线性方程组与矩阵的关系与应用
矩阵及其应用ppt课件

线性方程组
• 根据矩阵乘法的定义,第三页中的线性方 程组可以表示成:
• Ax = y • 其中A是第五页中的系数矩阵,x是列向量
[x1, x2, ..., xn],y是列向量[y1, y2, ..., ym]。 • 当n=m时,A是n阶方阵,如果A可逆,那么:
• x = A-1y
方阵的幂
• 已知n阶方阵A和正整数m,计算Am。其中n 不超过50,m不超过1000000。
方阵的幂(二)
• 已知n阶方阵A和正整数m,计算A1 + A2 + ... + Am。其中n不超过50,m不超过1000000。
路径计数
• 给定一个有向图,问从A点恰好经过k步 (允许多次经过同一条边)走到B点的方案 总数。图中顶点数不超过50,边数不超过 1000000。
线性递推式
已知x1, x2 ,...,xn的值和线性递推关系 xk a1xk1 a2xk2 ... an xkn , 其中k n, a1, a2,...,an是常数。对于任给的正整 数m,计算xm的值。(n不超过50,m 不超过1000000)
数乘矩阵
类似地,矩阵与数c相乘定义为cy1, ..., cym的系数所对应的矩阵:
a11 ... a1n ca11 ... ca1n c ... ... ... ... ... mn
矩阵乘法
设有如下两个方程组:
z1 a11 y1 ... a1m ym .................................. zk ak1 y1 ... akm ym 和 y1 b11x1 ... b1n xn ................................ ym bm1x1 ... bmnxn
线性方程组的矩阵行列式与解性质

线性方程组的矩阵行列式与解性质线性方程组是数学中的重要概念,它描述了多个线性方程的集合,我们可以通过矩阵行列式与解的性质来研究线性方程组的解的存在性、唯一性以及可解性等问题。
本文将介绍线性方程组的矩阵行列式与解的性质,以便更好地理解和解决线性方程组的问题。
一、矩阵行列式与解的存在性对于一个线性方程组Ax=b,其中A是系数矩阵,x是未知向量,b是常数向量。
当且仅当矩阵A的行列式不等于零时,线性方程组有解。
这是线性代数中的克拉默法则。
克拉默法则是一种基于行列式的方法,它可以通过计算矩阵的行列式来判断线性方程组是否有解。
如果矩阵A的行列式等于零,即|A|=0,则线性方程组无解。
这意味着系数矩阵的行向量是线性相关的,存在某个向量可以表示为其余向量的线性组合。
二、矩阵行列式与解的唯一性当线性方程组的系数矩阵A满足行满秩条件时(即A的行向量线性无关),线性方程组的解是唯一的。
行满秩条件可以用行列式来刻画。
如果A的行列式不等于零且行满秩,则线性方程组有唯一解。
这也称为克拉默法则的第二部分。
当矩阵A的行列式不等于零时,我们可以使用矩阵的逆来求解线性方程组的唯一解。
设A的逆矩阵为A^-1,则方程组的解可以表示为x=A^-1b。
三、矩阵行列式与解的可解性对于一个线性方程组Ax=b,如果系数矩阵A的行数小于列数,即m<n,那么线性方程组可能有无数个解,也可能无解。
当m<n时,矩阵A是一个矩形矩阵,存在自由变量。
这意味着线性方程组具有无穷多个解。
我们可以使用参数化的方法来表示解。
例如,考虑一个二维线性方程组的例子:x + 2y = 32x + 4y = 6该方程组的系数矩阵A为[[1, 2], [2, 4]],行列式为0。
系数矩阵的秩为1,小于列数2。
因此,这个方程组有无穷多个解,可以表示为x=a,y=3-2a,其中a为任意实数。
总结起来,线性方程组的矩阵行列式与解的性质是线性代数中的重要概念。
通过计算矩阵的行列式,我们可以判断线性方程组的解的存在性。
线性代数讲义03线性方程组

第三章 线性方程组第一节 线性方程组与矩阵的行等价一 线性方程组以前学过求解二元一次方程组与三元一次方程组的方法. 这里研究一般的一次方程组.定义3.1 多元一次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111称为线性方程组. 方程组有m 个方程, n 个未知数i x (1,2,,i n =), 而ij a (1,2,,i n =;m j ,,2,1 =)是未知数的系数, j b (m j ,,2,1 =)是常数项.如果0=j b (m j ,,2,1 =), 则称为齐次线性方程组, 否则称为非齐次线性方程组.数组n c c c ,,,21 是方程组的一个解, 如果用它们分别代替方程组中的未知数n x x x ,,,21 , 可以使方程组变成等式组. 方程组的全部解的集合称为方程组的通解. 相对于通解, 称方程组的一个解为特解.定义3.2 如果两个线性方程组有相同的通解, 则称它们同解.按照定义, 两个方程组同解是指它们的解的集合相等. 集合相等是一种等价关系, 因此方程组同解也是一种等价关系. 特别, 方程组同解具有传递性.通过消元, 可将线性方程组变成比较简单的同解方程组, 从而得到原方程组的解.例3.1 解线性方程组⎪⎩⎪⎨⎧=++=++=+-52452132321321321x x x x x x x x x .解 从上向下消元, 得同解方程组1232332312243x x x x x x -+=⎧⎪-=⎨⎪-=-⎩. 这种方程组称为阶梯形方程组. 从下向上消元, 得同解方程组⎪⎩⎪⎨⎧-=-=-=310232321x x x .再除以第一个未知数的系数, 得线性方程组的解2/31-=x , 52=x , 33=x .解线性方程组的基本方法是加减消元法. 求解过程中常用三种运算.定义3.3 下列三种运算称为方程组的初等变换.(1) 交换两个方程的位置;(2) 用一个非零常数乘以一个方程;(3) 将一个方程的k 倍加到另一个方程上去.注意 如果用一种初等变换将一个线性方程组变成另一个线性方程组, 则也可以用初等变换将后者变成前者. 即初等变换的过程是可逆的.定理3.1 用初等变换得到的新的线性方程组与原方程组同解.证 先证明只进行一次初等变换.首先如果一组数是原方程组的解, 则它满足方程组中的每一个方程. 此后, 无论进行的是哪种初等变换, 这组数也满足新方程组的每个方程, 因此是新方程组的解. 反之, 由于初等变换的可逆性, 新方程组的解也是原方程组的解. 因此, 两个方程组同解.最后, 由于方程组同解的传递性, 进行任意多次初等变换所得方程组与原方程组同解.二 矩阵的行等价用矩阵乘法, 可以将线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111写作 11121121222212n n m m mn n a a a x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b 21, 称为线性方程组的矩阵表示. 其中n m ⨯矩阵)(ij a A =称为方程组的系数矩阵, 1⨯n 列矩阵),,,(21'=n x x x x 称为未知数(矩阵), 1⨯m 列矩阵),,,(21'=m b b b b 称为常数(矩阵). 此时, 线性方程组可以简写作b Ax =.如果数组n c c c ,,,21 是线性方程组b Ax =的解, 令列矩阵12(,,,)n c c c ξ'=, 则有矩阵等式A b ξ=. 列矩阵12(,,,)n c c c ξ'=是方程组的解的矩阵表示.将常数矩阵添加到系数矩阵上作为最后一列, 得到分块矩阵),(b A A =, 称为线性方程组的增广矩阵.线性方程组与其增广矩阵是互相唯一确定的. 因此, 可以将方程组的语言翻译成矩阵的语言. 从线性方程组的初等变换, 产生矩阵的行初等变换的概念.定义3.4 设A 是矩阵, 则下列三种运算称为对矩阵A 的行初等变换.(1) 交换A 的两行;(2) 用非零常数k 乘以A 的一行;(3) 将A 的一行的k 倍加到另一行上去.定义 3.5 如果通过行初等变换, 可以将矩阵A 变成矩阵B , 则称矩阵A 与B 行等价. 记作B A r−→−. 仿照定理3.1的证明, 可以得到下面的结果.性质3.1 行等价是一种等价关系, 即具有下述性质.(1) 反身性: A A r −→−; (2) 对称性: 如果B A r −→−, 则A B r −→−; (3) 传递性: 如果B A r −→−,C B r −→−, 则C A r −→−. 当一类对象具有多种不同的等价关系时,要用不同的符号予以区别. 矩阵的相等是一种等价关系, 已经用等号表示为B A =. 作为矩阵的另一种等价关系, 行等价使用符号B A r −→−. 用矩阵的行等价的概念, 可以将定理3.1写作:定理3.2 如果两个线性方程组的增广矩阵行等价,则这两个线性方程组同解.通过初等变换, 可以从线性方程组产生一个阶梯形方程组. 换成矩阵的语言, 通过行初等变换, 可以从矩阵产生下面的具有特殊结构的矩阵.如果矩阵中某行中所有元素都是0, 则称为零行, 否则称为非零行.定义3.6 具有下面的性质的矩阵称为行阶梯形阵.(1) 非零行在上, 零行在下;(2) 每个非零行的第一个非零元素(首元素)在上面的非零行的首元素的右下方.例3.2 用行初等变换化简矩阵⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A .解 做行初等变换, 得⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A ⎪⎪⎪⎭⎫ ⎝⎛---−→−343042201312r ⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r . 