金属的热处理外文翻译

金属的热处理外文翻译
金属的热处理外文翻译

附录 1

英文及翻译

Heat Treating of metals

Heating

For this discussion, I will take you through the hardening process that I use on a high carbon steel blade, but first a few asides. When you place the steel in the fire it begins to gain heat. The steel will begin to give off visible color just above 900F it will continue to pick up color until it reaches a point where it seems to hang. It is still gaining heat, but it is undergoing an internal transformation from its cold structure into a metastable condition called austenite. This point at which it seems to hang is called decalescence and it represents the bottom of the critical temperature. It usually begins around 1335F

In carbon steel depending on the carbon content. Once it passes through this point, the crystal structure of the steel changes as the ferrite reacts with some of the carbide and begins to pool into austenite. As the temperature increases more of the austenite will begin to form in other places and continue until it reaches a point 10 or 15 degrees above the critical temperature where all of the ferrite should be consumed. At this point the steel should consist of austenite and undissolved carbides. The austenite grains start from a small nucleus and continue to grow until they impinge on other growing grains. The initial grain size is established at this point and if the excess carbide is in large quantities it will maintain this size with little increase, pinned by the carbide.

You can see this transformation if you watch the steel carefully and bring the steel up slowly. The Japanese talked about watching the shadows on the blade and quenching when the shadows turned to liquid. If you take the blade out of the fire at this point and watch the colors drop, you will notice a point where the steel will brighten even as it is cooling. On a tapered cross section like a knife blade it will appear to travel up from the edge to the spine of the blade. This is call

recalescenceand represents the transformation from austenite back to pearlite. After I am done forging a blade, I cycle the blade just above critical and down to dark heat at least three times. I watch for these two points to establish critical in my mind and to set up a very fine grain pearlite structure in the steel.

After reaching critical temperature, the steel should be fully austenized, but the carbides will continue to dissolve. It may be necessary to soak at temperature to fully dissolve all the carbides. In some steels it may be necessary to continue to raise the temperature for this to be accomplished especially in the presence of alloying elements that retard the transformation.

Once the steel is above critical and austenite, it may be quenched and hardened. The structure of the steel can be established by carefully controlling the time it takes the steel drop from critical through the various temperature sensitive points.

Transformations on Cooling

Annealing, normalizing, quenching

The structure and hardness of the steel is established by the rate of cooling from the austenitic condition. If brought down slowly the steel will be annealed and soft. The structure will be mostly ferrite and cementite, carbides. This can be done in a temperature controlled furnace by dropping the temperature through a known rate over a set period of time dependent on the type of steel. Another method is to preheat a heavy bar of low carbon to the same temperature as critical for the steel and bury both of them together in vermiculite. It will slow the cooling rate down so that the blade will still be hot to the touch the next day. For most of the carbon steels this will be enough to anneal the piece.

If allowed to air cool it will be normalized, a tougher condition comprised of fine pearlite and carbides. Blades can be prepared for heat treatment in either normalized or annealed states. Another treatment that is particularly effective for workability and for dimensional stability is called sphereodizing. With the steel in a normalized

condition you reheat, usually in salt to inhibit oxidization, to a temperature just below lower critical, 1300F and hold for at least an hour. What occurs is that the carbides will begin to aglomulate or pool into larger more evenly spaced particles in a ferrite matrix. It makes handfinishing much easier.

It is important to precondition your blades not only because it helps workability, but also to stress relieve the steel after forging. This will reduce chances of cracking and warping in the quench. It is helpful to think of the forging stage as the beginning of the heat treatment and to pay careful attention to the heats especially in the final forging. My last heats are always at critical. When the blade is finally shaped, I cycle the blade just above critical and down to almost black heat at least three times, cooling between by moving it back and forth in the air gently.

Hardening

You have a lot of options when it comes to hardening carbon steel. Even the slightest change in alloy content can make a remarkable difference in the hardening characteristics of the steel, so I would again encourage you to study the steels you will be using.

