有限元习题与答案
有限元复习题及答案

1.弹性力学和材料力学在研究对象上的区别?材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件;弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等,研究对象要广泛得多。
2.理想弹性体的五点假设?连续性假设,完全弹性假设,均匀性假设,各向同性假定,小位移和小变形的假定。
3.什么叫轴对称问题,采用什么坐标系分析?为什么?工程实际中,对于一些几何形状、载荷以及约束条件都对称于某一轴线的轴对称体,其体内所有的位移、应变和应力也都对称于此轴线,这类问题称为轴对称问题。
通常采用圆柱坐标系r、θ、z分析。
这是因为,当弹性体的对称轴为z轴时,所有的应力分量、应变分量和位移分量都将只是r和z的函数,而与无θ关。
4.梁单元和杆单元的区别?杆单元只能承受拉压荷载,梁单元那么可以承受拉压弯扭荷载。
具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承当的,通常用于网架、桁架的分析;而梁单元那么根本上适用于各种情况〔除了楼板之类〕,且经过适当的处理〔如释放自由度、耦合等〕,梁单元也可以当作杆单元使用。
5.薄板弯曲问题与平面应力问题的区别?平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是垂直于板面的力的作用,板将变成有弯有扭的曲面。
平面应力问题有三个独立的应力分量和三个独立的应变分量,薄板弯曲问题每个结点有三个自由度,但是只有一个是独立的其余两个可以被它表示。
6.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。
7.有限单元法的收敛性准那么?完备性要求,协调性要求。
完备性要求:如果出现在泛函中场函数的最高阶导数是m阶,那么有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式,或者说试探函数中必须包括本身和直至m阶导数为常数的项,单元的插值函数满足上述要求时,我们称单元是完备的。
西工大-有限元试题(附答案)

1、针对下图所示得3个三角形元,写出用完整多项式描述得位移模式表达式。
2、如下图所示,求下列情况得带宽:a)4结点四边形元;b)2结点线性杆元。
3、对上题图诸结点制定一种结点编号得方法,使所得带宽更小。
图左下角得四边形在两种不同编号方式下,单元得带宽分别就就是多大?4、下图所示,若单元就就是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。
系统得带宽就就是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。
5、设杆件1-2受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出杆端力F1,F2与杆端位移之间得关系式,并求出杆件得单元刚度矩阵6、设阶梯形杆件由两个等截面杆件错误!与错误!所组成,试写出三个结点1、2、3得结点轴向力F1,F2,F3与结点轴向位移之间得整体刚度矩阵[K]。
7、在上题得阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F1=P,求各结点得轴向位移与各杆得轴力。
8、下图所示为平面桁架中得任一单元,为局部坐标系,x,y为总体坐标系,轴与x轴得夹角为。
(1) 求在局部坐标系中得单元刚度矩阵(2)求单元得坐标转换矩阵 [T];(3) 求在总体坐标系中得单元刚度矩阵9、如图所示一个直角三角形桁架,已知,两个直角边长度,各杆截面面积,求整体刚度矩阵[K]。
10、设上题中得桁架得支承情况与载荷情况如下图所示,按有限元素法求出各结点得位移与各杆得内力。
11、进行结点编号时,如果把所有固定端处得结点编在最后,那么在引入边界条件时就就是否会更简便些?12、针对下图所示得3结点三角形单元,同一网格得两种不同得编号方式,单元得带宽分别就就是多大?13、下图所示一个矩形单元,边长分别为2a与2b,坐标原点取在单元中心。
位移模式取为导出内部任一点位移与四个角点位移之间得关系式。
14 桁架结构如图所示,设各杆EA/L均相等,单元及结点编号如图所示,试写出各单元得单刚矩阵[k]e。
15 图所示三杆桁架,节点1、节点3处固定,节点2处受力Fx2,Fy2,所有杆件材料相同,弹性模量为E,截面积均为A,求各杆内力。
