯Λ,(17)which shows that divergences arise at orderαs.At this order,the renormalization of the sum rule is thus accomplished by a renormalization of the“bare”parameter G2in(12).In the9π¯Λ 1µ2 +O(g3s).(18)Hence a counterterm proportional to¯Λξ(y)has to be added to the bracket on the left-hand side of the sum rule(12).To evaluate its effect on the right-hand side,we note that in D dimensions[17]¯Λξ(y)F2e−2¯Λ/T=3y+1 2ω0dω+ω3+e−ω+/T(19)× 1+ǫ γE−ln4π+2lnω+−ln y+12T ξ(y) F2e−2¯Λ/T=αsy+1 2ω0dω+ω3+e−ω+/T 2lnµ6+ y r(y)−1+ln y+1According to Luke’stheorem,theuniversalfunction χ3(y )vanishes at zero recoil [10].Evaluating (20)for y =1,we thus obtain a sum rule for G 2(µ)and δΛ2.It reads G 2(µ)−¯ΛδΛ224π3ω00d ω+ω3+e −ω+/T ln µ12 +K cond (T,ω0,1),(21)where we have used that r (1)=1.Precisely this sum rule has been derived previously,starting from a two-current correlator,in Ref.[16].This provides a nontrivial check of our ing the fact that ξ(y )=[2/(y +1)]2+O (g s )according to (19),we find that the µ-dependent terms cancel out when we eliminate G 2(µ)and δΛ2from the sum rule for χ3(y ).Before we present our final result,there is one more effect which has to be taken into account,namely a spin-symmetry violating correction to the continuum threshold ω0.Since the chromo-magnetic interaction changes the masses of the ground-state mesons [cf.(10)],it also changes the masses of higher resonance states.Expanding the physical threshold asωphys =ω0 1+d M8π3 22 δ3 ω032π2ω30e −ω0/T 26π2−r (y )−ξ(y ) δ0 ω096π 248T 1−ξ(y ).It explicitly exhibits the fact that χ3(1)=0.III.NUMERICAL ANALYSISLet us now turn to the evaluation of the sum rule (23).For the QCD parameters we take the standard values¯q q =−(0.23GeV)3,αs GG =0.04GeV4,¯q g sσαβGαβq =m20 ¯q q ,m20=0.8GeV2.(24) Furthermore,we useδω2=−0.1GeV from above,andαs/π=0.1corresponding to the scale µ=2¯Λ≃1GeV,which is appropriate for evaluating radiative corrections in the effective theory[15].The sensitivity of our results to changes in these parameters will be discussed below.The dependence of the left-hand side of(23)on¯Λand F can be eliminated by using a QCD sum rule for these parameters,too.It reads[16]¯ΛF2e−2¯Λ/T=9T4T − ¯q g sσαβGαβq4π2 2T − ¯q q +(2y+1)4T2.(26) Combining(23),(25)and(26),we obtainχ3(y)as a function ofω0and T.These parameters can be determined from the analysis of a QCD sum rule for the correlator of two heavy-light currents in the effective theory[16,18].Onefinds good stability forω0=2.0±0.3GeV,and the consistency of the theoretical calculation requires that the Borel parameter be in the range0.6<T<1.0GeV.It supports the self-consistency of the approach that,as shown in Fig.2,wefind stability of the sum rule(23)in the same region of parameter space.Note that it is in fact theδω2-term that stabilizes the sum rule.Without it there were no plateau.Over the kinematic range accessible in semileptonic B→D(∗)ℓνdecays,we show in Fig.3(a)the range of predictions forχ3(y)obtained for1.7<ω0<2.3GeV and0.7<T< 1.2GeV.From this we estimate a relative uncertainty of∼±25%,which is mainly due to the uncertainty in the continuum threshold.It is apparent that the form factor is small,not exceeding the level of1%.2Finally,we show in Fig.3(b)the contributions of the individual terms in the sum rule (23).Due to the large negative contribution proportional to the quark condensate,the terms of orderαs,which we have calculated in this paper,cancel each other to a large extent.As a consequence,ourfinal result forχ3(y)is not very different from that obtained neglecting these terms[17].This is,however,an accident.For instance,the order-αs corrections would enhance the sum rule prediction by a factor of two if the ¯q q -term had the opposite sign. From thisfigure one can also deduce how changes in the values of the vacuum condensates would affect the numerical results.As long as one stays within the standard limits,the sensitivity to such changes is in fact rather small.For instance,working with the larger value ¯q q =−(0.26GeV)3,or varying m20between0.6and1.0GeV2,changesχ3(y)by no more than±0.15%.In conclusion,we have presented the complete order-αs QCD sum rule analysis of the subleading Isgur-Wise functionχ3(y),including in particular the two-loop perturbative con-tribution.Wefind that over the kinematic region accessible in semileptonic B decays this form factor is small,typically of the order of1%.When combined with our previous analysis [20],which predicted similarly small values for the universal functionχ2(y),these results strongly indicate that power corrections in the heavy quark expansion which are induced by the chromo-magnetic interaction between the gluonfield and the heavy quark spin are small.ACKNOWLEDGMENTSIt is a pleasure to thank Michael Peskin for helpful discussions.M.N.gratefully acknowl-edgesfinancial support from the BASF Aktiengesellschaft and from the German National Scholarship Foundation.Y.N.is an incumbent of the Ruth E.Recu Career Development chair,and is supported in part by the Israel Commission for Basic Research and by the Minerva Foundation.This work was also supported by the Department of Energy,contract DE-AC03-76SF00515.REFERENCES[1]E.Eichten and B.Hill,Phys.Lett.B234,511(1990);243,427(1990).[2]B.Grinstein,Nucl.Phys.B339,253(1990).[3]H.Georgi,Phys.Lett.B240,447(1990).[4]T.Mannel,W.Roberts and Z.Ryzak,Nucl.Phys.B368,204(1992).[5]A.F.Falk,H.Georgi,B.Grinstein,and M.B.Wise,Nucl.Phys.B343,1(1990).[6]N.Isgur and M.B.Wise,Phys.Lett.B232,113(1989);237,527(1990).[7]J.D.Bjorken,Proceedings of the18th SLAC Summer Institute on Particle Physics,pp.167,Stanford,California,July1990,edited by J.F.Hawthorne(SLAC,Stanford,1991).[8]M.B.Voloshin and M.A.Shifman,Yad.Fiz.45,463(1987)[Sov.J.Nucl.Phys.45,292(1987)];47,801(1988)[47,511(1988)].[9]A.F.Falk,B.Grinstein,and M.E.Luke,Nucl.Phys.B357,185(1991).[10]M.E.Luke,Phys.Lett.B252,447(1990).[11]A.F.Falk,M.Neubert,and M.E.Luke,SLAC preprint SLAC–PUB–5771(1992),toappear in Nucl.Phys.B.[12]M.Neubert,V.Rieckert,B.Stech,and Q.P.Xu,in Heavy Flavours,edited by A.J.Buras and M.Lindner,Advanced Series on Directions in High Energy Physics(World Scientific,Singapore,1992).[13]A.V.Radyushkin,Phys.Lett.B271,218(1991).[14]D.J.Broadhurst and A.G.Grozin,Phys.Lett.B274,421(1992).[15]M.Neubert,Phys.Rev.D45,2451(1992).[16]M.Neubert,Phys.Rev.D46,1076(1992).[17]M.Neubert,Phys.Rev.D46,3914(1992).[18]E.Bagan,P.Ball,V.M.Braun,and H.G.Dosch,Phys.Lett.B278,457(1992);E.Bagan,P.Ball,and P.Gosdzinsky,Heidelberg preprint HD–THEP–92–40(1992).[19]B.Blok and M.Shifman,Santa Barbara preprint NSF–ITP–92–100(1992).[20]M.Neubert,Z.Ligeti,and Y.Nir,SLAC preprint SLAC–PUB–5915(1992).[21]M.Neubert,SLAC preprint SLAC–PUB–5992(1992).[22]M.A.Shifman,A.I.Vainshtein,and V.I.Zakharov,Nucl.Phys.B147,385(1979);B147,448(1979).FIGURESFIG.1.Diagrams contributing to the sum rule for the universal form factorχ3(v·v′):two-loop perturbative contribution(a),and nonperturbative contributions proportional to the quark con-densate(b),the gluon condensate(c),and the mixed condensate(d).Heavy quark propagators are drawn as double lines.The square represents the chromo-magnetic operator.FIG.2.Analysis of the stability region for the sum rule(23):The form factorχ3(y)is shown for y=1.5as a function of the Borel parameter.From top to bottom,the solid curves refer toω0=1.7,2.0,and2.3GeV.The dashes lines are obtained by neglecting the contribution proportional toδω2.FIG.3.(a)Prediction for the form factorχ3(v·v′)in the stability region1.7<ω0<2.3 GeV and0.7<T<1.2GeV.(b)Individual contributions toχ3(v·v′)for T=0.8GeV and ω0=2.0GeV:total(solid),mixed condensate(dashed-dotted),gluon condensate(wide dots), quark condensate(dashes).The perturbative contribution and theδω2-term are indistinguishable in thisfigure and are both represented by the narrow dots.11。