The transformation temperatures and times are described using a chart that shows the Ae1 line, the temperature at which austenite begins to form and the Msline, the temperature at which martensite starts to form from austenite.The time line at the bottom of the chart is in seconds and side bars give temperature. This is called an "S" curve chart and it is very useful in determining the quench speeds for each steel. The top curve of the "S" is known as the nose of the curve. When quenching from critical, the temperature of the steel must drop below the nose of the curve within a precise amount of time in order for the steel to harden to martensite. In this case, it must get below 900F in under five seconds to form martensite.

Marquenching

If the steel is quenched to below the Ms, martensite will be the predominate structure, however if the blade is quenched to a point slightly above the Ms point, say around 500F and held until it has stabilized at that temperature, the steel has the promise to form martensite, but will not set up until it drops below Ms. This is called marquenching and is commonly used because it is less stressful particularly in difficult cross sections like we encounter in knife blades. When the blade is removed from the quench it is still above the Ms point and has very unusual properties. It can be easily bent or straightened and isstill quite soft. As it cools however, it begins to setup martensite and will harden at room temperature. Again, you need to look at the chart for each steel you will be using because the Mf,or martensite finish point can be well below room temperature on some highly alloyed steels. These steels benefit from sub zero quenching because the colder temperatures are necessary to complete the austenite transformation and to reach the martensite finish. Care must be taken that the blade is not chilled by placing on a cold surface or even by being placed in a breeze or draft. The safest method is to allow it to cool in still air. The blade should be tempered after it has cooled to the point where it can be handled with bare hands.

Austempering

If the steel is quenched from Ae3, critical, to a point between the Ms and the nose of the curve, say 600F and held at temperature for a long time, the austenite will convert to banite. Banite is a much tougher structure than martensite and will maintain the hardness of the steel as tempered to that temperature. This process requires a salt bath and good controls, but makes an really tough spring and is being used by some makers on steels like 52100.

Quenchants

The method of controlling the speed of cooling is the quenchant. The quench rate is determined by how quickly the quenchant can remove the heat from the steel.

When a piece of hot steel enters the quenchant the area surrounding the blade absorbs heat from the blade until it is heated itself.

金属的热处理

加热

加热这种讨论,我将以高碳钢为例向你介绍其硬化过程.首先,你把钢铁放在火上加热时。当超过900F时钢铁的颜色开始显著的增加,其颜色还在继续增加直到达到一个平衡点,这时它还在蓄积热能。但这个由冷态结构转变成奥氏体状态的过程称为奥氏体转变。这个临界温度,看起来很复杂,它代表了加热的临界温度。1335f碳素钢。通常依靠碳含量来决定。它通常徘徊在1335F左右。

碳钢的性能取决于含碳量的高低,如果高于这一值,晶体结构里的铁素体将会和碳反应变成奥氏体。随着温度的上升越来越多的奥氏体更将会在其他地方形成并持续直到达到或超过临界温度10到15度,所有的铁素体都消失。此时钢的奥氏体组织开始形核心长大并和其他长大的晶体连到一起。原始晶粒的增长是建立在以碳核为中心的一点点的凝结上.最初的长大是建立在那些碳凝结核上,如果含碳量很高,那么晶粒围着碳核长大量会很小。

如果你把钢铁缓慢加热并仔细观察,你能看到其转变过程。日本人介绍了他们看到的叶状组织上的一点点变化,并且在淬火时转变成液体。如果你在这点从火中取出叶片并且看颜色下降,你将注意到在其冷却过程中有一个亮点。它看起来是从边缘逐渐移动到刀刃或刀刀刃口的横断面上。这个过程被称为再结晶转变,描述其从奥氏体转变成珠光体。后来我锻打了一个叶状块,将其加热到临界温度并冷却到奥氏体以下温度状态至少三次以上,我留意这两个临界点在我的脑海里建立临界点这一概念,并获得了很细的珠光体组织。