有限元复习题

有限元复习题及答案1、有限元法是近似求解(一般连续)场问题的数值方法。
2、有限元法将连续的求解域(离散为若干个子域),得到有限个单元,单元与单元之间用(节点)相连。
3、从选择未知量的角度看,有限元法可分为三类(位移法.力法混合法)。
4、以(节点位移)为基本未知量的求解方法称为位移量。
5、以(节点力)为基本未知量的求解方法称为力法。
6 一部分以(节点位移),另一部分以(节点力)为基本未知量的求解方法称为混合法.7、直梁在外力作用下,横截面上的内力有(剪力)和(弯矩)两个。
8、平面刚架结构在外力作用下,横截面上的内力有(轴力)、(剪力)、(弯矩)。
9、进行直梁有限元分析,节点位移有(转角)、(挠度)。
10平面刚架结构中,已知单元e的坐标变换矩阵[厂]和在局部坐标系x' O' y' 下的单元刚度矩阵[K' ]\则单元在真体坐标系xOy下的单元刚度矩阵为_ [K]r =[T TK V [T f]门、在弹性和小变形下,节点力和节点位移关系是(线性的)。
12、弹性力学问题的方程个数有(15)个,未知量个数有(15)个。
13、弹性力学平面问题方程个数有(8),未知数(8)个。
15、几何方程是研究(应变)和(位移)关系的方程。
16、物理方程描述(应力)和(应变)关系的方程。
17、平衡方程反映(应力)和(位移)关系的方程。
18、把进过物体内任意一点各个(截面)上的应力状况叫做(该点)的应力状态。
19、形函数在单元节点上的值,具有本点为(1),他点为零的性质,并在三角形单元的后一节点上,三个形函数之和为(Do20、形函数是(定义于)单元内部坐标的(连续)函数,它反映了单元的(位移)状态。
21 •在进行节点编号时,要尽量使用同一单元的相邻节点的狭长的带状尽可能小, 以使最大限度地缩小刚度矩阵的带宽,节省存储,提高计算效率.22三角形单元的位移模式为(线性位移模式)23矩形单元的位移模式为(线性位移模式)24在选择多项式位移模式的阶次时.要求(所选的位移模式应该与局部坐标系的方位无关的性质为几何)各向同性25、单元刚度矩阵描述了(节点力)和(节点位移)之间的关系。
有限元习题及答案ppt课件

病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
有限元课后习题答案

有限元课后习题答案1.1有限元法的基本思想和基本步骤是什么首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。
其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。
步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。
1.2有限元法有哪些优点和缺点优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。
缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。
对无限求解域问题没有较好的处理办法。
1.3有限元法在机械工程中有哪些具体的应用静力学分析模态分析动力学分析热应力分析其他分析2.1杆件结构划分单元的原则是什么?1)杆件的交点一定要取为节点2)阶梯形杆截面变化处一定要取为节点3)支撑点和自由端要取为节点4)集中载荷作用处要取为节点5)欲求位移的点要取为节点6)单元长度不要相差太多2.2简述单元刚度矩阵的性质。
单元刚度矩阵是描述单元节点力与节点位移之间关系的矩阵。
2.3有限元法基本方程中每一项的意义是什么?{Q}---整个结构的节点载荷列阵(包括外载荷、约束力);{}---整个结构的节点位移列阵;[K]---结构的整体刚度矩阵,又称总刚度矩阵。
2.4简述整体刚度矩阵的性质和特点。
对称性奇异性稀疏性主对角上的元素恒为正2.5位移边界条件和载荷边界条件的意义是什么由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。
2.6写出平面刚架问题中单元刚度矩阵的坐标变换式2.7推导平面刚架局部坐标系下的单元刚度矩阵。
2.8简述整体坐标的概念。
单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’O’Y’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。