全测地黎曼叶状结构中的Hopf-Rinow_定理

全测地黎曼叶状结构中的Hopf-Rinow_定理

此 外 exp∇p : Dp(ε) → B∇(p; ε) 和 exp∇p R : Dp(ε) → Bd(p; ε) 都 是 微 分 同 胚 映 射. 因 此 B∇(p; ε) 是 (M, d) 中开子集. 注意, 若 γ 是法邻域 B∇(p; ε) 中连接 p, q 两点的 ∇-测地线, 则 有 δ(p, q) ≤ L(γ) < ε. 这意味着 B∇(p; ε) ⊂ Bδ(p, ε) ⊂ W . 所以 W 也是 d 定义的一个开子 集.
Copyright©博看网. All Rights Reserved.
隗世玲
t connection on totally geodesic Riemannian foliations, and part of the Hopf-Rinow theorem is generalized to totally geodesic Riemannian foliations. It has been generalized to length-metric spaces and pseudo-Hermitian manifolds. In the course of our research, the invalidity of Gauss lemma poses some difficulties. Thus we introduce the natural distance δ, and state that if (M, δ) is complete, then the geodesic is complete. However, due to the limitations of the conditions, the other side is not true.
γ∈Γ(p,q)

物理学名词

物理学名词

1/4波片quarter-wave plateCG矢量耦合系数Clebsch-Gordan vector coupling coefficient; 简称“CG[矢耦]系数”。

X射线摄谱仪X-ray spectrographX射线衍射X-ray diffractionX射线衍射仪X-ray diffractometer[玻耳兹曼]H定理[Boltzmann] H-theorem[玻耳兹曼]H函数[Boltzmann] H-function[彻]体力body force[冲]击波shock wave[冲]击波前shock front[狄拉克]δ函数[Dirac] δ-function[第二类]拉格朗日方程Lagrange equation[电]极化强度[electric] polarization[反射]镜mirror[光]谱线spectral line[光]谱仪spectrometer[光]照度illuminance[光学]测角计[optical] goniometer[核]同质异能素[nuclear] isomer[化学]平衡常量[chemical] equilibrium constant[基]元电荷elementary charge[激光]散斑speckle[吉布斯]相律[Gibbs] phase rule[可]变形体deformable body[克劳修斯-]克拉珀龙方程[Clausius-] Clapeyron equation[量子]态[quantum] state[麦克斯韦-]玻耳兹曼分布[Maxwell-]Boltzmann distribution[麦克斯韦-]玻耳兹曼统计法[Maxwell-]Boltzmann statistics[普适]气体常量[universal] gas constant[气]泡室bubble chamber[热]对流[heat] convection[热力学]过程[thermodynamic] process[热力学]力[thermodynamic] force[热力学]流[thermodynamic] flux[热力学]循环[thermodynamic] cycle[事件]间隔interval of events[微观粒子]全同性原理identity principle [of microparticles][物]态参量state parameter, state property[相]互作用interaction[相]互作用绘景interaction picture[相]互作用能interaction energy[旋光]糖量计saccharimeter[指]北极north pole, N pole[指]南极south pole, S pole[主]光轴[principal] optical axis[转动]瞬心instantaneous centre [of rotation][转动]瞬轴instantaneous axis [of rotation]t 分布student's t distributiont 检验student's t testK俘获K-captureS矩阵S-matrixWKB近似WKB approximationX射线X-rayΓ空间Γ-spaceα粒子α-particleα射线α-rayα衰变α-decayβ射线β-rayβ衰变β-decayγ矩阵γ-matrixγ射线γ-rayγ衰变γ-decayλ相变λ-transitionμ空间μ-spaceχ 分布chi square distributionχ 检验chi square test阿贝不变量Abbe invariant阿贝成象原理Abbe principle of image formation阿贝折射计Abbe refractometer阿贝正弦条件Abbe sine condition阿伏伽德罗常量Avogadro constant阿伏伽德罗定律Avogadro law阿基米德原理Archimedes principle阿特伍德机Atwood machine艾里斑Airy disk爱因斯坦-斯莫卢霍夫斯基理论Einstein-Smoluchowski theory 爱因斯坦场方程Einstein field equation爱因斯坦等效原理Einstein equivalence principle爱因斯坦关系Einstein relation爱因斯坦求和约定Einstein summation convention爱因斯坦同步Einstein synchronization爱因斯坦系数Einstein coefficient安[培]匝数ampere-turns安培[分子电流]假说Ampere hypothesis安培定律Ampere law安培环路定理Ampere circuital theorem安培计ammeter安培力Ampere force安培天平Ampere balance昂萨格倒易关系Onsager reciprocal relation凹面光栅concave grating凹面镜concave mirror凹透镜concave lens奥温电桥Owen bridge巴比涅补偿器Babinet compensator巴耳末系Balmer series白光white light摆pendulum板极plate伴线satellite line半波片halfwave plate半波损失half-wave loss半波天线half-wave antenna半导体semiconductor半导体激光器semiconductor laser半衰期half life period半透[明]膜semi-transparent film半影penumbra半周期带half-period zone傍轴近似paraxial approximation傍轴区paraxial region傍轴条件paraxial condition薄膜干涉film interference薄膜光学film optics薄透镜thin lens保守力conservative force保守系conservative system饱和saturation饱和磁化强度saturation magnetization本底background本体瞬心迹polhode本影umbra本征函数eigenfunction本征频率eigenfrequency本征矢[量] eigenvector本征振荡eigen oscillation本征振动eigenvibration本征值eigenvalue本征值方程eigenvalue equation比长仪comparator比荷specific charge; 又称“荷质比(charge-mass ratio)”。

预处理子空间迭代法的一些基本概念

预处理子空间迭代法的一些基本概念

CG算法的预处理技术:、为什么要对A进行预处理:其收敛速度依赖于对称正定阵A的特征值分布特征值如何影响收敛性:特征值分布在较小的范围内,从而加速CG的收敛性特征值和特征向量的定义是什么?(见笔记本以及收藏的网页)求解特征值和特征向量的方法:Davidson方法:Davidson 方法是用矩阵( D - θI)- 1( A - θI) 产生子空间,这里D 是A 的对角元所组成的对角矩阵。

θ是由Rayleigh-Ritz 过程所得到的A的近似特征值。

什么是子空间法:Krylov子空间叠代法是用来求解形如Ax=b 的方程,A是一个n*n 的矩阵,当n充分大时,直接计算变得非常困难,而Krylov方法则巧妙地将其变为Kxi+1=Kxi+b-Axi 的迭代形式来求解。

这里的K(来源于作者俄国人Nikolai Krylov姓氏的首字母)是一个构造出来的接近于A的矩阵,而迭代形式的算法的妙处在于,它将复杂问题化简为阶段性的易于计算的子步骤。

如何取正定矩阵Mk为:Span是什么?:设x_(1,)...,x_m∈V ,称它们的线性组合∑_(i=1)^m?〖k_i x_i \|k_i∈K,i=1,2...m〗为向量x_(1,)...,x_m的生成子空间,也称为由x_(1,)...,x_m张成的子空间。

记为L(x_(1,)...,x_m),也可以记为Span(x_(1,)...,x_m)什么是Jacobi迭代法:什么是G_S迭代法:请见PPT《迭代法求解线性方程组》什么是SOR迭代法:什么是收敛速度:什么是可约矩阵与不可约矩阵?:不可约矩阵(irreducible matrix)和可约矩阵(reducible matrix)两个相对的概念。

定义1:对于n 阶方阵A 而言,如果存在一个排列阵P 使得P'AP 为一个分块上三角阵,我们就称矩阵A 是可约的;否则称矩阵A 是不可约的。

定义2:对于n 阶方阵A=(aij) 而言,如果指标集{1,2,...,n} 能够被划分成两个不相交的非空指标集J 和K,使得对任意的j∈J 和任意的k∈K 都有ajk=0, 则称矩阵 A 是可约的;否则称矩阵A 是不可约的。

topological methods in nonlinear analysis的缩写

topological methods in nonlinear analysis的缩写

topological methods in nonlinear analysis的缩写(实用版)目录1.Topological methods in nonlinear analysis 的概述2.Topological methods in nonlinear analysis 的应用领域3.Topological methods in nonlinear analysis 的优势与局限性4.Topological methods in nonlinear analysis 的未来发展前景正文【1.Topological methods in nonlinear analysis 的概述】Topological methods in nonlinear analysis(非线性分析中的拓扑方法)是一种数学分析方法,主要应用于解决非线性方程组、非线性微分方程以及其他非线性问题。

这一方法借鉴了拓扑学的思想,将非线性问题转化为拓扑问题,从而简化问题的求解过程。

【2.Topological methods in nonlinear analysis 的应用领域】Topological methods in nonlinear analysis 在多个领域都有广泛应用,例如:- 物理学:在物理学中,非线性方程组常常出现在粒子物理、凝聚态物理等领域。

利用拓扑方法可以解决一些在传统数学方法中难以解决的问题。

- 工程学:在工程领域,非线性方程组和非线性微分方程常常出现在机械设计、电子电路设计等过程中。

通过使用拓扑方法,可以优化设计方案,提高系统的性能。

- 经济学:在经济学中,非线性方程组通常用于描述市场供需关系、价格波动等现象。

利用拓扑方法可以对经济现象进行更深入的分析,为政策制定提供理论支持。

【3.Topological methods in nonlinear analysis 的优势与局限性】Topological methods in nonlinear analysis 的优势主要体现在以下几个方面:- 简化求解过程:拓扑方法将非线性问题转化为拓扑问题,降低了问题的求解难度。