经过消元, 得到的已经是行阶梯形阵. 继续消元, 得⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r A ⎪⎪⎪⎭⎫ ⎝⎛----−→−3100100208012r ⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r .最后, 每行除以其首元素, 得⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r A ⎪⎪⎪⎭⎫ ⎝⎛-−→−310050102/3001r .定义3.7 具有下列性质的行阶梯形阵称为行最简阵.(1) 每个非零行的首元素等于1;(2) 包含首元素的列的其它元素都是0.在例3.2中, 最后得到的是行最简阵. 由以上的讨论, 可得下面的定理.定理3.3 对于任意矩阵A , 存在一个行最简阵R , 使得A 与R 行等价.如果矩阵A 与行阶梯形阵R 行等价,则称R 是A 的行阶梯形阵. 如果A 与行最简阵R 行等价, 则称R 为矩阵A 的行等价标准形.其实, 例3.2中的矩阵就是例3.1中线性方程组的增广矩阵. 而矩阵的行初等变换的过程与线性方程组的初等变换的过程完全一样. 唯一的区别在于这里只有系数和常数, 没有未知数和等号. 由于增广矩阵与线性方程组可以互相唯一确定, 缺少未知数和等号完全不影响问题的解决.习题3-11. 写出线性方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x 的系数矩阵与增广矩阵, 并用消元法求解.2. 设线性方程组的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛------1681355422351312, 写出该线性方程组, 并用消元法求解.3. 求下列矩阵的行等价标准形.(1)102120313043-⎛⎫ ⎪ ⎪ ⎪-⎝⎭; (2) 023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭; (3) 11343335412232033421--⎛⎫ ⎪-- ⎪ ⎪-- ⎪ ⎪---⎝⎭; (4) 23137120243283023743--⎛⎫ ⎪-- ⎪ ⎪- ⎪ ⎪-⎝⎭. 4. 求t 的值, 使得矩阵⎪⎪⎪⎭⎫ ⎝⎛-----t 22122351311321的行等价标准形恰有两个非零行.第二节 矩阵的秩一 矩阵的秩的定义定义 3.8 设矩阵n m ij a A ⨯=)(, 从A 中任意选取k 行,k 列(},min{n m k ≤), 位于这些行与列的交叉点上的2k 个元素按照原来的相对位置构成的k 阶行列式称为A 的一个k 阶子式. 例如, 位于矩阵⎪⎪⎪⎭⎫ ⎝⎛---=312097102431A 的第一,三行, 第二,四列的二阶子式为133223-=-. 一个n m ⨯矩阵有kn k m C C 个k 阶子式. 矩阵的每个元素都是它的一个一阶子式. 而n 阶方阵的行列式是它的唯一的n 阶子式.定义3.9 如果矩阵n m ij a A ⨯=)(中有一个r 阶子式不等于零, 而所有1+r 阶子式都等于零, 则称矩阵A 的秩等于r . 记作r A =)rank(.如果矩阵的所有1+r 阶子式都等于零, 根据行列式按照一行展开, 可以证明所有更高阶的子式也都等于零. 因此, 矩阵的秩等于它的不等于零的子式的最高阶数.约定 对于零矩阵O , 约定0)rank(=O .由矩阵的秩的定义, 可以得到下面简单事实:(1) 设A 是非零矩阵, 则1)rank(≥A ;(2) 设A 是n m ⨯矩阵, 则},min{)rank(n m A ≤;(3) n 阶方阵A 可逆的充分必要条件为n A =)rank(. 于是, 可逆阵又称为满秩阵.例3.3 设⎪⎪⎪⎭⎫ ⎝⎛=064212100321A , 求它的秩.解 左上角的二阶子式不等于零. 而所有四个三阶子式都等于零. 于是, 2)rank(=A . 例3.4 求对角阵),,,diag(21n a a a A =的秩.解 由不等于0的主对角元素所在的行与列确定的子式不等于0. 而阶数高于这个子式的子式必然有零行. 因此对角阵的秩等于其不等于0的主对角线元素的个数.例3.5 设矩阵A 的秩等于0>r , 从A 删除一行得到矩阵B , 问B 的秩可能取哪些值? 如果给A 添加一行呢?解 因为矩阵B 的子式也是矩阵A 的子式, 所以B 的秩不大于A 的秩.已知r A =)r a n k (, 不妨设A 的r 阶子式D 不等于0. 如果D 也是B 的子式, 则r B =)rank(. 否则, 根据行列式按照一行展开, 在D 的未被删除的1-r 行中, 至少有一个1-r 阶子式不等于0. 于是1)rank(-≥r B .仿照上面的证明, 添加一行所得矩阵的秩等于r , 或者1+r .性质3.2 设A 是矩阵, k 是数, 则(1) 转置: )rank()rank(A A =';(2) 数乘: 如果0≠k , 则)rank()rank(A kA =.证 只证(2).考虑矩阵A 的一个s 阶子式s D , 根据矩阵的性质2.6, 矩阵kA 的相应的子式等于s s D k .已知0≠k , 因此0=s s D k 的充分必要条件为0=s D .设r A =)rank(, 则A 有一个r 阶子式不等于0, 而所有1+r 阶子式都等于0. 根据前面的分析, 矩阵kA 具有相同的性质. 因此, r kA =)rank(.二 行初等变换用定义计算矩阵的秩时, 需要计算许多个行列式. 计算量非常大.定理3.4 设矩阵A 与B 行等价, 则rank()rank()A B =.证 设一次行初等变换将矩阵A 变成矩阵B ,且r A =)r a n k (, 则A 的所有1+r 阶子式都等于0. 下面对于三种行初等变换证明矩阵B 的所有1+r 阶子式也都等于0.(1) 矩阵A 的一行乘以非零常数k . 此时B 的一个1+r 阶子式或者就是A 的相同位置的1+r 阶子式, 或者是A 的相同位置的1+r 阶子式的一行乘以非零常数k . 于是, B 的所有1+r 阶子式都等于0.(2) 交换矩阵A 的两行. 考虑B 的一个1+r 阶子式D , 则A 有一个1+r 阶子式与D 的差别至多是行的顺序不同. 于是, B 的所有1+r 阶子式都等于0.(3) 将A 的第j 行的k 倍加到第i 行. 如果B 的一个1+r 阶子式不包含A 的第i 行, 它就是A 的相同位置的1+r 子式. 如果B 的一个1+r 阶子式D 包含A 的第i 行, 用行列式的性质, 这个子式可以分解为21kD D +, 其中1D 就是A 的相同位置的1+r 子式. 如果D 不包含A 的第j 行, 则2D 可以由A 的某个1+r 阶子式经交换行得到. 如果D 包含A 的第j 行, 则2D 有两个相同的行. 于是, B 的所有1+r 阶子式都等于0.总之, )rank()rank(A r B =≤.另一方面, 由矩阵的行等价的对称性, 也可以用行初等变换将矩阵B 变成矩阵A . 从而还有)rank()rank(B A ≤. 于是, 无论做哪种行初等变换, 都有rank()rank()A B =.最后, 由矩阵的行等价的传递性, 进行多次行初等变换也不改变矩阵的秩.推论 3.1 矩阵的秩等于它的行阶梯形阵中非零行的个数, 也就是行等价标准形中非零行的个数.证 设矩阵A 的行等价标准形R 中恰有r 个非零行, 则所有1+r 阶子式都等于0. 另一方面, 它的非零行的首元素所在的列的前r 行构成r 阶单位阵. 于是r R =)rank(. 根据定理 3.4, 有r A =)rank(.例3.6 求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A 的秩. 解 用行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A −→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----81440472047201511−→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000000047201511. 矩阵A 的行阶梯形阵有两个非零行, 因此, 2)rank(=A .例3.7 设分块矩阵⎪⎪⎭⎫ ⎝⎛=C O O B A , 求证: )rank()rank()rank(C B A +=. 证 设矩阵C B ,的行等价标准形分别为R 和S , 分别对B 和C 所在的行做行初等变换, 得⎪⎪⎭⎫ ⎝⎛=C O O B A ⎪⎪⎭⎫ ⎝⎛−→−S O O R r , 其中R 和S 分别是B 和C 的行等价标准形. 将R 所在的行中的零行移动到矩阵的最下方, 而不改变非零行的上下顺序, 可得到一个行最简阵. 而且, 这就是A 的行等价标准形. 于是, A 的行等价标准形中非零行的个数恰等于B 与C 的行等价标准形中非零行的个数之和.用这个方法可以证明: 准对角阵的秩等于各对角块的秩的和.习题3-21. 设矩阵⎪⎪⎭⎫ ⎝⎛=75211111A ,按照从小到大的顺序排列它的所有二阶子式. 2. 设n m ⨯矩阵A 的秩等于r , 任取A 的s 行构成矩阵B , 求证: m s r B -+≥)rank(. *3. 