有限元习题及答案

有限元习题及答案一判断题(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析(√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度(√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)10一维变带宽存储通常比二维等带宽存储更节省存储量。
二、填空1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。
2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为薄板,后者为长柱体。
3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。
4.单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。
5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。
6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。
等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。
7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。
(用符号表示即可)8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w9.变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程10.实现有限元分析标准化和规范化的载体就是单元三选择题1 等参变换是指单元坐标变换和函数插值采用__B___的结点和______的插值函数。
有限元考试复习资料(华东交通大学)
有限元考试复习资料(含习题答案)1试说明用有限元法解题的主要步骤。
(1)离散化:将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上互相联系,即只有结点才能传递力。
(2)单元分析:根据弹性力学的基本方程和变分原理建立单元结点力和结点位移之间的关系。
(3)整体分析:根据结点力的平衡条件建立有限元方程,引入边界条件,解线性方程组以及计算单元应力。
(4)求解方程,得出结点位移(5)结果分析,计算单元的应变和应力。
2.单元分析中,假设的位移模式应满足哪些条件,为什么?要使有限元解收敛于真解,关键在于位移模式的选择,选择位移模式需满足准则:(1)完备性准则:(2)连续性要求。
P210面简单地说,当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于0时,有限元解趋于真正解,称此单元为协调单元;当单元选取的位移模式满足完备性准则但不完全满足单元之间的位移及其导数连续条件时,称为非协调单元。
3.什么样的问题可以用轴对称单元求解?在工程问题中经常会遇到一些实际结构,它们的几何形状、约束条件和外载荷均对称某一固定轴,我们把该固定轴称为对称轴。
则在载荷作用下产生的应力、应变和位移也都对称此轴。
这种问题就称为轴对称问题。
可以用轴对称单元求解。
4.什么是比例阻尼?它有什么特点?其本质反映了阻尼与什么有关?答:比例阻尼:由于多自由度体系主振型关于质量矩阵与刚度矩阵具有正交性关系,若主振型关于阻尼矩阵亦具有正交性,这样可对多自由度地震响应方程进行解耦分析。
比例阻尼的特点为具有正交性。
其本质上反应了阻尼与结构物理特性的关系。
5.何谓等参单元?等参单元具有哪些优越性?①等参数单元(简称等参元)就是对坐标变换和单元内的参变量函数(通常是位移函数)采用相同数目的节点参数和相同的插值函数进行变换而设计出的一种单元。
①优点:可以很方便地用来离散具有复杂形体的结构。
由于等参变换的采用使等参单元特性矩阵的计算仍在单元的规则域内进行,因此不管各个积分形式的矩阵表示的被积函数如何复杂,仍然可以方便地采用标准化的数值积分方法计算。
有限元课后第三章习题答案
有限元课后第三章习题答案有限元课后第三章习题答案第一题:根据题目给出的信息,我们可以得出以下结论:1. 题目中提到了一个平面问题,即只考虑二维情况。