第2章 夸克与轻子 (2)

第2章 夸克与轻子 (2)

第二章夸克与轻子Quarks and leptons2.1 粒子园The particle zoo学习目标Learning objectives:我们怎样发现新粒子?能否预言新粒子?什么是奇异粒子?大纲参考:3.1.1 ̄太空入侵者宇宙射线是由包括太阳在内的恒星发射而在宇宙空间传播的高能粒子。

如果宇宙射线粒子进入地球大气层,就会产生寿命短暂的新粒子和反粒子以及光子。

所以,就有“太空入侵者”这种戏称。

发现宇宙射线之初,大多数物理学家都认为这种射线不是来自太空,而是来自地球本身的放射性物质。

当时物理学家兼业余气球旅行者维克托·赫斯(Victor Hess)就发现,在5000m高空处宇宙射线的离子效应要比地面显著得多,从而证明这种理论无法成立。

经过进一步研究,表明大多数宇宙射线都是高速运动的质子或较小原子核。

这类粒子与大气中气体原子发生碰撞,产生粒子和反粒子簇射,数量之大在地面都能探测到。

通过云室和其他探测仪,人类发现了寿命短暂的新粒子与其反粒子。

μ介子(muon)或“重电子”(符号μ)。

这是一种带负电的粒子,静止质量是电子的200多倍。

π介子(pion)。

这可以是一种带正电的粒子(π+)、带负电的粒子(π-)或中性不带电粒子(π0),静止质量大于μ介子但小于质子。

K介子(kaon)。

这可以是一种带正电的粒子(K+)、带负电的粒子(K-)或中性不带电粒子(K0),静止质量大于π介子但小于质子。

科学探索How Science Works不同寻常的预言An unusual prediction在发现上述三种粒子之前,日本物理学家汤川秀树(Hideki Yukawa)就预言,核子间的强核力存在交换粒子。

他认为交换粒子的作用范围不超过10-15m,并推断其质量在电子与质子之间。

由于这种离子的质量介于电子与质子之间,所以汤川就将这种粒子称为“介子”(mesons)。

一年后,卡尔·安德森拍摄的云室照片显示一条异常轨迹可能就是这类粒子所产生。

百牛定理HecatombProposition

為了方便說明穿跟鞋所產生美的效應,設某女士的原本軀幹與身高比為 0.60, 若其所穿的高跟鞋高度為 d,則新比值是(x + d) : (l + d) = (0.60 + d) : (l + d)。如果 該位女士的身高為 1.60 米(約 5 呎 3 吋),下表顯示出高跟鞋如何「改善」了腳長 與身高的比值:
西方的名稱
但是把 m, n 加以限制為兩個「互素」(即「互質」, co-prime) 的奇數,就可以造
商高定理 陳子定理 勾股定理
畢氏定理﹙畢達哥拉斯定理﹚ 百牛定理 木匠定理
出全部兩兩互素的「勾股數組」。 仔細觀察「勾股數組」,它們總是具有一定的奇偶關係,也就是二奇一偶。事
實上,如果 a, b, c 是一組兩兩互素的勾股數,那麼 a, b 必定一奇一偶,c 必為 奇數。
-1 + 2
5 ,而近似值為 0.618。這就是黃金比例了。
在人體軀幹與身高的比例上,肚臍是理想的黃金分割點。換言之,若此比值愈 接近 0.618,愈給與人一種美的感覺。很可惜,一般人的軀幹(由腳底至肚臍的長 度)與身高比都低於此數值,大約只有 0.518 至 0.60 左右(腳長的人會有較高的比 值)。所以有很多人要穿高跟鞋。
摘自【十萬個為甚麼⎯⎯數學篇 I,新世紀版】
仁愛堂田家炳中學 中二級 數學科 第十章 畢氏定理
黃金比例
在自然界裏,物體形狀的比例提供了在均稱和協調上一種美感的參考。在數 學上,這個比例稱為黃金分割。
在線段 AB 上,若要找出黃金分割的位置,可以設分割點 G,G 會符合以下
的特性:AB : AG = AG : GB
B
設 AB = l ; AG = x
G
則 l : x = x : (l – x)