设A 是n m ⨯矩阵,求证:1)rank(=A 的充分必要条件为: 存在1⨯m 非零矩阵B 与n ⨯1非零矩阵C ,使得BC A =.4. 用行初等变换求下列矩阵的秩.(1) 123235471⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2) 321322131345561---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3) 1010011000011000011001011⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (4) 132541413514243273613-⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭. 5. 求t 的值, 使得方阵⎪⎪⎪⎭⎫ ⎝⎛-=t A 23312231的秩等于2.第三节 齐次线性方程组的基础解系齐次线性方程组的矩阵表示为0=Ax . 此时方程组与其系数矩阵A 互相唯一确定.齐次线性方程组0=Ax 总有零解. 于是, 解齐次线性方程组的基本问题是:(1) 对给定的齐次线性方程组,判定是否有非零解;(2) 如果有非零解, 求出所有的解(通解). 性质 3.3 如果列矩阵1ξ与2ξ是齐次线性方程组0=Ax 的两个特解, 则对于任意的数k h ,, 列矩阵21ξξk h +也是方程组的解.证 将21ξξk h +代入方程组, 得)(21ξξk h A +00021=+=+=ξξkA hA . 由定理3.2与定理3.3可得解齐次线性方程组的基本路线. 下面通过例题予以说明.例1求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=-+++=-----=+++0434503223006225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的系数矩阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=14345321231111162210A . 然后做行初等变换, 由矩阵A 产生行阶梯形阵. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------14345321236221011111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----−→−00000010006221011111r . 继续做行初等变换, 得到矩阵A 的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000010006021050101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--−→−00000010006021050101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===++=--000062054532531x x x x x x x .将行等价标准形的非零行中的首元素对应的未知数留在方程组的左边, 将其余未知数移到方程组的右边, 得到⎪⎪⎩⎪⎪⎨⎧==--=+=0006254532531x x x x x x x . 任意取定右边未知数(自由未知数)的值, 则左边未知数(约束未知数)的值也随之确定, 由此产生方程组的一个解.实际上,由此可以得到方程组的全部解. 设),,,,(54321'd d d d d 是方程组的任意的特解, 上面求解时3x 与5x 可以任意取值, 自然包含取值33d x =与55d x =. 由于),,,,(54321'd d d d d 是方程组的解, 必须满足方程组.因此5315d d d +=,53262d d d --=,04=d . 于是, 这个特解可以由上面的方法产生.令h x =3,k x =5, 得到齐次线性方程组的通解k h x 51+=,k h x 622--=,h x =3, 04=x , k x =5, 其中k h ,是任意常数.在通解中令1=h ,0=k , 得到齐次线性方程组的一个特解1(1,2,1,0,0)ξ'=-. 反之, 令0=h ,1=k , 得到另一个特解2(5,6,0,0,1)ξ'=-. 从而得到齐次线性方程组的通解的矩阵表示: 12x h k ξξ=+, 其中k h ,是任意常数. 为了得到方程组的通解, 只须求得特解1ξ与2ξ, 因此, 称12,ξξ为齐次线性方程组的基础解系.注意 将一个自由未知数取1, 其他自由未知数取0, 得到齐次线性方程组的一个特解. 这些特解的集合就是基础解系. 因此, 如果有s 个自由未知数, 则方程组的基础解系包含s 个特解.定理 3.5 设A 是n m ⨯矩阵, 则齐次线性方程组0=Ax 的基础解系中所包含的特解的个数等于)rank(A n -.证 根据推论 3.1, 系数矩阵A 的秩等于行等价标准形R 中非零行的个数, 也就是约束未知数的个数. 于是, 未知数的个数n 与系数矩阵的秩)rank(A 的差等于自由未知数的个数, 也就是基础解系中所包含的特解的个数.推论 3.2 齐次线性方程组只有零解的充分必要条件为: 系数矩阵的秩等于它的列数.证 根据定理 3.5, 此时没有自由未知数, 于是只有一个零解.推论3.3 设A 是n 阶方阵,求证:齐次线性方程组0=Ax 只有零解的充分必要条件为: 行列式0||≠A .证 根据推论3.2, 齐次线性方程组0=Ax 只有零解的充分必要条件为n A =)rank(. 由矩阵的秩的定义, n A =)rank(的充分必要条件为0||≠A .例 3.9 设A 是n 阶方阵, 且n r A <=)rank(, 求证: 存在n 阶方阵B , 满足O AB =, 且r n B -=)rank(.证 考虑齐次线性方程组0=Ax , 根据定理3.5, 它的r n -个特解12,,,n r ξξξ-组成基础解系. 即有0i A ξ=, r n i -=,,2,1 .构造分块n 阶方阵12(,,,,0,,0)n rB ξξξ-=, 即B 的前r n -列是基础解系中的特解构成的列矩阵, 后面的r 个列的元素都是0. 由基础解系的构造, 在B 的前r n -列中, 与自由未知数对应的行可以构成一个单位阵, 因此r n B -=)rank(.另一方面, 由分块矩阵的运算规则, 有12(,,,,0,,0)n r AB A ξξξ-=12(,,,,0,,0)n r A A A O ξξξ-==.习题3-31. 求下列齐次线性方程组的通解.(1)⎪⎩⎪⎨⎧=+=++=+-03200231321321x x x x x x x x ; (2)⎪⎩⎪⎨⎧=-+-+=+--+=-+-+024242052420632543215432154321x x x x x x x x x x x x x x x ; (3)⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++033450622032305432154325432154321x x x x x x x x x x x x x x x x x x x ; (4)⎪⎪⎩⎪⎪⎨⎧=+-+-=-+--=-+-+=+-+-02252022303220254321543215432154321x x x x x x x x x x x x x x x x x x x x .2. 设齐次线性方程组的系数矩阵的列数大于行数, 求证: 该方程组有非零解.3. 当a 满足什么条件时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x ax x x x ax 只有零解?4. 求a 的值, 使得齐次线性方程组⎪⎩⎪⎨⎧=+-=++=++004202321321321x x x x x x x x ax 有非零解. 并求其基础解系.5. 设0>n , 求证: n 次多项式至多有n 个两两不同的零点.第四节 非齐次线性方程组的通解解非齐次线性方程组b Ax =的基本问题是:(1) 对于给定的方程组, 判断是否有解;(2) 如果有解, 求出全部解(通解).定义 3.10 将非齐次线性方程组b Ax =中各方程的右边变成0, 得到的齐次线性方程组0=Ax 称为方程组b Ax =的导出组.性质3.4 设列矩阵1η与2η是线性方程组b Ax =的两个特解, 则它们的差21ηηξ-=是它的导出组0=Ax 的解.证 将21ηηξ-=代入导出组的左边, 得)(21ηηξ-=A A 021=-=-=b b A A ηη.推论 3.4 如果非齐次线性方程组有解, 则它的通解是它的一个特解与它的导出组的通解的和.证 首先, 设列矩阵η是方程组b Ax =的特解, 列矩阵ξ是其导出组0=Ax 的特解, 则有b b A A A =+=+=+0)(ηξηξ,即列矩阵ηξ+是方程组b Ax =的解.其次, 设列矩阵ζ是方程组b Ax =的任意的特解, 根据性质3.4, 列矩阵ηζξ-=是导出组0=Ax 的解. 移项, 得ξηζ+=, 即方程组b Ax =的任意的特解ζ可以表示为它的取定的特解η与导出组0=Ax 的解ξ的和.综合两方面, 即得本推论.注意 求非齐次线性方程组的通解, 只须求出它的一个特解, 以及它的导出组的通解. 而后面的问题已经解决.在齐次线性方程组的解题路线中, 用增广矩阵代替系数矩阵, 得非齐次线性方程组的解题路线. 现举例说明.