2. 材料的弹性模量为E = 210 GPa。
3. 材料的泊松比为ν = 0.3。
4. 材料的厚度为t = 10 mm。
5. 材料的长度为L = 100 mm。
6. 材料的宽度为W = 50 mm。
7. 材料的边界条件为固定边界。
根据以上信息,我们可以开始解题。
首先,我们需要确定有限元模型的几何形状和单元类型。
由于题目给出的是一个平面问题,我们可以选择使用二维平面应力单元来建模。
根据题目给出的材料尺寸,我们可以选择一个矩形区域作为有限元模型的几何形状。
接下来,我们需要确定有限元模型的单元划分。
由于题目没有给出具体的单元划分要求,我们可以根据经验选择适当的单元尺寸和划分密度。
在这里,我们可以将矩形区域划分为若干个等大小的四边形单元。
然后,我们需要确定有限元模型的边界条件。
根据题目给出的信息,材料的边界条件为固定边界。
这意味着模型的边界上的节点在计算过程中将保持固定位置,不发生位移。
因此,我们需要将边界上的节点固定。
接下来,我们可以开始进行有限元计算。
首先,我们需要确定有限元模型的节点和单元编号。
然后,我们可以根据材料的弹性模量和泊松比,以及节点和单元的位置信息,计算出每个节点和单元的刚度矩阵。
然后,我们可以根据边界条件,将固定边界上的节点的位移设置为0。
这样,我们就可以得到一个由位移未知数构成的线性方程组。
通过求解这个线性方程组,我们可以得到模型中每个节点的位移。
最后,我们可以根据节点的位移和单元的刚度矩阵,计算出每个单元的应力和应变。
根据题目给出的材料厚度,我们可以得到每个单元的应力和应变的平均值。
综上所述,根据题目给出的信息,我们可以使用有限元方法来求解这个平面问题。
通过建立有限元模型,确定边界条件,进行有限元计算,我们可以得到模型中每个节点的位移和每个单元的应力和应变。
有限元复习题及答案
1.两种平面问题的根本概念和根本方程;答:弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。
平面问题分为平面应力问题和平面应变问题。
平面应力问题设有张很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。
由于平板很薄,外力不沿厚度变化,因此在整块板上有:,,剩下平行于XY面的三个应力分量未知。
平面应变问题设有很长的柱体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。
平面问题的根本方程为:平衡方程几何方程物理方程〔弹性力学平面问题的物理方程由广义虎克定律得到〕•平面应力问题的物理方程平面应力问题有•平面应变问题的物理方程平面应变问题有在平面应力问题的物理方程中,将E替换为、替换为,可以得到平面应变问题的物理方程;在平面应变问题的物理方程中,将E替换为、替换为,可以得到平面应力问题的物理方程。
2弹性力学中的根本物理量和根本方程;答:根本物理量有:空间弹性力学问题共有15个方程,3个平衡方程,6个几何方程,6个物理方程。
其中包括6个应力分量,6个应变分量,3个位移分量。
平面问题共8个方程,2个平衡方程,3个几何方程,3个物理方程,相应3个应力分量,3个应变分量,2个位移分量。
根本方程有:1.平衡方程及应力边界条件:平衡方程:边界条件:2.几何方程及位移边界条件:几何方程:边界条件:3.物理方程:3.有限元中使用的虚功方程。
对于刚体,作用在其上的平衡力系在任意虚位移上的总虚功为0,这就是刚体的平衡条件,或者称为刚体的虚功方程。
对于弹性变形体,其虚位移原理为:在外力作用下处于平衡的弹性体,当给予物体微小的虚位移时,外力的总虚功等于物体的总虚应变能。
设想一处于平衡状态的弹性体发生了任意的虚位移,相应的虚应变为,作用在微元体上的平衡力系有〔X,Y,Z〕和面力。
外力的总虚功为实际的体力和面力在虚位移上所做的功,即:在物体产生微小虚变形过程中,整个弹性体内应力在虚应变上所做的功为总虚应变能,即:其中为弹性体单位体积内的应力在相应的虚应变上做的虚功,由此得到虚功方程:4.节点位移,单元位移及它们的关系。
完整版有限元法课后习题答案