袋模型下奇异星的非牛顿引力效应

华中师范大学学报(自然科学版)JOURNAL OF CENTRAL CHINA NORMAL UNIVERSITY(Nat.Sci.)Vol.56No.2Apr.2022第56卷第2期2022年4月DOI;10.19603/ki.1000-1190.2022.02.007文章编号:1000-1190(2022)02-0250-05袋模型下奇异星的非牛顿引力效应皮春梅心(1.湖北第二师范学院物理与机电工程学院,武汉430205;2.湖北第二师范学院天文学研究中心,武汉430205)摘要:该文研究标准袋模型奇异星在考虑非牛顿引力效应下的结构和性质.文章结果显示,对于标准袋模型描述的奇异物质,随着重子数密度的增大,非牛顿引力效应的修正项能量密度越大;非牛顿引力效应的引入使物态变硬,而且较大的非牛顿引力参数4对应较硬的物态方程;非牛顿引p-力效应的引入有效地增大了星体能支撑的最大质量并且当非牛顿引力参数粤》1.93GeV-2时能够解释目前观测到的最大质量脉冲星(PSRJ0470+6620)的数据.关键词:奇异星;物态方程;非牛顿引力中图分类号:P142.5文献标志码:A开放科学(资源服务)标志码(OSID):物态方程是理论研究致密星结构和性质的重要输入量,它给出了物质内部压强P和密度E之间的关系.结合广义相对论下的流体静力学平衡方程(即TOV方程)和物态方程,可以计算致密星的密度、不同半径处的压强以及质量和半径等物理性质.不同的物态方程会给出不同的致密星内部成分和结构.20世纪60年代Gell-Mann M和Zweig G 建立了强子结构的夸克模型,中子星内部物质组分有了更多的可能性•1984年,Witten E提出了奇异夸克物质设想m:由数量近乎相等的u、d、s夸克组成的夸克物质比"Fe更稳定.根据这个设想,致密星可能是由u、d、s三味夸克物质所组成的奇异星阂.2021年利用Shapiro延迟效应观测发现了毫秒脉冲星J0740+6620具有2.08兰:器M0的大质量匚旳,根据这一观测结果,很多含有奇异粒子的物态方程被排除•一些软物态方程,例如奇异物质的标准MIT袋模型,在经典理论框架下所能支撑的最大质量较小,无法支持观测发现的大质量中子星.但是,在对引力的认识还并不完善的今天,对此还不能完全肯定•在统一引力和其他三种基本相互作用力,即电磁相互作用,强相互作用和弱相互作用的过程中,人们发现描述引力的平方反比关系不再成立.平方反比关系需要根据弦理论预测的其他时空维度的几何效应(或者粒子物理标准模型之外的超对称理论所预言的弱耦合玻色子的交换)做出修正冲].尽管至今尚未确认非牛顿引力的存在,已经有很多地面实验和天文观测对偏离牛顿引力程度的上限给出了限制,相关文献综述见[7].中子星和奇异星的非牛顿引力效应已经得到广泛研究金切,发现在致密天体中这种非牛顿引力可能会具有明显的物理效应,为软物态方程支持大质量致密星(中子星和奇异星)带来了希望.1奇异夸克物质的物态方程夸克物质的状态方程本质上应该由量子色动力学(QCD)来计算,鉴于对低能强相互作用非微扰特性认识的不足,这一计算方法还不能进行•在实际计算中经常采用唯象模型,例如袋模型.此模型忽略夸克间的动力学相互作用,视其为理想气体.各类粒子的巨热力学势分别为”购:4=u9d,(1)Q=—-^2[“3—诚)1/2(“7—号诚)+■I分3一就(2)收稿日期:2021-04-06.基金项目:国家自然科学基金青年项目(11803007). *通信联系人.E-mail:,cn.第2期皮春梅:袋模型下奇异星的非牛顿引力效应251「越,⑶其中,%和少分别为粒子的质量和化学势.通过热力学关系可以利用巨热力学势计算系统的各热力学量,如各种粒子数密度、压强和能量密度等•第Ki=“,d,s,e)种粒子的数密度是夸克物质通过弱相互作用保持化学平衡•各类粒子化学势M之间满足平衡条件“d=(5)作为一个稳定系统,还应当满足电中性条件要求:91可九一可(加+%)一%=0.(6)重子数密度为n b=-y(n…+n d+n s).(7)不考虑非牛顿引力效应时,能量密度为E q=〉:(fit+円71/)+B,(8)i=u i d,s i e相应地,压强为P q=—工Hi—B,(9)i—u,d,s,e这里B是袋常数.本文忽略u夸克和d夸克的质量,s夸克的流质量取%=93MeV[19],选取具有代表性的袋常数B1/4=140MeV.2非牛顿引力效应根据Fujii理论购,非牛顿引力可以表述为在传统的引力势基础上增加一个汤川型的修正项,即V(r)=_&8加1况2(1+幺貢力)=rV n G)+VVG),(10)其中,Gg=6.6710X10-n N•m2/kg2,a是无量纲的汤川引力强度参数以是短程相互作用的特征长度•利用矢量玻色子交换模型,,=丄=I g2A卩,a士4k G#,其中,土分别代表标量(+)和矢量(一)玻色子,“,g 和分别是玻色子一重子耦合常数,玻色子质量和重子质量.非牛顿引力效应可近似地通过物态方程来描述,而保持爱因斯坦场方程不变.汤川型的修正项对能量密度的贡献为E y=壽j"3角(工1)盍(zi)d工1d丄2,(11)其中,v是归一化常数,『=z|N—云|.上式中重子数密度前的因子3的引入是因为每个夸克的重子数为1/3E14].考虑到m(Hi)=n b(rc2)=«6E21_22],并且取V=4k R3z/3,有E y=reT^dr,(12)通过积分很容易得到,Ey=弊谄口一(1+迹)尹].(13)因为原则上研究对象很大,可以取Rff故Ey=(14)综上,考虑非牛顿引力效应,奇异夸克物质的能量密度为E=E q+E y,(15)其中E q由(8)式给出.相应地,汤川型修正项对压强的贡献为(16)假定玻色子质量与介质密度无关凹,有P y=^~2n b-(17)2V-考虑非牛顿引力效应,奇异夸克物质的压强为P=P Q+P Y,(18)其中,P q由(9)式给出.这里需要指出,非牛顿引力理论是超越了广义相对论的理论.众所周知,平方反比关系是广义相对论在弱场低速情形下的近似.非牛顿引力理论(具体到本文,是在传统的引力势基础上增加一个汤川型的修正项)下,平方反比关系不成立.实际上,超越相对论的其他一些引力理论,如f(R)理论,在弱场低速情形下也不满足平方反比关系⑷.如Shao所述盟】,广义相对论的场方程中有两个部分,其一是时空几何,其二是物质与能量.在对广义相对论做修正时,既可以修正时空几何部分,也可以修正物质与能量部分,两种途径是简并的.在研究非牛顿引力对奇异星质量一半径关系(图3)的影响时采用公式(15)和(18)所给出状态方程,这实际上是修正了广义相对论的物质与能量部分,而广义相对论的时空几何部分保持不变.于是,仍然可以采用原来的广义相对论所推导出的TOV方程.252华中师范大学学报(自然科学版)第56卷3数值计算结果与讨论图1为考虑非牛顿引力后奇异星的物态方程,其中非牛顿引力参数4分别取0,2,5,11 GeV-2.圏1表明,非牛顿引力效应的引入使物态变硬,而 且非牛顿引力参数越大,对应的物态方程越硬.5(4(京201 OC U J • A o s y d500I 000 1 500 2 000£/(MeV ' fnf ,)注;曲线旁边的数值代表非牛顿引力参数少的取值,单位 是 GeV-2.图1考虑非牛顿引力后MIT 物态方程的密度-压强关系Fig. 1 Relation between pressure and energy density in MIT model of quark matter with the nonrNewtonian gravity图2给出了不同参数下汤川型非牛顿引力效 应的修正项对能量密度的贡献随重子数密度的变 化.随着重子数密度的增大,修正项能量密度越大.其实从方程(14)中就可以看出修正项能量密度随着重子数密度的平方单调增加的.质量半径关系是星体最重要的性质之一,图3 给出了引入和没有引入非牛顿引力效应的情况下 奇异星的质量半径关系.从图中可以发现,随着非牛顿引力参数粤的增大,相应可支撑的最大奇异星质量也增大.当4 = 0 GeV-2,即没有引入非牛 顿引力效应时,可支持的奇异星最大质量约为1. 9M® ,而当^ = 11 GeV'2时支持的最大质量大约为2. 56M®.这表明越大的非牛顿引力参数对应的物态方程越硬,支持的奇异星最大质量越大.对于奇异物质的标准袋模型状态方程,加入非牛顿引 力效应并且非牛顿引力参数4^1-93 GeV 一2能够P-解释目前观测到的最大质量脉冲星(PSR J0470 +6620)的数据.08649-00064 22 11111(c w -a s h w 2 4 6 « 10 12 14nji'o注:no = 0.17 fm-3是标准核饱和密度.图2汤川型非牛顿引力效应的修正项对能量密度的贡献随重子数密度的变化Fig. 2 The extra density due to the nonrNewtoniancomponent as the function of —注:红色实线对应于£ = 1. 93 GeV"2,此时理论给出 的奇异星最大质量是2. 08M®.绿色实线给出了目前观 测中发现的最大质量脉冲星(PSR J0470 + 6620)的数据,它的质量是2・08M®・图3引入和没有引入非牛顿引力效应的情况下奇异星的质量一半径关系Fig. 3 The mass-radius relation of strange stars withseveral typical sets of model parameters图4给岀了观测到的脉冲星最大质量(PSRJ0470 + 6620,2. 08M @ )对非牛顿引力参数空间的限制.图中标号为“1”至“9”的黑色曲线对应于其他 不同实验对非牛顿引力参数空间的限制曲线“1”和“2”分别对应于质子一中子散射实验在标量第2期皮春梅:袋模型下奇异星的非牛顿引力效应253玻色子和矢量玻色子情形下的限制⑵];“3”和“4”分别对应于原子核荷半径和束缚能的限制[旳;“5”和“6”的限制分别来自He原子光谱和208pb散射实验[旳;“7”的限制来自对卡西米尔力的测量沏1;“8”的限制来自中子一氤气散射实验血打“9”的限制来自于金和硅组分的转动源与待测质量间引力的测量㉔.红色实线对应于粤=1.93GeV"2,此时奇异星最大质量是2.08M®.作为参考,红色虚线对应于4=11GeV",此时奇异星最大质量是2.56M©.在图中红色实线上方的区域(对应于粤4 >1.93GeV'2)能够允许的奇异星最大质量大于2.08M®.这个区域符合一些其他实验(如“5”)给出的限制,但是却不能符合另一些实验(如“6”“8”“9”)所给出的限制.bg4图4观测到的脉冲星最大质量(2.08M®)对非牛顿引力参数空间的限制Fig.4Upper bounds on the strength parameter|a|respectively,the bosonrnucleon coupling constant g asa function of the range of the Yukawa force fi andmass if hypothetical bosons,set by differrent experiments 4总结本文主要研究了考虑非牛顿引力效应下标准带模型奇异星的结构和性质,包括奇异物质的密度一压强关系、非牛顿引力效应的修正项对能量密度的贡献随重子数密度的变化以及星体的质量一半径关系.结果表明,非牛顿引力效应的引入使物态变硬,而且较大的非牛顿引力参数对应较硬的物态方程;随着重子数密度的增大,修正项能量密度越大;星体能支撑的最大质量在引入非牛顿引力效应的情况下有效地增大了.而且,对于奇异物质的标准袋模型状态方程,加入非牛顿引力效应并且非牛顿引力参数粤$1.93GeV'2能够解释目前观测到卩的最大质量脉冲星(PSR J0470+6620)的数据.参考文献:[1]WITTEN E・Cosmic separation of phases[J]・PhysicalReview D,1984,30(2):272-285・[2]ALCOCK C,OLINTO A V.Exotic phases of hadronicmatter and their astrophysical application]J].Annual Review of Nuclear and Particle Science»1988^38(8)j161-184・[3]CROMARTIE H・Relativistic Shapiro delay measurementsof an extremely massive millisecond pulsar[J].Nature Astronomy,2020,4:72-76.[4]FONSECA E.Refined mass and geometric measurements ofthe high-mass PSR J0740+6620口/OL]・The Astrophysical Journal Letters,2021r915(1)[2021-09-10X https;//doi, org/10,3847/2041-8213/ac0368,[5]ADELBERGER E G,GUNDLACH J H?HECKEL B R,etal・Torsion balance experiments j a low-energy frontier of particle physics]Jl Progress in Particle and Nuclear Physics’2009,62(1):102-134.[6]LI B A,KRASTEV P G,WEN D H,et al.Towardsunderstanding astrophysical effects of nuclear symmetry energy[J].European Physical Journal A,2019,55(7)s 117-191・[7]MURATA J,TANAKA S.Review of short-range gravityexperiments in the LHC eraEJ/OL]・Classical and Quantum Gravity,2015,32(3)[2021-09-10].https;///10.1088/0264-9381/32/3/033001・[8]KRIVORUCHENKO M I,SIMKOVIC F,FAESSLER A.Constraints for weakly interacting light Bosons from existence of massive neutron stars[J/OL].Physical Review D,2009,79[2021-09-10https://dot org/10.1103/ PhysRevD.79.125023.[9]WEN D H,LI B A,CHEN L W.Supersoft symmetry energyencountering non-Newtonian gravity in neutron stars[J/ OL]・Physical Review Letters,2009f103(21)[2021-09-10],https;//doL org/10.1103/PHYSREVLETT.103,211102・[10]SULAKSONO A,KASMUDIN M・Effects of in-mediummodification of weakly interacting light Boson mass inneutron stars]J]・Modem Physics Letters A,2011.926(5〉:367-375.[11]ZHANG D R,YIN P L,WANG W,et al.Effects of aweakly interacting light U Boson on the nuclear equation ofstate and properties of neutron stars in relativistic modelsEJ/0L1Physical Review C,2011,83(3)[2021-09-10],https;//doi,org/10,1103/PhysRevC,83,035801・[12]YAN J,WEN D H.R-mode instability of neutron star withnon-Newtonian gravityCJ],Communications in TheoreticalPhysics,20139$9(1儿47・52・254华中师范大学学报(自然科学版)第56卷[13]LIN W,LI B A,CHEN L W,et al.Breaking the EOS-gravitydegeneracy with masses and pulsating frequencies of neutronstarsUJ/OL].Journal o£Physics G,2014,41(7)[2021-09-10H.https;///10.1088/0954-3899/41/7/075203.[14]LU Z Y,PENG G X,ZHOU K.Effects of non-Newtoniangravity on the properties of strange stars[J].Research in.Astronomy and Astrophysics,2017,17(2):11-16.口5]YU Z,XU Y,ZHANG G Q,et al.Effects o£a weakly interacting light U Boson on protoneutron stars includingthe hyperon-hyperon,interactions[J].Communications in.Theoretical Physics,2018»69(4);417-424.:16]YANG S H,PI C M,ZHENG X P,et al.Non-Newtonian gravity in strange quark stars and constraints from theobservations of PSR J0740+6620and GW170817[J丄TheAstrophysical Journal,2020,902(1):32-3&「17]FARHI E,JAFFE R L.Strange matter E J].Physical Review D,1984,30(11):2379-2390.[18]WEBER F.Strange quark matter and compact stars[J].Progress in Particle and Nuclear Physics»2005,54(1);193-28&「19]ZYLA P A,BARNETT R M,BERINGER J,et al.,Review of particle physics[J/OL].Progress in Theoretical andExperimental Physics,2020(8)[2021-09-10].https://doi.org/10.1093/ptep/ptaal04.[20]FUJII Y.Dilaton and possible non-Newtonian gravity[J].Nature Physical Science,1971,234(44):5-7.[21]ALCOCK C,FARHI E,OLINTO A.Strange starsEJl TheAstrophysical Journal,1986,310;261-272.[22]MADSEN J.Physics and astrophysics of strange quarkmatter[J].Lecture Notes in Physics,Berlin SpringerVerlag,1999,516:162-203.[23]SHAO L J.Degeneracy in studying the supranuclearequation of state and modified gravity with neutron starsEJ/OLD.AIP Conference Proceedings,2019,2127(1)[2021-09-10].https;///10.1063/1.5117806.[24]KAMYSHKOV Y,TITHOF J,VYSOTSKY M.Bounds onnew light particles from high-energy and very smallmomentum transfer np elastic scattering data[J/OL].Physical Review D,2008,78(11)[2021-09-10J.https:///10.1103/PhysRevD.78,114029.[25]XU J,LI B A,CHEN L W»et al.Nuclear constraints onnon-Newtonian gravity at femtometer scale[J/OL].Journalof Physics G,2013,40(3)[2021-09-10D.https:///10.1088/0954-3899/40/3/035107.[26]POKOTILOVSKI Y N.Constraints on new interactionsfrom neutron scattering experiments]〕].Physics of AtomicNuclei,2006,69(6):924-391.[27]KLIMCHITSKAYA G L,KUUSK P,MOSTEPANENKOV M.Constraints on non-Newtonian gravity and axionlikeparticles from measuring the Casimir force in nanometerseparation rangeEJ/OL],Physical Review D,2020,101(5)[2021-09-101https:///10.1103/PhysRevD.101.056013.[28]KAMIYA Y,ITAGAKI K.TANI M,et al.Constraints onnew gravitylike forces in the nanometer range E J/OL J.Physical Review Letters,2015,114(16)[_2021-09-10D.https:///10.1103/PhysRevLett.114.161101. [29]CHEN Y J,TH A M W K,KRAUSE D E,et al.Strongerlimits on hypothetical Yukawa interactions in the30-8000nm range[J/OLH.Physical Review Letters,2016,116(22)[2021-09-10].https;///10.1103/PhysRevLett.116.221102.Non-Newtonian gravity in MIT strange quark starsPI Chunmei1,2(1.School of Physics and Mechanical&Electrical Engineering,Hubei University of Education,Wuhan430205,China;2.Research Center for Astronomy,Hubei University of Education,Wuhan430205,China)Abstract:The effects of non-Newtonian gravity on the properties of strange quark starsis investigated with MIT bag model.It is shown that the non-Newtonian contributedenergy density increases with increasing baryon density.It is also found that,for thestandard MIT bag model of strange quark matter,the inclusion of non-Newtoniangravity leads to stiffer EOSs with bigger parameters告and higher maximum masses ofcompact stars,when non-Newtonian gravity parameters is bigger than93GeV-2.Key words:strange quark stars;equation of state;non-Newtonian gravity。