例 3.10 求非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334533237246225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的增广矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 然后做行初等变换, 由增广矩阵产生行阶梯形阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311232462210711111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------−→−0000000000002462210711111r . 继续做行初等变换, 得到增广矩阵的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000000024622101751101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−00000000000024622101751101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===+++-=---00002462217554325431x x x x x x x x . 将自由未知数移到右边, 得⎪⎪⎩⎪⎪⎨⎧==+---=-++=00002462217554325431x x x x x x x x . 将自由未知数取值0, 计算约束未知数的值, 即得非齐次方程组的一个特解)0,0,0,24,17('-=η.根据推论 3.3, 还需要求它的导出组的基础解系. 注意到: 如果删除增广矩阵的最后一列, 就是系数矩阵. 在做行初等变换之后, 如果删除增广矩阵的行等价标准形的最后一列, 也就是系数矩阵的行等价标准形. 于是, 如果将非齐次方程组的同解方程组的常数项变成0, 就是它的导出组的同解方程组. 用前面的方法, 得基础解系)0,0,1,2,1(1'-=ξ, )0,1,0,2,1(2'-=ξ,)1,0,0,6,5(2'-=ξ.于是, 非齐次线性方程组的通解的矩阵表示为332211ξξξηk k k x +++=, 其中321,,k k k 是任意常数.例 3.11 解非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334523237246225432154321543215432x x x x x x x x x x x x x x x x x x x .解 这个方程组的增广矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 通过行初等变换, 得到行阶梯形阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0000001000002462210711111. 在这里, 有一个非零行的首元素在最后一列. 当从行阶梯形阵出发, 得同解方程组时, 该行对应矛盾方程: 10=. 因此, 同解方程组无解. 于是, 原线性方程组无解. 反之, 如果不出现这种情况, 则用前面的方法可以求出通解.于是, 非齐次线性方程组有解的充分必要条件为: 它的增广矩阵的行阶梯形阵的非零行的首元素不出现在最后一列(常数项). 下面的定理用矩阵的秩表述这个结论.定理 3.6 非齐次线性方程组有解的充分必要条件为: 它的系数矩阵的秩等于它的增广矩阵的秩.证 在增广矩阵的行阶梯形阵中, 首元素不出项在最后一列的充分必要条件为: 增广矩阵的行阶梯形阵的非零行的个数等于系数矩阵的行阶梯形阵的非零行的个数. 由推论 3.1, 即系数矩阵与增广矩阵有相同的秩.推论 3.5 非齐次线性方程组有唯一解的充分必要条件为: 它的系数矩阵的秩等于其列数, 且等于增广矩阵的秩.证 综合定理3.6和推论3.2即可.例 3.12 当b a ,取何值时, 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x bx x a x x x x x x x x 有唯一解, 无解, 有无穷多解? 对后者求通解.解 对增广矩阵做行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----112323101221001111a b a⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−→−1321023101221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-−→−01000101001221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+----−→−01000101001221011101a b a r 根据定理3.6, 当1,1-≠=b a 时无解.当1,1-==b a 时, 非齐次线性方程组的特解为)0,0,1,1('-=η, 导出组的基础解系为)0,1,2,1(1'-=ξ, )1,0,2,1(2'-=ξ,通解为2211ξξηk k x ++=, 其中21,k k 是任意常数.当1≠a 时有唯一解)0,1,32,2(11'+--+--=b b a a b a η. 例3.13 设A 是n 阶方阵, 且0||≠A . 将A 分块),(C B A =, 其中C 是A 的最后一列, 求证: 线性方程组C Bx =无解.证 线性方程组的增广矩阵就是A , 由0||≠A , 增广矩阵的秩等于n . 而线性方程组的系数矩阵B 只有1-n 列, 它的秩不大于1-n . 根据定理3.6, 线性方程组C Bx =无解.推论 3.6 设A 是n 阶方阵, 则线性方程组b Ax =有唯一解的充分必要条件为: 行列式0||≠A .证 充分性. 设0||≠A , 则方阵A 的秩等于其列数n . 又方程组的增广矩阵),(b A 只有n 行, 于是, 由例3.5, 有≤=)rank(A n n b A ≤),rank(.根据推论3.5, 方程组有唯一解.必要性. 设方程组b Ax =有唯一解, 根据推论 3.5, 方阵A 的秩等于其列数n . 于是, 行列式0||≠A .条件0||≠A 保证方阵A 可逆. 用A 的逆阵左乘b Ax =, 得b A x 1-=. 这个公式是用逆阵表示线性方程组的唯一解. 从这个公式出发, 可以得到另一个公式. 根据定理2.1, 有 b A x 1-=b A A *||1=, 其中方阵*A 是A 的伴随阵. 计算这个矩阵等式的第j 行的元素, 得)(||12211n nj j j j b A b A b A A x +++= , n j ,,2,1 =. 根据定理 1.3, 等式右边的括号可以看作: 用常数矩阵b 代替系数行列式||A 的第j 列所得的行列式, 按照第j 列的展开式. 将这个行列式记作j D , 又将||A 改写作D , 则上式为D D x jj =, n j ,,2,1 =.这个公式是用行列式的商表示线性方程组的唯一解,称为克拉默法则.习题3-41. 设列矩阵i η(m i ,,,2,1 =)是非齐次线性方程组Ax b =的特解, 数i k (m i ,,,2,1 =)满足121=+++m k k k , 求证: 列矩阵1122m mk k k ηηη+++也是方程组Ax b =的特解.2. 求下列非齐次线性方程组的通解. (1)⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+--=-+337713434234313214321431x x x x x x x x x x x x x ; (2) ⎪⎩⎪⎨⎧-=-+-=+-=-+-22344324314324321x x x x x x x x x x ; (3) ⎪⎪⎩⎪⎪⎨⎧=++-=+-=--=++0644352523222321321321321x x x x x x x x x x x x ; (4) ⎪⎪⎩⎪⎪⎨⎧=+++=++++=++++----nx x x x x x x x x x x x n n n n n n 122113113221 , 其中1>n .3. 求证: 线性方程组⎪⎩⎪⎨⎧=++-=+++=-++2543222432143214321x x x x x x x x x x x x 无解. 4. 求b的值, 使得线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-b x x x x x x x x x x x x 432143214321114724212有解, 并求其通解.5. 当d c b a ,,,满足什么条件时, 线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+d x x cx x b x x a x x 42314321有解? 并求其通解.6. 当b a ,取何值时, 线性方程组⎪⎩⎪⎨⎧=++=++=++b ax x x x x x x x x 32132132132263132有唯一解, 无解, 有无穷多解? 对后者求其通解.*7. 设A 是n 阶方阵, b 是1⨯n 矩阵, 且分块方阵满足)rank(0rank A b b A =⎪⎪⎭⎫ ⎝⎛', 求证: 非齐次线性方程组b Ax =有解.