达到临界温度后应使钢充分奥氏体化,但碳化物将会继续分解。可能必须完全加热到一定温度碳化物才能全部消失。有些钢可能需要继续提高温度,这是因为合金元素阻碍了奥氏体转变,一旦刚被加热到高于临界温度并被奥氏体化,就可以淬火硬化,其组织结构可以通过精确控制从临界点降温的各个温度段的保温时间来实现。

冷却转变

退火、正火、淬火

钢的结构和硬度是通过控制奥氏体的冷却速度获得的。如果降温缓慢,钢将获得很好的塑性和韧性。结构将主要是铁素体、铁渗碳体和碳化物。不同类型的钢可以通过控制炉温以一个已知的速率跨过一个阶段获得。另一种方法是预热低碳钢到同样的临界温度使碳和钢互渗。加热后正火处理,将冷却速度慢下来,以便热量能够保持到第二天. 对大部分的碳钢都可以完全退火处理。

空冷将是一个获得珠光体和渗碳体更加良好的条件,可以通过正火火退火进行热处理. 另一尤为有效和可行的处理叫做淬火处理. 在正常的情况下对钢进行加热,通常用抑制氧化盐的办法,使温度低略低于临界温度1300f并保温至少一小时。在这个过程中,炭化物开始汇集成较大的奥氏体颗粒或间隔,更大的亚铁盐矩阵。它使热处理容易得多。

对片状件的预处理很重要,不仅是因为可使用性,而且减少锻造残余应力,这将减少淬火变形和裂缝的机会。这将使我们想到锻造尤其终锻就是热处理的开始阶段。我加热总是到临界点,状件片最后成形的时候,我将刀片在临界温度冷却循环热处理至少三次,冷却方式是来回的在空气中移动。

硬化

碳素钢硬化有很多方式,稍有改变合金成分能显著的得到不同的硬度特征,所以我再次鼓励你们学习那些你有用的部分。

转变温度和时间是用图表中的Ae1线来描述的,这个温度是奥氏体和马氏体的相转变线,在这一刻马氏体开始从奥氏体中形成。时间线在图表的底部温度线旁边以秒为单位,被称为“S”曲线,这个在确定每个钢淬火钢的速度方面非常有用。最高曲线" S"称为鼻型曲线,淬火时当温度从临界温度下降时,必须在很短暂的时间内降低到低于鼻形曲线的范围,钢开始变硬变成马氏体组织。必须在5秒内使温度降低900F的条件下才能形成马氏体。

马氏体淬火

如果低于钢淬火M s ,马氏体是主要结构,但如果是加热点略高于M s,并在500f附近举行,直至稳定在这个温度,钢材已形成马氏体结构,但也不会稳定,直到低于这个温度。这叫马氏体淬火这种方法很常用因为它很普遍,特别在困难的横剖面如我们经常见到的刀片里。当刀片从停止加热仍在临界温度之上并且有非常异常的产物产生。可以轻易弯曲或拉直,还是相当柔软。但是因为冷却后,开始马氏体转变,在室温下硬化. 再次,要看看你的每一个钢号,你将因为使用M F 马氏体点可以完成或低于室温下的硬度不钨钢高一些而自豪。这得益于钢的零气温骤冷,是因为要彻底改造,实现了马氏体的绝大部分转变。必须注意的是不能绝对完成的,将冷冻冷藏表面甚至被放在一个冷库里. 最安全的方法还是把它放进冷却机。在锻炼后冷却,就能处理的很好。

奥氏体化

如钢铁是从火 Ae3 临界点开始,达到M s 和鼻曲线之间,例如600F并在此温度保持很长时间,奥氏体将转变为板条马氏体。板条马氏体的结构比马氏体更大,并保留了钢的锻炼硬度,温度,盐浴,这需要盐浴和一个好的过程控制,但得到的非常严格的要求,正在使用的一些钢号如钢52100。

淬火介质

控制冷却速度的方法是控制淬火介质的冷却速度,介质的冷却速度快慢要看其从钢铁上转移热量的快慢。当一块热钢开始淬火,周围环境开始从它上面吸收热量直到温度平衡。是由可消除热量的介质钢在一片热水器淬火介质进入附近的区域开始吸热,和淬火介质温度相等。