一类动力学方程及流体力学方程解的Gevrey类正则性


Boltzmann 方程 . . . . . . . . . . . . . . . . . . . . . . . . 碰撞算子 Q(f, f ) 的基本性质 . . . . . . . . . . . . . . . . . Fokker-Planck 方程、Landau 方程以及 Boltzmann 方程线性 化模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Navier-Stokes 方程 . . . . . . . . . . . . . . . . . . . . . . . Gevrey 函数空间 . . . . . . . . . . . . . . . . . . . . . . . .
研究现状及本文主要结果 . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 1.2.2 1.2.3 1.2.4 存在性及唯一性 . . . . . . . . . . . . . . . . . . . . . . . . . 动力学方程的正则性理论: 空间齐次情形 . . . . . . . . . . . 动力学方程的正则性理论: 空间非齐次情形 . . . . . . . . . . Navier-Stokes 方程的正则性理论 . . . . . . . . . . . . . . .
第二章 预备知识 2.1 2.2 2.3 基本记号
Fourier 变换 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 基本函数空间及常用不等式 . . . . . . . . . . . . . . . . . . . . . . 2.3.1 2.3.2 Lp 空间及其性质 . . . . . . . . . . . . . . . . . . . . . . . . Sobolev 空间及其性质 . . . . . . . . . . . . . . . . . . . . .

最新《有限单元法》复习参考题

精品资料《有限单元法》复习参考题........................................《有限单元法》复习参考题一、简答题:1、简述应用有限单元法解决具体问题的要点。

(1) 将一个表示结构或者连续体的求解域离散为若干个子域(单元),并通过他们边界上的结点相互结合为组合体。

(2) 用每个单元内所假设的近似函数来分片地表示全求解域内待求的未知场变量。

而每个单元内的近似函数由未知场函数(或及其导数,为了叙述方便,后面略去此加注)在单元各个节点上的数值与其对应的插值函数来表达。

(3) 通过和原问题数学模型(基本方程、边界条件)等效的变分原理或者加权余量法,建立求解基本未知量(场函数的结点值)的代数方程或者常微分方程组。

2、等效积分形式和等效积分“弱”形式的区别何在?为什么等效积分“弱”形式在数值分析中得到更多的应用?在很多情况下对微分方程的等效积分形式进行分部积分可以得到等效积分的弱形式,如下式T T C D E ()F()d 0ΩΓυΩ+υυΓ=⎰⎰()(u)d ,其中C 、D 、E 、F 是微分算子。

像这种通过适当提高对任意函数和υ 的连续性要求,以降低对微分方程场函数u 的连续性要求所建立的等效积分形式称为微分方程的等效积分“弱”形式。

值得指出的是,从形式上看“弱”形式对函数u 的连续性要求降低了,但对于实际的物理问题却常常较原始的微分方程更逼近真正的解,因为原始微分方程往往对解提出了过分的要求。

所以等效积分“弱”形式在数值分析中得到更多的应用。

3、什么是Ritz (里兹)方法?其优缺点是什么?收敛的条件是什么?基于变分原理的近似解法称为Ritz (里兹),解法如下:优缺点:一般来说,使用里兹方法求解,当试探函数族的范围扩大以及待定参数的数目增多时,近似解的精度将会提高。