第五节 初等方阵与初等变换一 初等方阵定义3.11 对单位阵E 做行初等变换所得方阵称为初等方阵.三种行初等变换产生三种初等方阵:(1) 交换E 的第i 行与第j 行所得方阵记作ij P ;(2) 用非零常数k 乘以E 的第i 行所得方阵记作)(k D i ;(3) 将E 的第j 行的k 倍加到第i 行所得方阵记作)(k T ij .三种初等方阵是可逆阵, 且它们的逆阵也是初等方阵. 实际上, 有ij ij P P =-1, ⎪⎭⎫ ⎝⎛=-k D k D i i 1)(1, )()(1k T k T ij ij -=-.定理 3.7 对矩阵A 做一种行初等变换, 相当于左乘一个相应的初等方阵.注意 定理3.7在矩阵的相等与矩阵的行等价之间建立了联系, 从而可以用矩阵的运算性质研究矩阵的行等价. 下面将看到, 有时这是非常方便的.推论 3.7 任意矩阵A 可以表示成R E E E A s 21=, 其中i E 是初等方阵, R 是A 的行等价标准形.证 对A 做行初等变换, 可得其行等价标准形R . 这个过程相当于用一系列初等方阵i E 左乘矩阵A . 即有R A E E E s =12 . 由于初等方阵可逆, 用它们的逆阵逐个左乘此式, 得R E E E A s 11211---= . 因为初等方阵的逆阵还是初等方阵, 换符号即得推论中的表示.推论3.8 方阵A 可逆的充分必要条件为: 它可以表示成初等方阵的乘积.例3.14 设B A ,都是n m ⨯矩阵, 求证: A 与B 行等价的充分必要条件为存在m 阶可逆阵P , 使得B PA =.二 矩阵方程矩阵方程B AX =, 其中A 是n 阶可逆阵, B 是m n ⨯矩阵, 而X 是m n ⨯未知矩阵.已知A 是可逆阵, 用其逆阵左乘方程, 得矩阵方程的解B A X 1-=. 对于可逆阵A , 存在初等方阵i E , 使得E A E E E s =12 . 用同样的初等方阵左乘矩阵方程B AX =, 得EX AX E E E s =12 B E E E X s 12 ==这个等式说明, 对可逆阵A 与矩阵B 做相同的行初等变换, 当将A 变成单位阵时, 矩阵B 变成矩阵方程B AX =的解B A X 1-=.例3.15设方阵⎪⎪⎪⎭⎫⎝⎛--=111012112A ,⎪⎪⎪⎭⎫ ⎝⎛--=521234311B , 解矩阵方程B AX =.解 做分块矩阵: 左边部分是A ,右边部分是B . 做行初等变换, 得()=B A |⎪⎪⎪⎭⎫⎝⎛----521111234012311112⎪⎪⎪⎭⎫⎝⎛----−→−311112234012521111r⎪⎪⎪⎭⎫ ⎝⎛-------−→−143100872230521111r⎪⎪⎪⎭⎫ ⎝⎛---−→−1431003/1053/80103/813/2001r .于是,⎪⎪⎪⎭⎫ ⎝⎛---==-1433/1053/83/813/21B A X . 如果矩阵方程B AX =中的方阵A 可逆, 方阵B 是单位阵E , 则用这个方法得到的矩阵方程的解E A X 1-=1-=A 就是A 的逆阵. 由此得到计算逆阵的简单方法.例3.16 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=523012101A 的逆阵. 解 用初等变换法.()=E A |⎪⎪⎪⎭⎫ ⎝⎛--100523010012001101⎪⎪⎪⎭⎫ ⎝⎛---−→−127200012210001101r⎪⎪⎪⎭⎫ ⎝⎛----−→−2/112/71001150102/112/5001r于是 ⎪⎪⎪⎭⎫ ⎝⎛----=-2/112/71152/112/51A . 如果X 与B 是列矩阵, 用这里的方法可以得到线性方程组B AX =的解B A X 1-=. 而且这种解法正是前面的消元法.性质 3.5 两个矩阵的乘积的秩不大于每个因子的秩.证 设A 是p m ⨯矩阵, B 是n p ⨯矩阵, r A =)rank(. 先证明r AB ≤)rank(.根据推论 3.7, 有R A E E E s =12 , 其中A 的行等价标准形R 恰有r 个非零行. 用矩阵B 右乘此式, 得RB AB E E E s =)(12 . 根据矩阵乘法定义, 矩阵RB 至多有r 个非零行. 根据定理3.4, 有)rank()rank()rank(A r RB AB =≤=.转置可证明另一部分.例3.17 设A 是可逆阵,则)rank()rank(B AB =.证1 记矩阵AB C =. 由性质 3.5, 有)rank()rank(B C ≤. 用逆阵1-A 左乘AB C =, 得C A B 1-=, 从而有)rank()rank(C B ≤.上面的证明主要体现了逆阵的一种应用, 并不是最简捷的证明.证2 已知A 是可逆阵,根据推论3.8, 有B E E E AB s 12 =. 再根据定理 3.4, 有)rank()rank(B AB =.三 初等变换与矩阵的行初等变换类似, 可以定义矩阵的列初等变换.定义3.12 设A 是矩阵, 称下面三种变换为对矩阵A 的列初等变换.(1) 交换A 的两列;(2) 用非零常数k 乘以A 的一列;(3) 将A 的一列的k 倍加到另一列上去,与行初等变换类似, 可以定义矩阵的列等价与列等价标准形.性质 3.6 列初等变换与列等价具有下述性质.(1) 列初等变换不改变矩阵的秩;(2) 对一个矩阵做列初等变换, 相当于用相应的初等方阵右乘这个矩阵;(3) 矩阵的列等价是等价关系;(4) 矩阵B 与A 列等价的充分必要条件为: 存在可逆阵Q , 使得B AQ =.与用行初等变换解矩阵方程B AX =类似, 可以用列初等变换解矩阵方程B XA =.例3.18设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A , ⎪⎭⎫ ⎝⎛-=234311B , 解矩阵方程B XA =.解 做分块矩阵, 上边是A , 下边是B . 然后做列初等变换. 当将A 变成单位阵时, B变成矩阵方程的解1-=BA X . 如果用→表示列等价, 则有⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---234311111012112⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→423131*********⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→253321301011001⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→3/253/8122100010001. 于是⎪⎭⎫ ⎝⎛---=3/253/8122X . 例 3.19 设分块矩阵),(B A , 求证: )rank()rank(),rank(B A B A +≤.证 设矩阵B A ,的列等价标准形分别为S R ,,则R 与S 分别有)ra nk(A 与)rank(B 个非零列. 从而分块矩阵),(S R 有)rank()rank(B A +个非零列. 另一方面, 如果在矩阵),(B A 中分别对两个子块做列初等变换, 则可以得到分块矩阵),(S R . 于是, 有)rank()rank(),rank(),rank(B A S R B A +≤=.。
线性代数 第二章1

矩 阵 的 概 念及 运 算
主要内容
矩阵的定义 几种常用的特殊矩阵 矩阵的应用举例 矩阵的基本运算
一、矩阵的定义
引例 线性方程组的矩阵
定义 由 m × n 个数 aij (i= 1, 2, … , m; j=1, 2,… , n)
排成的 m 行 n 列的数表,叫做一个 m × n 矩阵 列的数表,
为数 k 与矩阵 A 的数量乘积 简称数乘, 记为 kA. 数量乘积, 简称数乘, kA.
注意
2. 运算规律
设 A, B 为同类型矩阵, k, l 为常数,则 为同类型矩阵 为常数, (1) 1A = A; (2) k(lA) = (kl) A; (3) k(A + B) = kA + kB; (4) (k + l)A = kA + lA. 矩阵相加与数乘矩阵合起来, 矩阵相加与数乘矩阵合起来,统称为矩阵的 线性运算. 线性运算
一般情形
定义 设矩阵 A = (aij)m×p , B = (bij)p×n , (a (b
C = (cij)m×n , 其中 (c
cij = 轾1 ai 犏 臌
ai 2 L
轾j b1 犏 aip 犏 j = ai1b1j + ai2b2j + … + aipbpj b2 犏 犏 M 犏 犏 b pj 犏 臌
1 O 1
n
.
n 阶单位矩阵 E 在矩阵代数中占有很重要的地 在初等代数中的作用相似. 位, 它的作用与 “1” 在初等代数中的作用相似. EA = AE = A . 如
(6)
数量矩阵
主对角线上的元素全相等的对角矩阵称为数 主对角线上的元素全相等的对角矩阵称为数 量矩阵. 量矩阵 例如 n 阶数量矩阵
矩阵初等变换与线性方程组

特别地,当B=b为列向量时,有
R A R A ,bR A 1
2 .R A B R A R B
3 .R A B m in R A ,R B
4 .若 A m n B n l 0若 R A R B n
C
k m
C
k n
个
(二)最高阶非零子式,矩阵的秩
如果矩,而所有 r 1 阶子式(如果存在的
话)的值全等于0,则称 D r 为矩阵A的一
个最高阶非零子式,其阶数 r 称为矩阵A
的秩,记作 R A .