机械毕业设计英文外文翻译50材料的热处理

外文资料 HEAT TREATMENT OF METALS The understanding of heat treatment is embrace by the broader study of metallurgy .Metallurgy is the physics, chemistry , and engineering related to metals from ore extraction to the final product . Heat treatment is the operation do heating and cooling a metal in its solid state to change its physical properties. According to the procedure used, steel can be hardened to resist cutting action and abrasion , or it can be softened to permit machining .With the proper heat treatment internal ductile interior . The analysis of the steel must be known because small percentages of certain elements,notably carbon , greatly affect the physical properties . Alloy steels owe their properties to the presence of one or more elements other than carbon, namely nickel, chromium , manganese , molybdenum , tungsten ,silicon , vanadium , and copper . Because of their improved physical properties they are used commercially in many ways not possible with carbon steels. The following discussion applies principally to the heat treatment of ordinary commercial steel known as plain-carbon steels .With this proves the rate of cooling is the controlling factor, produces the opposite effect . A SIMPLIFIED IRON-CARBON DAGRAM If we focus only on the materials normally known as steels, a simplified diagram is often used . Those portions of the iron-carbon diagram near the delta region and those above 2% carbon content are of little importance to the engineer and are deleted. A simplified diagram, such as the one in Fig . 2.1 focuses on the eutectoid region and is quite useful in understanding the properties and processing of steel.

流体力学中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)

14选择的材料取决于于高流动速度 降解或材料由于疲劳,腐蚀,磨损和气蚀故障糜烂一次又一次导致泵运营商成本高昂的问题。这可能通过仔细选择材料的性能以避免在大多数情况下发生。一两个原因便可能导致错误的材料选择:(1)泵输送的腐蚀性液体的性质没有清楚地指定(或未知),或(2),由于成本的原因(竞争压力),使用最便宜的材料。 泵部件的疲劳,磨损,空化攻击的严重性和侵蚀腐蚀与流速以指数方式增加,但应用程序各种材料的限制,不容易确定。它们依赖于流速度以及对介质的腐蚀性泵送和浓度夹带的固体颗粒,如果有的话。另外,交变应力诱导通过压力脉动和转子/定子相互作用力(RSI)真的不能进行量化。这就是为什么厚度的叶片,整流罩和叶片通常从经验和工程判断选择。 材料的本讨论集中在流之间的相互作用现象和物质的行为。为此,在某些背景信息腐蚀和经常使用的材料,被认为是必要的,但是一个综合指南材料的选择显然是超出了本文的范围。在这一章中方法开发出促进系统和一致方法选择材料和分析材料的问题领域。四个标准有关,用于选择材料暴露于高流动速度: 1.疲劳强度(通常在腐蚀环境),由于高的速度在泵本身与高压脉动,转子/定子的相互作用力和交变应力。 2.腐蚀诱导高的速度,特别是侵蚀腐蚀。 3.气蚀,由于已广泛在章讨论。 4.磨耗金属损失造成的流体夹带的固体颗粒。 磨损和汽蚀主要是机械磨损机制,它可以在次,被腐蚀的钢筋。与此相反,腐蚀是一种化学金属,泵送的介质,氧和化学试剂之间的反应。该反应始终存在- 即使它是几乎察觉。最后,该叶轮尖端速度可以通过液压力或振动和噪声的限制。 14.1叶轮和扩散的疲劳性骨折 可避免的叶轮叶片,整流罩或扩散器叶片的疲劳断裂施加领域的状态;它们很少观察到。在高负荷的泵,无视基本设计规则或生产应用不足的医疗服务时,这种类型的伤害仍然是有时会遇到。的主要原因在静脉或罩骨折包括: ?过小的距离(间隙B或比D3*= D3/ D2)叶轮叶片之间扩散器叶片(表10.2)。 ?不足寿衣厚度。 ?不足质量:叶片和护罩之间的圆角半径缺失或过于引起的小,铸造缺陷,脆性材料(韧性不足)热处理不足。 ?可能地,过度的压力脉动引起的泵或系统,第一章。10.3。 ?用液压或声叶轮的固有模式之间共振激发。也可能有之间的一个流体- 结构交互叶轮的侧板,并在叶轮侧壁间隙流动.. 转子/定子的互动和压力脉动章中讨论。10产生交替在叶轮叶片的压力和所述整流罩以及在扩散器叶片。这些应力的准确的分析几乎是不可能的(甚至虽然各组分能很好通过有限元程序进行分析),因为叶轮由不稳定压力分布的水力负荷不能定义。它不仅取决于流在叶轮,集电极和侧壁的差距,同时也对声学现象,并可能在脉动系统(也指章。10.3)。为了开发一致的实证过程评估装载叶轮和扩散器,用于选择叶片和护罩厚度或对所述的损伤的分析中,可以使用下一个均匀的负荷的简单梁的模型作为起点。因此,封闭的叶轮或扩散器的叶片是通过夹紧在两端的梁建模。开式叶轮或扩散器的描述由光束夹紧在一端,但游离在其他。根据表14.1和14.2的计算是基于以下assumptions1: 1.考虑叶片的最后部分中,在所述叶轮出口处的束夹在两者的宽度为X =5×e和跨度L = B2(E =标称叶片端厚度没有可能配置文件)。如果刀片是异形,平均叶片厚度青霉用于确