局限性:(1) 在求解域比较复杂的情况下,选取满足边界条件的试探函数,往往会产生难以克服的困难。

(2) 为了提高近似解的精度,需要增加待定参数,即增加试探函数的项数,这就增加了求解的复杂性,而且由于试探函数定义于全域,因此不可能根据问题的要求在求解域的不同部位对试探函数提出不同精度的要求,往往由于局部精度的要求使整个问题求解增加许多困难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:h ep-th/035144v217M a y23UT-03-07YITP-SB-03-11Topological anomalies from the path integral measure in superspace Kazuo Fujikawa 1Department of Physics,University of Tokyo Bunkyo-ku,Tokyo 113,Japan Peter van Nieuwenhuizen 2C.N.Yang Institute for Theoretical Physics State University of New York,Stony Brook,NY 11794-3840,USA Abstract A fully quantum version of the Witten-Olive analysis of the central charge in the N =1Wess-Zumino model in d =2with a kink solution is presented by using path integrals in superspace.We regulate the Jacobians with heat kernels in superspace,and obtain all superconformal anomalies as one Jacobian factor.The conserved quantum currents differ from the Noether currents by terms proportional to field equations,and these terms contribute to the anomalies.We identify the particular variation of the superfield which produces the central charge current and its anomaly;it is the variation of the auxiliary field.The quantum supersymmetry algebra which includes the contributions of superconformal anomalies is derived by using the Bjorken-Johnson-Low method instead of semi-classical Dirac brackets.We confirm earlier results that the BPS bound remains saturated at the quantum level due to equal anomalies in the energy and central charge.1Introduction and brief summarySupersymmetry and topology are intimately linked.For example,instantons play an important role in the effective action for rigidly supersymmetric (susy)models[1].The Donaldson invariants,which characterize topological properties of compact manifolds,can be computed by using a particular topological field theory which is obtained by twisting a Euclidean supersymmetric N =(2,2)model[2].We shall consider here the surface terms in the supersymmetry algebra[3]which form the central charges.The supersymmetry algebra of the kink,an N =(1,1)rigidly supersymmetric model in 1+1dimensions with a soliton solution,reads as follows at the classical level [3]{Q cl ,Q cl }=2H cl −2Z cl (1.1)Here Q cl is the classical supersymmetry charge which leaves the classical kink solution invariant and,properly extended to the quantum level,should leave the kink vacuum invariant.H cl is the classical Hamiltonian which gives the classical mass of the kink solutionϕK(x),and Z cl is the integral of a total derivativeZ cl= ∞∞U(ϕK)∂xϕK dx(1.2)which is non-vanishing because the kink solution has a topological twist(ϕK(∞)differs fromϕK(−∞)).The result in(1.1)can be derived by using semi-classical Dirac brackets.In the1970’s and1980’s solitons were studied in detail[4],and the issue whether for supersymmetric solitons Z is modified by quantum corrections was studied in several articles,with conflicting results[5].The kink model breaks conformal symmetry explicitly and is nonintegrable,and hence methods used for exactly soluble models were of no avail.Six years ago the issue whether the BPS bound H cl=Z cl remains satisfied at the quantum level was again raised[6],and subsequently in a series of articles by several authors the quantum corrections to H and Z were calculated,where by H we mean the expectation value of the quantum Hamiltonian in the kink vacuum,and similarly for Z .It was found that even though Z is classically the integral of a total divergence,there are nonvanishing quantum corrections to Z which are equal to those to H ,so that the BPS bound remains saturated at the quantum level[7,8,9,10].The nonvanishing corrections to Z come from a new anomaly,whose existence was conjectured in[7]and subsequently found and evaluated in[8].This result was in fact in conflict with the result of[9]where BPS saturation and nonvanishing quantum corrections to H and Z were obtained apparently without the need for the anomalous term in Z found in [8].However,as has been clarified recently in[10],this was due to manipulations of unregularized expressions;consistent dimensional regularization indeed reproduces the anomaly in Z.The existence of an anomaly in Z is therefore by now beyond doubt. Qualitatively,the reason is that Z is a composite operator which should be regularized at the quantum level by,for example,point-splitting,and although both the nonanomalous and the anomalous corrections to the central charge densityζ0(x)are still total divergences in this regularization scheme,the space integral of the anomalous contributions no longer vanishes,being proportional to ∞−∞U′′(ϕK)∂xϕK dx.However,the details are quite subtle; different regularization schemes give unexpected contributions toζµ,which consist of non-anomalous and anomalous contributions.For example,using ordinary(’t Hooft-Veltman) dimensional regularization,parity violation due to massless chiral domain wall fermions in the extra dimension is responsible for the anomaly in the central charge in2dimensions, whereas using dimensional reduction,the anomalies reside not in loop graphs but in the evanescent counter terms which renormalize the currents[10].Using the higher space-derivative regularization scheme,there is an extra term in the central charge current which produces the anomaly[8],while using heat kernel methods,subtle boundary contributions produce anomalies[11].The discovery that an anomaly is present in the central charge has led to precise calculations which restore the BPS bound at the quantum level,but raises profound questions concerning topological symmetries at the quantum level.In[10],a preliminaryanalysis was made of ordinary and conformal multiplets of currents,and ordinary and conformal multiplets of anomalies;in particular,a conformal central charge current was identified whose divergence contained,in addition to terms due to explicit symmetry breaking,the anomaly in the central charge.Thus the central charge contains an anomaly and is itself the anomaly of another current.In this article,we intend to study the anomaly structure of the currents of the super-symmetric kink model in superspace.We use the path integral formulation of anomalous Ward identities[12,13],and the present work extends a superspace analysis of conformal anomalies in QCD in3+1dimensions[14][15].A superspace approach to the anomalies in the central charge and the kink energy wasfirst given in[8].In that article several regularization schemes were used to evaluate the one-loop corrections,in particular a higher derivative regularization scheme in superspace.We shall start with a path integral approach,and compute the Jacobians for generalized supersymmetry transformations us-ing a superspace heat kernel.This will lead to a multiplet of anomalies which contains the trace anomaly and the central charge anomaly in addition to the supersymmetry anomaly and other terms.Crucial in this approach is that careful regularization of terms proportional to thefield equation of the auxiliaryfield yields nonvanishing contributions to the Ward identities.In the literature,some articles deal directly with the central charge current while in some other articles the central charge anomaly is obtained from a supersymmetry transformation of the conformal anomaly in the supercurrent.We shall derive the central charge anomaly both directly by evaluating the Jacobian,and by a supersymmetry transformation of the conformal anomaly in the supercurrent,and show that the results agree with each other.We begin with a local(x andθdependent)supersymmetry transformation of the scalar superfieldφ(x,θ)and apply the Noether theorem in ing the quadratic part of the superspace action as regulator,we obtain a Ward identity in superspace(cor-responding to a hierarchy of Ward identities in x-space)which contains the one-loop anomalies in certain quantum currents˜Jµ(x),˜Tµν(x),˜ζµ(x),in addition to explicit sym-metry breaking terms.The use of a superfield formulation of heat kernels in strictly d=2 Minkowski space-time to regularize the Jacobians in the path integral formulation mani-festly preserves ordinary rigid supersymmetry at all stages.A subtle point is the proper identification of the quantum currents.The naive Noether currents are not conserved, but the Ward identities contain the currents˜Jµ(x),˜Tµν(x),˜ζ(x)µwhich are conserved,so these can be used to construct time-independent charges.If we were to substitute thefield equations in these conserved quantum currents,we would obtain the Noether currents, but this is not allowed at the quantum level.In fact,the contributions proportional to