例1、求矩阵A 和B的秩
其中
1
A
2
4
2 3 7
3
5
等行变换把它变成行阶梯形矩阵和行最 简形矩阵)
(三)矩阵A的等价标准形矩阵
特点:矩阵A的等价标准形矩阵的左上
角是一个单位矩阵,其余元素全为零,
对于mn矩阵A,总可经过初等变
换(行变换和列变换)把它化为等价标准
形
C
Er 0
0
0
mn
其中 r 是行阶梯形矩阵中非零行的
行数。
0 2 1
例1、设
阵E,即 A E
(三)推论: 可逆矩阵A可表示为有 限个初 等矩阵的乘积。
六、初等变换的应用
(一)求可逆矩阵A的逆矩阵 A 1
r
1 .若 A E E ,X , 则 A 可 逆 , 且 X A 1 行 变 换
2.若 E A 列 变 C 换 E X ,则 A 可 逆 ,且 XA 1
矩阵初等变换与线性方程组
§3-1矩阵的初等变换
一、矩阵的初等变换的定义
(一)初等行(列)变换
线性代数教案-线性方程组与矩阵

第一章线性方程组与矩阵
授课序号 01
教学基本指标
教学课题 教学方法 教学重点
参考教材
第一章 第一节 矩阵的概念及运算 讲授、课堂提问、讨论、启发、自学 矩阵的定义、矩阵的线性运算、矩阵的乘法、矩 阵的转置 同济版《线性代数》
课的类型 教学手段 教学难点
作业布置
新知识课 黑板多媒体结合 矩阵的乘法、矩阵的转置
kaij
.
mn
4. 矩阵的数乘运算满足的运算规律:
(1) k A B kA kB ;
(2) (k l) A kA lA ;
(3) (kl) A k(lA) l(kA) ;
(4) 1A A ;
(5) 1 A A ;
(6) 0 A Omn .
三、矩阵乘法:
1. 矩阵乘法的定义:设矩阵 A (aij ) 是一个 m p 矩阵,矩阵 B (bij ) 是一个 p n 矩阵,定义矩阵 A 与 B
的乘积是一个 m n 矩阵 C (cij ) ,其中矩阵 C (cij ) 的第 i 行第 j 列元素 cij 是由矩阵 A 的第 i 行元素
ai1, ai2, , aip 与矩阵 B 的第 j 列相应元素 b1j , b2 j , , bpj 乘积之和,即
p
cij = aikbkj ai1b1 j ai2b2 j aipbpj . k 1
a12 a22
a1n a2n
x1 x2
a11x1 a12 x2 a1n xn a21x1 a22 x2 a2n xn
.
am1
am2
amn xn
am1 x1
am2
x2
amn xn
再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示: Ax .
线性方程组的解法及其应用
线性方程组的解法及其应用摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.本文综述了几种不同类型的线性方程组的解法,如消元法、克拉默法则、广义逆矩阵法、直接三角形法、平方根法、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,广义逆矩阵方法,具有表达式清晰,使用范围广的特点.另外,这些方法利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合.关键词:线性方程组解法广义逆矩阵应用实例1. 引言线性方程组理论是高等数学中十分重要的内容,而线性方程组的解法是利用线性方程组理论解决问题的关键.本文主要介绍线性方程组的广义逆矩阵法、追赶法、平方根法等求解方法,为求解线性方程组提供一个平台.文章也给出线性方程组在其他领域中的应用实例,揭示了各学科之间的内通性.首先,我们讨论一般线性方程组.这里所指的一般线性方程组形式为11112211211222221122,,.n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ ()i()i 式中(1,2,,)i x i n =代表未知量,(1,2,,;1,2,,)ij a i s j n ==称为方程组的系数,(1,2,,)j b j n =称为常数项.线性方程组)(i 称为齐次线性方程组,如果常数项全为零,即120s b b b ====.令111212122212n n s s sn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 12s b b B b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,则()i 可用矩阵乘法表示为AX B =,,,.m n n m A C X C B C ⨯∈∈∈2. 线性方程组的解法2.1 消元法在初等代数里,我们已经学过用代入消元法和加减消元法解简单的二元、三元线性方程组.实际上,这个方法比用行列式解方程组更具有普遍性.但对于那些高元的线性方程组来说,消元法是比较繁琐的,不易使用.例 1 解线性方程组123123123123324,32511,23,237.x x x x x x x x x x x x +-=⎧⎪+-=⎪⎨++=⎪⎪-++=-⎩ 解 分别将第一个方程的(-3)倍,(-2)倍和2倍加到第二、三、四个方程上,整理得123232323324,71,555,7 1.x x x x x x x x x +-=⎧⎪-+=-⎪⎨-+=-⎪⎪-=⎩将此方程组第二个方程加到第四个方程上,使该方程两边全为零,并将第三个方程的两边乘以15-,得1232323324,71,1.x x x x x x x +-=⎧⎪-+=-⎨⎪-=⎩再将第三个方程的7倍加到第二个方程上,消去第二个方程中的未知量2x ,整理得123233324,1,6 6.x x x x x x +-=⎧⎪-=⎨⎪-=⎩最后解得123(,,)(2,0,1)T T x x x =--.正如消元法是我们接触比较早的,被我们所熟悉的一种方法,在此只给出三元线性方程组的解法,三元以上的方程组的具体理论、性质和解题过程详见参考文献[1]. 2.2 应用克莱姆法则对于未知个数与方程个数相等的情形,我们有定理1[1] 如果含有n 个方程的n 元线性方程组11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ ()ii的系数矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的行列式111212122212det 0n n n n nna a a a a a A a a a =≠,那么线性方程组()ii 有唯一解:det (1,2,,),det j j B x j n A==其中det j B 是把矩阵中第j 列换成线性方程组的常数项12,,,n b b b 所成的矩阵的行列式,即111,111,11222,122,121,1,1det,1,2,,.j j n j j n j n n j n n j nna ab a a a a b a a B j n a a b a a -+-+-+==此外,还可以叙述为,如果含有n 个未知数、n 个方程的线性方程组Ax b =的系数矩阵的行列式det 0A ≠,则线性方程组Ax b =一定有解,且解是唯一的. 例2 解线性方程组12342341242342344,3,31,73 3.x x x x x x x x x x x x x -+-=⎧⎪-+=-⎪⎨++=⎪⎪-++=-⎩ 解 由已知可得系数行列式12341234123401110111111det 16013015352073173148A ---------====≠----,因此线性方程组有唯一解.又因124234143431110311det 128,det 48,1301110137310331B B -------==-==-341244123401310113det 96,det 0.1311130107310733B B ------====--故线性方程组的解为1234(,,,)(8,3,6,0)T T x x x x =-.克莱姆法则主要给出了解与系数的明显关系,但只能应用于系数矩阵的行列式不为零的线性方程组,并且它进行计算是不方便的. 2.5 直接三角分解法[5]设有线性方程组11112211211222221122,,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩或写成矩阵形式Ax b =,其中111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n x x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n b b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦.若A 为非奇异矩阵,且有分解式A LU =,其中U 为上三角矩阵,L 为单位下三角矩阵,即11121212221,1111n n n n n nn u u u l u u A LU l l u -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 则线性方程组Ax b =的求解等价于 解以下两个三角方程组:(1)Ly b =,求y ; (2)Ux y =,求x .直接三角形分解法求解线性方程组,基本步骤如下: 第一步: 11,(1,2,,),i i u a i n == 1111,(2,3,,)i i l a u i n ==,计算U 的第r 行,L 的第r 列元素,2,3,,r n =.第二步: 11,(,1,,)r ri ri rk ki k u a l u i r r n -==-=+∑.第三步: 11,(1,,;)r ir ir ik kr rr k l a l u u i r n r n -==(-)=+≠∑.求解Ly b =,Ux y =的计算公式如下:第四步: ()1111,,2,3,.i i i ik k k y b y b l y i n -==⎧⎪⎨=-=⎪⎩∑第五步: 1,(),(1,2,,1).n n nn n i i ik k ii k i x y u x y u x u i n n =+=⎧⎪⎨=-=--⎪⎩∑例5 求解线性方程组1231212321,42,227.x x x x x x x x ++=⎧⎪+=-⎨⎪-++=⎩解 由直接三角分解法第二、三步可得211100211410210012221131004A LU ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦. 于是线性方程组变为LUx b =,求解线性方程组(1,2,7)T Ly =-,得(1,4,4)T y =--;求解线性方程组(1,4,4)T Ux =--,得(1,2,1)T x =-.2.6 平方根法[7]在许多应用中,欲求解的线性方程组的系数矩阵是对称正定的.所谓平方根法,就是利用对称正定矩阵的三角分解而得到的求解具有对称正定矩阵的线性方程组的一中有效方法,目前在计算机上广泛应用平方根法解此类方程组.