1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为假设干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下横截面上的内力有轴力、剪力、弯矩.5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角 .7、在弹性和小变形下,节点力和节点位移关系是线性关系.8、弹性力学问题的方程个数有15个,未知量个数有15个.9、弹性力学平面问题方程个数有8,未知数8个.10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值 ,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是三角形单元内部坐标的线性函数他反映了单元的位移状态16、在进行节点编号时,同一单元的相邻节点的号差尽量小.17、三角形单元的位移模式为_线性位移模式_-18、矩形单元的位移模式为双线性位移模式19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何各向同性20、单元刚度矩阵描述了节点力和节点位移之间的关系21、矩形单元边界上位移是连续变化的1.诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2.有限元法的根本思想是什么答:首先,将表示结构的连续离散为假设干个子域,单元之间通过其边界上的节点连接成组合体.其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量.3.有限元法的分类和根本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移.4.有限元法有哪些优缺点答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便, 对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点.缺点:有限元计算,尤其是复杂问题的分析计算, 所消耗的计算时间、内存和磁盘空间等计算资源是相当惊人的. 对无限求解域问题没有较好的处理方法. 尽管现有的有限元软件多数使用了网络自适应技术, 但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验.5.梁单元和平面钢架结构单元的自由度由什么确定答:由每个节点位移分量的总和确定6.简述单元刚度矩阵的性质和矩阵元素的物理意义答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量.7.有限元法根本方程中的每一项的意义是什么P14答:Q——整个结构的节点载荷列阵〔外载荷、约束力〕;整个结构的节点位移列阵;结构的整体刚度矩阵,又称总刚度矩阵.8.位移边界条件和载荷边界条件的意义是什么答:由于刚度矩阵的线性相关性不能得到解,引入边界条件,使整体刚度矩阵求的唯一解.9.简述整体刚度矩阵的性质和特点P14答:对称性;奇异性;稀疏性;对角线上的元素恒为正.10简述整体坐标的概念P25答:在整体结构上建立的坐标系叫做整体坐标,又叫做统一坐标系.11.简述平面钢架问题有限元法的根本过程答:1〕力学模型确实定,2〕结构的离散化,3〕计算载荷的等效节点力,4〕计算各单元的刚度矩阵,5〕组集整体刚度矩阵,6〕施加边界约束条件,7〕求解降价的有限元根本方程, 8〕求解单元应力,9〕计算结果的输出.12.弹性力学的根本假设是什么.答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定.13.弹性力学和材料力学相比,其研究方法和对象有什么不同.答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移.弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等.因此,弹性力学的研究对象要广泛得多.研究方法:弹性力学和材料力学既有相似之外,又有一定区别.弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答.而材料力学虽然也考虑这几方面的条件,但不是十分严格的,材料力学只研究和适用于杆件问题. 14.简述圣维南原理. 答;把物体一小局部上的面力变换为分布不同但静力等效的面力,但影响近处的应力分量, 而不影响远处的应力.“局部影响原理〞15.平面应力问题和平面应变问题的特点和区别各是什么试各举出一个典型平面应力和平面应变的问题的实例.