field equations produce anomalies,as we already mentioned.We also derive the supersymmetry algebra at the quantum level.This requires a full quantum operator approach which incorporates anomalies,rather than a semiclassi-cal approach based on Dirac brackets.Fortunately there exists such an approach:the Bjorken-Johnson-Low(BJL)method which automatically incorporates the effects of su-perconformal anomalies.The BJL method has been widely used for current algebras in the1960’s[16].It allows one to rewrite results obtained from path integrals into operator relations.To go from the path integral results to operator results one must usefieldequations,but thesefield equations sometimes yield anomalies.The BJL method takes such anomalies into account,and this is crucial in our case.For readers who are not familiar with this technique we give a discussion of this method in the appendix.We thus present a fully quantum version of the Witten-Olive analysis.The deformation of the supersymmetry algebra by anomalies is such that the BPS bound remains saturated due to uniform shifts in energy and central charge.In our algebraic approach,we initially formulate all results in terms of a total superfield,and do not decompose this superfield into a background and a quantum part.Only at the end do we need to use some prop-erties of the kink background,namely the fact that the vacuum is annihilated by one of the supersymmetry charges(the time-independent charge).We would like to summarize our results briefly.It is shown that the Noether current for ordinary(nonconformal)supersymmetryjµ(x)=−[∂ϕ+U(ϕ)]γµψ(x)(1.3) with U(ϕ)=g(ϕ2−v20)contains in the present formulation an apparent anomaly¯h g∂µjµ(x)=γµψ(x)]α;∂µ˜Jµ(x)=0(1.6)2πand the associated time-independent supercharge˜Qα= dx˜J0,α(x)(1.7)which generates ordinary supersymmetry.This conserved current contains the following anomalous component¯h g(γµ˜Jµ(x))anomaly=−1Divergences with respect toθin superspace lead to anomalies in x-space which are of the formγµjµinstead of∂µjµ.Similarly,the anomaly in the energy density is due to the trace anomaly,which itself is due to anotherθdivergence in superspace.From a superspace point of view,θdivergences and x divergences are equally fundamental.The supersymmetry algebra for the conserved charge˜Q is then derived by using the BJL method.We rewrite Ward identities which are derived from path integrals and which contain the covariant T⋆time ordering,in terms of Ward identities at the operator level which contain the T time ordering symbol.We obtain2i{˜Qα,˜Qβ}=−2(γµ)αβ˜Pµ−2˜Z(γ5)αβ(1.9) where˜Pµ= dx˜T0µ(x),˜H=˜P0,˜Z= dx˜ζ0(x)=− dx˜ζ0(x).(1.10)The BJL method,unlike the semi-classical Dirac bracket,incorporates all the quantum effects,in particular superconformal anomalies.The operators˜Tµνand˜ζµare conserved quantities∂µ˜Tµν=0,∂µ˜ζµ=0(1.11) but contain superconformal anomalies˜Tµµ(x)=F(x)U(x)−gϕ¯ψψ(x)+¯h g2πF(x),γµ˜ζµ(x)γ5=∂µϕ(x)Uγµ+¯h g2π∂µϕ(x)γµ.(1.12) We derive these equations from the path integral formulation.In these equations,Tµµ(x) and(γµζµ)contain only the terms which explicitly break superconformal symmetry,as we shall show.These arise from the superpotential,are“soft”(they have lower dimen-sion because they are proportional to the dimensionful g),and there are no anomalous contributions to these quantities.The relations in(1.5)and(1.6)can be combined to give a similar result as in(1.12)γµ˜Jµ(x)=γµjµ(x)−¯h g4πF(x),˜ζµ(x)=ζµ(x)+¯h g2The symbols(γ0)αβand(γ5)αβdenote the matrices(γ0)αγ(C−1)γβand(γ5)αγ(C−1)γβand are inour conventions equal to−i and iτ3,respectively,see Section2.The indicesαandβare equal to+or −,and forα=β=+onefinds that the quantum anticommutator has the same form as the classical relation(1.1).The operators Tµν(x)andζµ(x)are specified byTµµ(x)anomaly=0,ζµ(x)anomaly=0(1.15) corresponding to the absence of an anomaly inγµjµ,see(1.5),but although both˜ζµand ζµare are conserved,Tνµis not conserved∂νTνµ(x)=0,(1.16) similar to the non-conservation of jµ.In terms of Tνµandζµ,the supersymmetry algebra readsi{˜Qα,˜Qβ}=−2(γµ)αβPµ+ dx¯h g∂1ϕ(x)(γ5)αβ(1.17)πwhere we usedǫ01=1andPµ= dxT0µ(x),H=P0,Z= dxζ0(x)=− dxζ0(x).(1.18) We see that the supersymmetry algebra in terms of time-independent charges has the same form at the quantum level as at the classical level,see(1.10).This agrees with[8], whose analysis is based on this observation.In(1.16)we have used charges P and Z;Z is free from anomalies and the anomaly of˜Z explicitly appears on the right-hand side, but P still contains a superconformal anomaly though Tµµis free from the trace anomaly. (In other words,T00and T11have equal anomalies,and the anomaly in T00doubles the contribution in(1.14)proportional to F,see ing(1.6)to write˜Q in terms of Q,all the anomaly terms in(1.17)cancel separately if one splits offthe anomaly from Pµ.In this way,also in terms of Q,Pµand Z the quantum anticommutator has the same form as classically.However,Q and P are time-dependent,so they are pysically less relevant.)These two alternative ways of writing the algebra give rise to the same physical conclusion,namely,uniform shifts in energy and central charge in the vacuum of the time independent kink solution.Both maintain the BPS bound,since they describe the same algebra on a different basis.2The model and the superspace regulatorWe briefly summarize some of the features of the model which describes the supersym-metric model;the N=(1,1)supersymmetric Wess-Zumino model in d=2Minkowski space.The model is defined in terms of the superfield1φ(x,θ)=ϕ(x)+¯θψ(x)+whereθαis a Grassmann number,andθαandψα(x)are two-component Majorana spinors;ϕ(x)is a real scalarfield,and F(x)is a real auxiliaryfield.We define¯θ=θT C with C the charge conjugation matrix,and the inner product for spinors is defined by¯θθ≡θT Cθ=θαCθβ≡¯θβθβ(2.2)αβwith the Dirac matrix conventionγ0=−γ0=−iτ2,γ1=γ1=τ3,C=τ2,γ5=γ0γ1(2.3) The choiceγ1=τ3has certain advantages for the evaluation of the spectrum of the fermions;we shall not evaluate this spectrum,but still useγ1=τ3in order to agree with the literature.We use the metricηµν=(−1,1)forµ=(0,1),hence(γ0)2=−1but γ25=eful identities areǫνµγµγ5=−γνandγµγ5=−ǫµνγνwithǫ01=1.Since in this representation the charge conjugation matrix equalsτ2,the Majorana condition ψ†τ2=ψT C reduces to the statement that all Majorana spinors are real.We frequently use the relations¯ǫψ=¯ψǫ,¯ǫγµψ=−¯ψγµǫand¯ǫγ5ψ=−¯ψγ5ǫ(the sign in the last relation is opposite to the4dimensional case).The supersymmetry transformation is induced by its action on the coordinates in superspace,φ′(x′,θ′)=φ(x,θ).One hasθ′=θ−ǫ,x′µ=xµ−¯θγµǫ(2.4) leading infirst order ofǫtoφ′(x,θ)=φ(xµ+¯θγµǫ,θ+ǫ)=1φ(x,θ)+¯θγµǫ∂µϕ(x)+¯ǫψ(x)+¯θǫF(x)+(¯θθ)¯ǫγµ∂µψ.(2.6)2In terms of components one obtains fromδφ=φ′(x,θ)−φ(x,θ)δϕ=¯ǫψ(x),δψ=∂µϕ(x)γµǫ+F(x)ǫ=∂ϕ(x)ǫ+F(x)ǫ,δF=¯ǫγµ∂µψ=¯ǫ∂ψ(x).(2.7) The supercharge which generates(2.4)∂¯ǫQ≡¯ǫα+¯ηγµθ∂µ∂¯θαanti-commute with each other.We haveDαφ(x,θ)=ψα+θαF+(γµθ)α∂µϕ+(γµθ)α¯θ∂µψ(2.9) and¯Dφ(x,θ)Dφ(x,θ)=¯ψψ+2¯ψθF+2(¯ψγµθ)∂ϕµ+¯θθ[F F−∂µϕ∂µϕ−¯ψγµ∂µψ](2.10) where we used¯θγµθ=0.We next note that1φ3(x,θ)=ϕ3+3(¯θψ)ϕ2+(¯θθ)(¯ψψ).We thus choose the action2dxd2θL(x,θ)= dxd2θ[13gφ3(x,θ)−gv20φ(x,θ)]= dx{1(¯θθ)=1(2.13)2The delta function is defined by d2θ1δ(θ1−θ2)=1and given byδ(θ1−θ2)=1(θ1−θ2)(θ1−θ2).(2.14) The potential V in L=T−V is given by V=−F U+g¯ψψϕwhereU(ϕ)≡g(ϕ2−v20).(2.15) We use a coupling constant g which is related to the coupling constantλused in other articles byg= 2,v0=µ0λ=m02µis the renormalized meson mass.To apply the backgroundfield method,we decompose thefield variable as followsφ(x,θ)=Φ(x,θ)+η(x,θ)(2.17) whereΦ(x,θ)is the backgroundfield andη(x,θ)is the quantumfluctuation.We then consider the parts of the(superfield)Lagrangian which are quadratic inηL2(x,θ)=1or equivalentlyL2(x,θ)=η(x,θ)Γ(x,θ)η(x,θ),Γ(x,θ)=−1(2π)2e ik(x−y)exp[−i¯θ1kθ2] p2−iǫδ(x−y),1i∂µ.(2.25) This equation yields the following important relations1p2−iǫ=δ(θ1−θ2),−13The symbol T⋆denotes(covariant)time ordering in the path integral approach.It has the property that it commuters with ordinary derivatives∂¯h [−12¯DD)−1J yields Z=dµexp i2¯DD)−1δ(x−y)δ(θ1−θ2).We set¯h=1in most places.where the second relation is derived by performing the integral d2θ2in1(θ1−θ3)pθ2]2¯DD,D(θ1)δ(θ1−θ2)=−exp[−i¯θ1pθ2],D2(θ1)δ(θ1−θ2)=−p2δ(θ1−θ2).(2.28) Using these results,we obtain the following equationsΓ(x,θ)=−14D2−12gΦD+(gΦ)2,Γ2(x,θ)δ(θ−θ1)=[−12g DΦ−14p2−12gΦD+(gΦ)2]2δ(θ−θ1).