定理6[12] 若A 的各阶顺序主子式非零,则A 可以分解为A LDU =,其中L 是单位下三角矩阵,U 是单位上三角矩阵,D 是对角矩阵,且这种分解是唯一的.定理7[12] 设A 为对称正定矩阵,则存在三角分解T A LL =,其中L 是非奇异下三角形矩阵,且当限定L 的对角线元素为正时,这种分解是唯一的.应用对称正定矩阵的平方根法,可以解具有对称正定系数矩阵的线性方程组Ax b =,具体算法如下:1) 对j =1,2,,n ,计算11221()j jj jj jkk l a l -==-∑,11j ij ij ik jk k l a l l -==-∑(1,,)i j n =+.2) 求解线性方程组Ax b =等价于解两个三角方程组,.TLy b L x y =⎧⎨=⎩ 计算11()i i i ik k ii k y b l y l -==-∑,(i =1,2,,n ), 1()ni i ki kii k i x b lx l =+=-∑,(i n =,1n -,,2,1),即可.例6 求解线性方程组12341161 4.25 2.750.5.1 2.75 3.5 1.25x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 解 设1111213121222232313233334111 4.25 2.751 2.75 3.5l l l l l l l l l l l l -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 由矩阵乘法得1121223132332,0.5,2,0.5, 1.5, 1.l l l l l l ==-====解下三角方程组123260.520.50.5 1.51 1.25y y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 得1233,0.5,1,y y y ===-再由123230.520.50.5 1.511Tx x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 得线性方程组的解为123(,,)(2,1,1)T T x x x =-.可以用消元法解此方程组,但发现此方程组的系数矩阵为正定矩阵,运用平方根法解这个方程组比较容易,而且理论分析指出,解对称正定方程组的平方根法是一个稳定的算法,其在工程计算中使用比较广泛. 2.7 追赶法[5]在许多实际问题中,都会要求解系数矩阵为对角占优的三对角方程组11112222211111iiii i n n n n n nn n n x k b c x k a b c a b c x k a b c x k a b x k -----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 简记作 Ax k =, 其中A 满足下列对角占优条件:(1) 110b c >>;(2) i i i b a c ≥+, i a ,i c 0≠(i =2,3, ,1n -);(3) 0n n b c >>.由系数矩阵A 的特点,可以将A 分解为两个三角矩阵的乘积,即A LU =,其中L 为下三角矩阵,U 为单位上三角矩阵.求解线性方程组Ax k =等价于解两个三角方程组Ly k =与Ux y =,先后求y 与x ,从而得到以下解三角方程组的追赶法公式:第一步:计算的递推公式111c b β=,1()i i i i i c b a ββ-=-,(2i =,3,,1)n -;第二步:解Ly k =:111y k b =,11()()i i i i i i i y k a y b a β--=--,(2,3,,)i n =;第三步:解Ux y =:n n x y =,1i i i i x y x β+=-,(1,2,,2,1)i n n =--.例7 求解三对角线性方程组123421001131020111200210x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.解 设有三角分解111122222233333344441111b c p q a b c a p q a b c a p q a b a p ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 由矩阵乘法易得111,,1,2,3.,2,3,4.i i i ii i i p b q c p i p b a q i -=⎧⎪==⎨⎪=-=⎩ 将已知系数矩阵的元素代人上式有11223342,12,52,25,35,53,73.p q p q p q p ==⎧⎪==⎪⎨==⎪⎪=⎩ 解线性方程组112233441121220p y p y p y p y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 得123412,35,73, 2.y y y y ====再解线性方程组111222333441111x y q x y q x y q x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得原线性方程组的为1234(,,,)(0,1,1,2)T T x x x x =-.追赶法是以LU 分解为基础的求解方法,因此它的不足之处是当某个0=k u 时,就不能进行.但是当方程组的系数矩阵A 中有很多零元素时,利用三对角方程组系数矩阵的稀疏性,使零元素不参加运算,可以类似于追赶法来简化计算过程,从而极大地节省了计算量和存储量.这也是追赶法的最大特点.3. 应用举例3.1 线性方程组在解析几何中的应用例8 已知平面上三条不同直线的方程分别为1L :230ax by c ++=,2L :230bx cy a ++=,3L :230cx ay b ++=,试证:这三条直线交于一点的充分必要条件为0a b c ++=.证 必要性 设三直线1L ,2L ,3L 交于一点,则线性方程组232323ax by cbx cy a cx ay b +=-⎧⎪+=-⎨⎪+=-⎩ ()iii有惟一解,故系数矩阵222a b A b c c a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与增广矩阵232323a b c A b c a c a b --⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦的秩均为2,于是0A -=,即22223236()()23a bcA bc a a b c a b c ab ac bc ca b--=-=++++----=0,所以0a b c ++=.充分性 由0a b c ++=,则从必要性的证明可知,0A -=,故()3r A -<.由于22222132()2[()]2[()]0224a b ac b a a b b a b b b c =-=-++=-++≠, 故()()2r A r A -==.因此线性方程组()iii 有惟一解,即三直线1L ,2L ,3L 交于一点. 3.2 线性方程组在产品生产量中的应用例9 设有一个经济系统包括3个部门,在某一个生产周期内各部门间的消耗及最终产品如表所示:求各部门的总产品.解 设i x 表示第i 部门的总产品.由已知可以得到线性方程组()I A x y -=,其中0.250.10.1()0.20.20.10.10.10.2ij A a ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,0.750.10.10.20.80.10.10.10.8I A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦,(245,90,175)T y =. 利用矩阵的初等变换可以求得1126181810()34118198912017116I A -⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦, 所以线性方程组()I A x y -=的解为消耗系数 消耗部门 生产部门123最终产品1 0.25 0.1 0.1 2452 0.2 0.2 0.1 90 30.10.10.21751126181824540010()3411819902508912017116175300x I A y -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 4. 结束语本文针对不同的线性方程组给出了一些计算方法,及线性方程组的应用实例.根据线性方程组自身所具有的特点,可以选择相应合适的方法,而对于那些特殊类型的线性方程组的解法,有待进一步的讨论与研究.参考文献:[1] 北京大学数学系几何与代数教研室前代数小组编. 高等代数[M].3版.北京:高等教育出版社,2003.105-112.[2] 白梅花. 线性方程组若干应用实例举例[J].科技资讯,2011,(27):200-201.[3] 康道坤,陈劲. 广义逆下线性方程组的解结构及其推广[J].大理学院学报,2011,10(4):7-9. [4] 卢刚.线性代数[M]. 北京:高等教育出版社,2002.64-72.[5] 李庆扬,王能超,易大义. 数值分析[M].4版.武汉:华中科技大学出版社,2006.177-185. [6] 苏育才,姜翠波,张跃辉. 矩阵理论[M].北京:科学出版社,2006.200-206. [7] 首都师范大学数学系组编. 数值分析[M].北京:科学出版社,2000.28-32.[8] 徐仲,张凯院,陆全,等. 矩阵论简明教程[M].2版.北京:科学出版社,2005.141-147. [9] 谢寿才,陈渊. 大学数学[M].北京:科学出版社,2010.37-40.[10] 徐仲,张凯院,陆全. 矩阵论[M].西安:西北工业大学出版社,2002.228-245.[11] 尹钊,钟卫民,赵丽君. 线性方程组的广义逆矩阵解法[J].哈尔滨师范大学自然科学学 报,1999,15(5):21-22. [12] 张明淳. 工程矩阵理论[M].1版.南京:东南大学出版社,1995.172-173.[13] 赵树嫄. 线性代数(经济应用数学基础)[M].4版.北京:中国人民大学出版社,2008.150-157.。
第十一章 矩阵与线性方程组
4 5
, 求A '.
am1
am
2
L
amn
1 3
解 A' 7 1 0 2
4
5
容易看出,若A为m n矩阵,则A'为n m矩阵, A中第i行第j列处的 元素aij ,在A'中则为第j行第i列的元素.
转置矩阵具有以下性质.
(1)( A') ' A; (2)( A B) ' A' B '
(3) AE EA A;
(4)( A)B (AB) A(B),(为常数).
例5 求解矩阵方程.
2 1
1 2
X
1 1
2 4
,
X
为二阶方阵.