答:平面应力问题的特点:长、宽尺寸远大于厚度,沿板面受有平行板的面力,且沿厚度均匀分布,体力平行于板面且不沿厚度变化,在平板的前后外表上无外力作用平面应变问题的特点:Z向尺寸远大于x、y向尺寸,且与z轴垂直的各个横截面尺寸都相同,受有平行于横截面且不沿z向变化的外载荷,约束条件沿z向也不变,即所有内在因素的外来作用都不沿长度变化.区别:平面应力问题中z方向上应力为零,平面应变问题中z方向上应变为零、应力不为零.举例:平面应力问题等厚度薄板状弹性体,受力方向沿板面方向,荷载不沿板的厚度方向变化,且板的外表无荷载作用.平面应变问题一一水坝用于很长的等截面四柱体,其上作用的载荷均平行于横截面,且沿柱长方向不变法.16.三角形常应变单元的特点是什么矩形单元的特点是什么写出它们的位移模式.答:三角形单元具有适应性强的优点,较容易进行网络划分和逼近边界形状,应用比较灵活.其缺点是它的位移模式是线性函数,单元应力和应变都是常数,精度不够理想.矩形单元的位移模式是双线性函数,单元的应力、应变式线性变化的,具有精度较高, 形状规整,便于实现计算机自动划分等优点,缺点是单元不能适应曲线边界和斜边界,也不能随意改变大小,适用性非常有限.17.写出单元刚度矩阵表达式、并说明单元刚度与哪些因素有关.答:单元刚度矩阵与节点力坐标变换矩阵,局部坐标系下的单元刚度矩阵,节点位移有关的坐标变换矩阵.18.如何由单元刚度矩阵组建整体刚度矩阵〔叠加法〕答:〔1〕把单元刚度矩阵扩展成单元奉献矩阵 ,把单元刚度矩阵中的子块按其在整体刚度矩阵中的位置排列, 空白处用零子块填充.〔2〕把单元的奉献矩阵的对应列的子块相叠加, 即可得出整体刚度矩阵 .19.整体刚度矩阵的性质.答:〔1〕整体刚度矩阵中每一列元素的物理意义为:欲使弹性体的某一节点沿坐标方形发生单位为移,而其他节点都保持为零的变形状态,在各节点上所需要施加的节点力;〔2〕整体刚度矩阵中的主对角元素总是正的;〔3〕整体刚度矩阵是一个对称阵;〔4〕整体刚度矩阵式一个呈带状分布的稀疏性矩阵.〔5〕整体刚度矩阵式一个奇异阵,在排除刚体位移后,他是正定阵.20.简述形函数的概念和性质.答:形函数的性质有:〔1〕形函数单元节点上的值,具有“本点为一、他点为零〞的性质;〔2〕在单元的任一节点上,三角函数之和等于1; 〔3〕三角形单元任一一条边上的形函数,仅与该端点节点坐标有关,而与另外一个节点坐标无关;〔4〕型函数的值在0〜1之间变换.21.结构的网格划分应注意哪些问题 .如何对其进行节点编号.才能使半带宽最小.P50, P8相邻节点的号差最小答:一般首选三角形单元或等参元.对平直边界可选用矩形单元,也可以同时选用两种或两种以上的单元.一般来说,集中力,集中力偶,分布在和强度的突变点,分布载荷与自由边界的分界点,支撑点都应该取为节点,相邻节点的号差尽可能最小才能使半带宽最小22.为了保证解答的收敛性,单元位数模式必须满足什么条件答:〔1〕位移模式必须包含单元刚体位移;〔2〕位移模式必须包含单元的常应变;〔3〕位移模式在单元内要连续,且唯一在相邻单元之间要协调.在有限单元法中,把能够满足条件1和条件2的单元称为完备单元,把满足条件3的单元叫做协调单元或保续单元.23有限元分析求得的位移解收敛于真实解得下界的条件.答:1.位移模式必须包含单元的刚体位移,2.位移模式必须包含单元的常应变,3.位移模式在单元内要连续,且位移在相邻单元之间要协调.24.简述等参数单元的概念.答:坐标变换中采用节点参数的个数等于位移模式中节点参数的个数,这种单元称为等参单元.25.有限元法中等参数单元的主要优点是什么答:1〕应用范围广.在平面或空间连续体,杆系结构和板壳问题中都可应用.2〕将不规那么的单元变化为规那么的单元后,易于构造位移模式.3〕在原结构中可以采用不规那么单元,易于适用边界的形状和改变单元的大小.4〕可以灵活的增减节点,容易构造各种过度单元.5〕推导过程具有通用性.一维,二维三维的推导过程根本相同.26.简述四节点四边形等参数单元的平面问题分析过程.答:〔1〕通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;〔2〕通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;〔3〕将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵〔4〕用虚功原理球的单元刚度矩阵,,最后用高斯积分法计算完成.27.为什么等参数单元要采用自然坐标来表示形函数为什么要引入雅可比矩阵答:简化计算得到形函数的偏导关系.28. ANSYS软件主要包括哪些局部各局部的作用是什么答:1.