(2.29) We use the heat kernel exp[(Γ/M)2]as regulator in ing(2.29)wefind (exp[1M2[−12g DΦ−1M2Γ(x,θ)2}|θ,x=d 2xd 2θω′(x,θ) x,θ|exp {12D +g Φ(x,θ)]2}|θ,x=d 2xd 2θω′(x,θ)×limy →x,θ1→θexp {12D +g Φ(x,θ)]2}δ(θ−θ1)δ(x −y )(3.3)=d 2xd 2θd 2kM2[12D g Φ(x,θ)−1(2π)2ω′(x,θ)e −ikx×lim θ1→θexp {14p 2−12g Φ(x,θ)D +g 2Φ2]}e ikx δ(θ−θ1).We recallD =12¯Ω(x,θ)D +1(2π)2e −ikxexp {14p 2−12g Φ(x,θ)D +g 2Φ2]}e ikx δ(θ−θ1).(3.7)Passing the factor e ikx through the integrand replaces p →p +k ,and the operator D ismodified as followse −ikx D e ikx =1(γνθ)k ν][D +i (γµθ)k µ]=1(kθ)D −1(kθ)(kθ)=D −i ¯θkD +1Replacingk µ→Mk µ(3.9)we obtain the integralM2d 2k4(k 2+2kpM 2)−1M 2−i¯θkD 2k 2(¯θθ)]g Φ(x,θ)−1M 2−i¯θkD 2k 2(¯θθ)]+g 24k 2].By using that according to (2.28)lim θ1→θD (θ)δ(θ−θ1)=−1(3.11)while terms without D acting on δ(θ−θ1)vanish for θ1→θ,and noting that only theterms in the integral of order 1/M 2or larger survive when M tends to infinity,one can confirm that only the terms to second order in the expansion survive.In fact,the second order terms completely cancel because the termk 2(¯θθ)D /M 2(3.12)from the cross terms of D /M 2and12(¯θθ)k 2¯DD/M 2=−k 2(¯θθ)D /M 2.(3.13)We thus need to evaluate only the first order termsd 2k4k 2}[−g Φ(x,θ)D ]δ(θ−θ1)=ig(2π)2exp[−k 2/4]=iπΦ(x,θ)].(3.16)Note that this calculation remains valid for general (non-derivative)interactions depend-ing on Φ;if one has a potential V (Φ)instead of g Φin (2.19),one makes the samereplacement in (3.16).In the spirit of the background field method,one may replace the variable Φ(x,θ)by the full variable φ(x,θ)to the accuracy of the one-loop approximation.The final result for the result of the Jacobian of the path integral in Minkowski space is thus given byln J =id 2xd 2θω′(x,θ)[gFor example,for the class of transformationsδφ(x,θ)=¯ΩDφ+c(¯DΩ)φ=¯ΩDφ+12)(¯DΩ)φ(3.18)with a constant c,one obtains for the Jacobiani g2¯D(ΩΦ(x,θ))+(c−12)g2(Dα¯Ωβ)(¯Dαφ)Qβφ+¯ΩαQαL](4.2)whereL=13gφ3−gv20φ.(4.3) Any transformation ofφ,whether it is a symmetry of the action or not,leads to a corresponding Ward identity,but using a local supersymmetry transformation has the advantage that one obtains a hierarchy of Ward identitites in x-space which contain the Ward identities for ordinary and conformal supersymmetry.These are,of course,the Ward identities we are interested in,and we expect in this multiplet of Ward identities also tofind a Ward identity for the central charge current.For constant superfieldsΩα,the action is invariant,but for localΩα,the variation of S is porportional to the Noether current.One thus obtains the following Ward identity for correlation functionsi2(Dα¯Ωβ)(¯Dαφ)Qβφ+¯ΩαQαL]φ(x1,θ1)...φ(x n,θn)= −ig2Dα[(¯Dαφ)Qβφ]+QβL=−¯h gHere we write ¯h explicitly to indicate that we are working at the one-loop level.Using 12(D α¯D αφ)Q βφ−Q βV ,and 12¯θθ∂µ∂µϕand Q βφ=ψβ+F θβ−∂ϕθβ+12(γµ˜J µ)(x )−˜T µµ(x )θ+12(¯ψγν∂ψ)γνθ−δ(θ)∂µj µ(x )=12π[ψ(x )+F (x )θ−(γµθ)∂µϕ(x )+δ(θ)∂ψ(x )](4.6)or in component notation(γµ˜Jµ)(x )=(γµj µ)(x )−¯h g 2πF (x ),˜ζµ(x )−12πǫµσ∂σϕ(x ),(¯ψγ5∂ψ)(x )=0,∂µj µ(x )=¯h g2(γµj µ)(x )−(T µµ)(x )θ+(γµζµ)(x )γ5θ−δ(θ)∂µ(Uγµψ)≡QV (φ(x,θ))=−U (ϕ)ψ−[F U (ϕ)−gϕ¯ψψ]θ+∂µϕU (ϕ)γµθ−δ(θ)∂µ(Uγµψ)(4.8)where V =−[1˜Jµ(x )=−[∂ϕ(x )−F (x )]γµψ(x )=j µ−¯h g2ηµν[(∂ρϕ)(∂ρϕ)−F U ]+14ηµν[¯ψγρ∂ρψ+2gϕ¯ψψ],˜Tµν(x )=∂µϕ∂νϕ−14¯ψ[γµ∂ν+γν∂µ]ψ=T µν(x )+ηµν¯h g2¯ψγµγ5∂ψ(x )+¯h g ∂θαφ,and thusyields the trace anomaly.The parameter l (x )generates local Lorentz transformations (or chiral transformations since γ5is the Lorentz generator),but the Lorentz transformation is,of course,anomaly-free for our vector-like model 5and its generator vanishes identically¯ψγµγ5ψ≡0.(4.11)The parameter t α(x )generates the transformation δF =¯tψ,and it leads to the Ward identity containing the gamma-trace of the supercurrent.The most interesting case are the transformations with c µ(x ).The parameter c µ(x )generates the transformations δF =−ǫµνc µ∂νϕand δψ=c µγµγ5ψ,and these transfor-mations yield the Ward identityc µ˜ζµ(x )−12πǫµν∂νϕ(x ).(4.12)The last term in this Ward identity is an anomaly,and this anomaly constitutes the anomalous part in the central charge current itself.This is an unusual point that may lead to confusion:the anomaly is proportional to the central charge current itself.In this respect it resembles neither the trace anomaly nor the chiral anomaly:the trace anomaly contains a contraction of the current while the chiral anomaly contains a divergence of the current.In fact,it has been shown in[10]that the central charge current is the anomaly in the divergence of the conformal central charge current(which is explicitly x-dependent, just like the dilation current).Actually,the anomaly comes only from theδF variation and not from theδψvariation,see footnote4.We shall later explicitly compute the anomaly from theδF variation separately,see(4.19).In that case onefinds the relation in(4.12)without the¯ψγν∂ψterm˜ζµ(x)=ζµ(x)+¯h g2ηµν[−F2−F U+14πF(4.14)This relation,and others in(4.9),was obtained by extracting contracted currents from the Ward identity,and by generalizing the contracted currents and the anomalies in the contracted currents to the currents and the anomalies in the currents themselves.This does not determine the current completely.We now prove these uncontracted identities. We begin with(4.14)and claim the following relation−F2−F U+1δF(x)−1δ¯ψ(x)=¯h g2w(x)¯θ∂2w(x)¯θQφ(x,θ)=1integral in the form of (4.4)gives the identity 6(4.15).This analysis fixes the magnitudeof the Weyl anomaly.At the end of Section 5we show that T µµdoes not contribute to the trace anomaly,so the trace anomaly comes only from the conserved tensor.The last relation in (4.9)to be proven is the one with ˜Jµand j µ.We can show that ˜Jµ(x )−j µ(x ) = γµψ(x )(F (x )+U (ϕ)) = γµψ(x )δS2πγµψ(x ) (4.17)by considering the variationδφ(x,θ)=δ(θ)¯ǫµ(x )γµ∂δF (x )=¯h g6The Noethercurrent T N µν(x )generated by the variation δφ(x,θ)=ξµ(x )∂µφ(x,θ)is given by δS = −(∂µξν)T N µν.It readsT N µν(x )=∂µϕ∂νϕ−14¯ψ[γµ∂ν+γν∂µ]ψ+12ηµν[¯ψγµ∂µψ+2gϕ¯ψψ],=˜Tµν(x )−ηµν[−F 2−F U +14¯ψ[γµ∂ν−γν∂µ]ψ=˜Tµν(x )−ηµν¯h g 4¯ψ[γµ∂ν−γν∂µ]ψwhere we used the Weyl anomaly in (4.15).The last term is manifestly antisymmetric,and it canbe written as ¯ψ[γµ∂ν−γν∂µ]ψ=−ǫµν¯ψǫρσγρ∂σψ=−ǫµν¯ψγ5γρ∂ρψ.It yields the antisymmetric part of the stress tensor,and is proportional to the divergence of the Lorentz current.One may show that∂µT N µν(x )=−¯hg2π∂νF (x )),and this implies ∂µ˜T µν(x )=0.In our analysis,the conserved ˜T µν,and T µνwhich isnot conserved but free of a trace anomaly,play a basic role.Note that both ˜Tµνand T µνare manifestly symmetric.7Clearly,the naive equation of motion F (x )+U (ϕ)=0cannot be used in this derivation.If one sets vµ(x)=∂µv(x)in(4.20),one generates the divergence of the central charge current but the procedure gives no information for a topological current.In analogy with U(1)gauge theory,we are considering the change of variable Aµ→Aµ+aµinstead of Aµ→Aµ+∂µa to generate the current.It is important to recognize that all operators appearing on the left-hand sides of the relations in(4.7)have higher mass dimensions than those of the corresponding operators on the right-hand sides.For example,˜ζµ(x)andζµ(x)are,respectively,dimension2and 1operators since the coupling constant g carries a unit mass dimension.Similarly,γµ˜Jµandγµjµare,respectively,dimension3/2and1/2operators,though both of˜Jµand jµare dimension3/2operators.Also,˜Tµµand Tµµare,respectively,dimension2and1 operators,though both of˜Tµνand Tµνare dimension2operators.In this sense all the composite operators on the right-hand sides of(4.7)are soft operators.This suggests that only the“hard”operators generate anomalies.In the next section we prove this statement.5Supersymmetry algebra of the quantum operatorsIn the previous section we gave a direct derivation of the anomalies based on path integrals, but we already mentioned in the introduction that one can also obtain the anomalies from theγµ˜Jµanomaly by making successive susy transformations.In this section we implement this second approach.Since this involves commutators of currents,we convert the path integral relations into operator relations by following the BJL method.We begin by considering the variationδφ(x,θ)=¯ǫ(x)Qφ(x,θ).(5.1) The change of the action defines the Noether currentδS= d2x(∂µ¯ǫ(x))jµ(x)(5.2) wherejµ,α(x)=−{[∂ϕ(x)+U(ϕ(x))]γµψ(x)}α(5.3) with U(ϕ)=g(ϕ2−v20).The Jacobian factor for(5.1)gives the anomaly,and we obtain the identity¯h g∂µjµ(x)=γµψ(x),∂µ˜Jµ(x)=0.(5.5)2πIt contains the contributions from the action and Jacobian,appears in all the Ward iden-tities,and this implies,as we shall see,that the relations among various Green’s functions obtained by global supersymmetry are not modified in form by non-trivial Jacobians.。

相关文档
最新文档