解
设X
x11
x21
x12 x22
,
由题设
2 1x22
1 1
2 4
.
所以
2x11 +x21 x11 2x21
2x12 x22 x12 2x22
L , Ak Ak1A, (k 2,3,L , n).
可以证明Ak Ap Ak p , ( Ak ) p Akp , (k, p为非负整数),当A, B不 可交换时,(AB)k Ak Bk
设线性方程组的一般形式为
a11x1 a12 x2 L a1n xn b1
La21 x1
a22 x2 L
第十一章 矩阵与线性方程组
第一节 矩阵的概念及运算 第二节 逆矩阵 第三节 矩阵的秩与初等变换 第四节 线性方程的矩阵求解 第五节 数字实验五 用Mathematica进行矩阵运算和解
线性方程组
第十一章 矩阵与线性方程组
矩阵是解线性方程组的一个十分重要的数学工具,是线性 代数的一个主要研究对象.
矩阵求逆和线性方程组
1 1 0 1 1 2 ~ 0 0 1 2 1 2.
0 0 0 0 0
由于RA RB 2, 故方程组有解,且有
x1 x2 x4 1 2
x1 x3
x2 x4 1 2x4 1 2
2
x2 x3
x2 0 x4 0x2 2x4
1
2
x4 0 x2 x4
所以方程组的通解为
1
1
1
1 1
2
~ 0 1 1 2
0
1
1 2
1
2
1 1
~ 0 1 1
2
2
0
0
2 2
1
2
3
1 1
0 1
1
2
1
0
0
1 2
1
1
2
1 当 1时,
1 1 1 1 B ~ 0 0 0 0
0 0 0 0
RA RB 3,方程组有无穷多解.
bij
ms
,
其中A可逆。
A B r E A1B , 得解 X A1B .
伴随矩阵
⑴ 定义 A aij n , A Aji n .
⑵ 讨论伴随矩阵的永恒出发点
AA A E , A可逆时,A A A1.
⑶ 性质
a. AB B A ; b. AT A T ; c. A1 A 1 ;
a11 a12
A
a21 am1
a22 am2
a1n aam2nn ,
A 1 2 n
x1
X
xxn2 ,
b1
b
b2 bn
线性方程组
一 . 主要结论
A ai j mn , A A b , A 1 2 n .
初中数学知识点线性方程组的矩阵表示与解法
初中数学知识点线性方程组的矩阵表示与解法线性方程组是初中数学中一个重要的知识点,它在实际问题中有着广泛的应用。
在解决线性方程组的过程中,矩阵的表示和解法是常用的工具和方法。
下面将介绍线性方程组的矩阵表示以及一些解法。
一、线性方程组的矩阵表示线性方程组可以用矩阵表示,这样能够简化计算过程,使得问题更加清晰。
假设有一个包含m个方程和n个未知数的线性方程组,可以用如下形式表示:A · X = B其中,A是一个m行n列的矩阵,称为系数矩阵;X是一个n行1列的矩阵,称为未知数矩阵;B是一个m行1列的矩阵,称为常数矩阵。
二、线性方程组的解法解线性方程组的方法有很多种,常见的有高斯消元法、逆矩阵法和克拉默法则。
1. 高斯消元法高斯消元法是解线性方程组最常用的方法之一。
它的基本思想是通过一系列的行变换将系数矩阵A化为一个上三角矩阵R,进而求得未知数矩阵X的解。
具体步骤如下:(1)将方程组写成增广矩阵形式,即[A | B]。
(2)选取第一个非零元素a11为主元素,将第1行整行乘以1/a11,使主元素成为1。
(3)利用第一个方程的倍数和减去其他方程的相应倍数,使得第1列的其他元素变为0。
(4)选取第2列第2个非零元素a22为主元素,重复步骤(2)和(3),依此类推,直到完成将A化为上三角矩阵R。
(5)通过回代法求解未知数矩阵X。
2. 逆矩阵法逆矩阵法是利用矩阵的逆来求解线性方程组的方法。
当系数矩阵A可逆时,可以通过以下公式求解未知数矩阵X:X = A⁻¹ · B其中,A⁻¹表示矩阵A的逆矩阵。
但需要注意的是,当系数矩阵A不可逆时,逆矩阵法无法使用。
3. 克拉默法则克拉默法则是一种利用行列式求解线性方程组的方法。
对于一个n个未知数的线性方程组,如果系数矩阵A的行列式不等于0,则可以通过以下公式求解未知数矩阵X:Xi = |Ai| / |A|其中,Xi表示未知数矩阵X的第i个元素;|Ai|表示将第i列的元素替换为常数矩阵B后,系数矩阵A的行列式;|A|表示系数矩阵A本身的行列式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性方程组与矩阵的关系与应用线性方程组和矩阵是数学中非常重要的两个概念,它们之间有着密切的关系,并且在各种领域中都得到了广泛的应用。
本文将探讨线性方程组与矩阵的关系,并介绍一些矩阵在实际问题中的应用。
一、线性方程组的定义和解法
线性方程组是由一组线性方程组成的方程集合。
一般形式下,线性方程组可以表示为:
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\
\ldots \\
a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \\
\ldots \\
a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \\
\end{cases}
\]
在解线性方程组时,我们可以通过消元法、代入法、矩阵法等多
种方法来求解。
其中,矩阵法是一种较为高效和简便的方法,它与矩
阵的有机结合使得线性方程组的求解更加便捷。
二、矩阵的定义和性质
矩阵是由一组数按一定规则排列成的一个矩形阵列。
通常用大写
字母表示矩阵,如A,而矩阵的元素用小写字母表示,如a、b。
矩阵
可以表示为:
\[
A = [a_{ij}]_{m \times n}
\]
其中,m为矩阵的行数,n为矩阵的列数。
矩阵有许多重要的性质,其中最重要的是矩阵的加法和数乘运算。
对于两个矩阵A和B,它们的加法定义如下:
\[
A +
B = [a_{ij}]_{m \times n} + [b_{ij}]_{m \times n} = [a_{ij} +
b_{ij}]_{m \times n}
\]
数乘运算定义如下:
\[
kA = k[a_{ij}]_{m \times n} = [ka_{ij}]_{m \times n}
\]
其中,k为一个常数。
三、矩阵与线性方程组的关系
矩阵与线性方程组之间有着密切的关系。
对于一个线性方程组,
可以用矩阵表示为:
\[
AX = B
\]
其中,A为系数矩阵,X为未知数矩阵,B为常数矩阵。
对于一个非奇异的线性方程组,即系数矩阵A的行列式不等于0,可以通过求解逆矩阵的方法来得到方程组的解。
具体地说,如果A可逆,则可以用逆矩阵表示方程组的解:
\[
X = A^{-1}B
\]
其中,A^{-1}为A的逆矩阵。
另外,对于一个齐次线性方程组,即常数矩阵B全为0的线性方
程组,其解一定存在。
此时,方程组的解可以表示为常数矩阵B的零
空间。
四、矩阵在应用中的作用
矩阵在很多实际问题中都有广泛的应用,下面以几个具体的例子
来说明矩阵在应用中的作用。
1. 图像处理
图像处理是矩阵应用的一个重要领域。
在图像处理中,将图像表
示为像素矩阵,利用矩阵运算可以对图像进行旋转、缩放、平移等操作,从而实现图像的处理和变换。
2. 电力系统分析
在电力系统分析中,矩阵广泛应用于电力系统的节点分析、潮流
计算和稳定性分析等问题。
通过建立节点电压和电流的矩阵方程,可
以求解电力系统中的潮流分布和系统的稳定性。
3. 金融风险分析
在金融领域中,矩阵被广泛应用于风险分析和投资组合优化等问题。
通过建立资产收益率的矩阵,可以对不同资产间的相关性和风险
进行分析,从而实现对投资组合的优化和风险控制。
4. 数据挖掘与机器学习
在数据挖掘和机器学习领域中,矩阵是一种常用的数据表示方式。
通过将数据表示为矩阵,可以利用矩阵运算和矩阵分解等方法对数据
进行分析和模型训练,从而实现对数据的预测和分类。
综上所述,线性方程组与矩阵之间存在着紧密的关系,并且在各个领域中都得到了广泛的应用。
矩阵不仅可以方便地表示线性方程组,还可以用于解决实际问题,如图像处理、电力系统分析、金融风险分析和数据挖掘等。
因此,研究和应用矩阵的相关知识对于拓展数学的应用领域具有重要意义。