前处理模块:提供了一个强大的实体建模及网络划分工具,用户可以方便地构造有限元模型.2.分析计算模块:包括结构分析、流体力学分析、磁场分析、声场分析、压电分析以及多种物理场的耦合分析,可以模拟多种物理介质的相互作用,具有灵敏度分析及优化分析水平.3.后处理模块:可将计算后果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示等图形方式显示出来,也可将计算结果以图表、曲线形式显示出来或输出.29. ANSYS软件提供的分析类型有哪些答:结构静力分析、机构动力分析、结构非线性分析、动力学分析、热分析、流体力学分析、电磁场分析、声场分析、压电分析.30.简述ANSYS软件分析静力学问题的根本流程.答:1.前处理器:1〕定义单元类型,2〕定义实常数,3〕定义材料属性,4〕创立实体几何模型,5〕划分网络;2.求解器:1〕定义分析类型,2〕施加载荷和位移约束条件,3〕求解;三角形三节点单元的位移是连续的,应变和应力在单元内是常数,因而其相邻单元将具有不同的应力和应变,即在单元的公共边界上和应变的值将会有突变.矩形单元的边界上,位移是线性变化的,显然,在两个相邻矩形单元的公共边界上,其位移是连续的.节点的选用原那么:一般说,集中力、集中力偶、分布载荷强度的突变点、分布载荷与自由边界的分界点、支承点都能赢取为节点.单元的划分原那么:〔1〕划分单元的数目,视要求的计算精度和计算机的性能而定.〔2〕单元的大小,可根据部位的不同而有所不同.1、试述街节点力和节点载荷的区别.节点力是单元与节点之间的作用力;如果取整个结构为研究对象,节点力为内力,节点载荷是作用在节点上的外载荷.2、试述求整体刚度矩阵的两种方法.分别建立各节点的平衡方程式,写成矩阵形式,可求得整体刚度矩阵;将各单元刚度矩阵按规律叠加,也可得整体刚度矩阵.3、平面问题中划分单元的数目是否越多越好不是越多越好.划分单元的数目,视要求的计算精度和计算机的性能而定.随着单元数目的接连多,有限元解逐步逼近于真实解,但是,单元数目接连加,刚求解的有限元线性方程组的数目接连多, 需要占用更多的计算机内存资源,求解时间接连长,所以,在计算机上进行有限元分析时,还要考虑计算机的性能.单元数过多并不经济.4、写出单元刚度矩阵的表达式,并说明单元刚度与那些因素有关[B]-单元应变矩阵,[D]-弹性矩阵,t-厚度〕单元刚度矩阵取决于单元的大小、方向、和弹性常数,而与单元的位置无关,即不随单元或坐标轴的平移而改变.5、选择多项式为单元的位移模式时,除了要满足单元的完备性和协调性要求,还须考虑什么因素还须考虑两个因素:1、所选的位移模式应该与局部坐标系的方位无关,即几何各向同性. 2、多项式位移模式中的项数必须等于或稍大于单元边界上的外节点的自由度数,通常取多项式的项数与单元的外节点的自由度数想等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元习题与答案(总27页) --本页仅作为文档封面,使用时请直接删除即可-- --内页可以根据需求调整合适字体及大小-- 习题 解释如下的概念:应力、应变,几何方程、物理方程、虚位移原理。 解 ○1应力是某截面上的应力在该处的集度。 ○2 应变是指单元体在某一个方向上有一个ΔU的伸长量,其相对变化量就是应变。
XUXx
表示在x轴的方向上的正应变,其包括正应变和剪应变。
○3几何方程是表示弹性体内节点的应变分量与位移分量之间的关系,其完整表示如下:
Txzyzxyzyxxwzuzvywyuxvzwyvxuxwzuzvywyuxvzwyvxu ○4物理方程:表示应力和应变关系的方程某一点应力分量与应变分量之间的关系如下:
666564636261565554535251464545434241363534333231262524232221161514131211xzyzxyzyx
xzyzxyzzyyxx
○5虚位移原理:在弹性有一虚位移情况下,由于作用在每个质点上的力系,在相应的虚位移上虚功总和为零,即为:若弹性体在已知的面力和体力的作用下处于平衡状态,那么使弹性体产生虚位移,所有作用在弹性体上的体力在虚位移上所做的工就等于弹性体所具有的虚位能。 说明弹性体力学中的几个基本假设。 ○1 连续性假设:就是假定整个物体的体积都被组成该物体的介质所填满,不存在任何间隙。 ○2 完全弹性假设:就是假定物体服从虎克定律。 ○3 各向同性假设:就是假定整个物体是由同意材料组成的。 ○4 小变形和小位移假设:就是指物体各点的位移都远远小于物体原来的尺寸,并且其应变和转角都小于1。 简述线应变与剪应变的几何含义。 线应变:应变和刚体转动与位移导数的关系,剪应变表示单元体棱边之间夹角的变化。 推到平面应变平衡微分方程。 解:对于单元体而言其平衡方程:
000Zx
Yx
Xx
zzyzyxz
zzyyyxyzzxyxyx
在平面中有zyzxz 代入上式的 00YXzxyyyxxyxx 如题图所示,被三个表面隔离出来平面应力状态中的一点,求和的值。
解:x方向上:045sin45sin3020045cos45cos3040200000 联立二式得:30220230 相对于xyz坐标系,一点的应力如下 64430003
某表面的外法线方向余弦值为6/11xynn,7/11zn,求该表面的法相和切向应力。 解:该平面的正应力
4
2222222222667766(3)3241111111111xxyxzxnxyzyxyyzyzxzyzzxxyyzzxyxyyzyzzxzxnnnnnnnnnnnnnnn
全应力
222
22266667
644(3)311111111115.80nxnynznxxyxyzzxxxyyyzyzxzxyyzzzTTTTnnnnnnnnn
该平面的切应力22225.84.493.68nnnT 一点的应力如下
MP
求主应力和每一个主应力方向的方向余弦;球该店的最大剪应力。
解:设主平面方向余弦为xyznnn,由题知20xyz 10xyyxyzzyxzzx
12222222232202020602020310390022020202101010201034000xyzxyyzzxxyyzzxxyzxyyzzxxyzxzxzxy
IMPaIMPaIPa
将123III代入321230III得326090040000 即240100 140MPa,2310MPa。
最大剪应力13max40101522MPa (1)当1时代入式()201010010201001010200xyzxyzxyzxyznnnnnnnnnnnn 222313xyzxyznnnnnn
(2)当23时代入式()0xyznnn且2221xyzxyznnnnnn 63xn
66yznn
已知一点P的位移场为23(4)10uyiyzjbxk,求该点p(1,0,2)的应变分量。 解:p点沿坐标方向的位移分量为u,v,w 2222210,310,4610uyvyzwx
点p(1,0,2)处线应变为0xxux,22310610yyvzy,0zzwz 剪应变为
0xyvuxy,203100yzwvyyz,212101200xzwuxz
一具有平面应力场的物体,材料参数为E、v。有如下位移场 32(,)uxyaxbxy 23(,)vxycxydy
其中,a、b、c、d是常量。求xyxy讨论位移场的相容性
解:23xuaxbyx 223yvcxdyy 22xyvucxybxyyx 因为222xby 222ycx 222xycbxy 所以满足相容性条件 222
22yxyx
yxxy 有广义胡克定律11xxyyyxEE得222222331331xyacxbdyEacxbdyE 又xyxyG则221xyxyEGxycb•1Ecbxy 一具有平面应力场的物体,材料性质是E=210GPa,v=.并且有如下位移场 233(,)301020uxyxxyy
232(,)10205vxyxxyy
当x=,y=时,求物体的应力和应变。位移场是否相容
解:226030600.05300.050.022.9985xuxxyx 226010600.050.02100.020.2012yvxyyy
32332220206010200.05200.02600.02100.051.02291xyvuxyyxxy
由广义胡克定律
9
5
22
210102.99850.30.20122.5410110.3xxyEMpa
9
5
22
210100.32.99850.20122.5410110.3yxyEMpa
95210101.022918.261021210.3xyxyxyEGMpa
220xy,220yx,20xyxy满足相容性条件22222yxyxyxxy
对于一个没有任何体积力的圆盘,处于平面应力状态。其中 32xaybxycx 3xdye 22zfxygxyh
a, b, c, d, e, f, g, h是常量。为了使应力满足平衡方程和相容方程,这些常量的约束条件是什么
解:由题意得:2xbxycx,23ydyy,22xyfygxyx,22xyfxygxy 代入平衡方程