金属材料与热处理教案

绪论 引入: 材料金属材料 机械行业本课程得重要性 主要内容:金属材料得基本知识(晶格结构及变性) 金属得性能(力学及工艺性能) 金属学基础知识(铁碳相图、组织) 热处理(退火、正火、淬火、回火) 学习方法:三个主线 重要概念 ①掌握 基本理论 ②成分 组织性能用途热处理 ③理论联系实际 引入:内部结构决定金属性能 内部结构? 第一章:金属得结构与结晶 §1-1金属得晶体结构 ★学习目得:了解金属得晶体结构 ★重点:有关金属结构得基本概念:晶面、晶向、晶体、晶格、单晶

体、晶体,金属晶格得三种常见类型. ★难点:金属得晶体缺陷及其对金属性能得影响. 一、晶体与非晶体 1、晶体:原子在空间呈规则排列得固体物质称为“晶体"。(晶体内得原子之所以在空间就是规则排列,主要就是由于各原子之间得相互吸引力与排斥力相平衡得结晶。) 规则几何形状 性能特点: 熔点一定 各向异性 2、非晶体:非晶体得原子则就是无规则、无次序得堆积在一起得(如普通玻璃、松香、树脂等)。 二、金属晶格得类型 1、晶格与晶胞 晶格:把点阵中得结点假象用一序列平行直线连接起来构成空间格子称为晶格. 晶胞:构成晶格得最基本单元 2、晶面与晶向 晶面:点阵中得结点所构成得平面。 晶向:点阵中得结点所组成得直线 由于晶体中原子排列得规律性,可以用晶胞来描述其排列特征。(阵点(结点):把原子(离子或分子)抽象为规则排列于空间得几何点,称为阵点或结点。点阵:阵点(或结点)在空间得排列方式称

晶体。) 晶胞晶面晶向 3、金属晶格得类型就是指金属中原子排列得规律。 7个晶系 14种类型 最常见:体心立方晶格、面心立方晶格、密排六方晶格 (1)、体心立方晶格:(体心立方晶格得晶胞就是由八个原子构成得立方体,并且在立方体得体中心还有一个原子)。 属于这种晶格得金属有:铬Cr、钒V、钨W、钼Mo、及α—铁α-Fe 所含原子数 1/8×8+1=2(个) (2)、面心立方晶格:面心立方晶格得晶胞也就是由八个原子构成得立方体,但在立方体得每个面上还各有一个原子。 属于这种晶格得金属有:Al、Cu、Ni、Pb(γ-Fe)等 所含原子数1/8×8+6×1/2=4(个) (3)、密排六方晶格:由12个原子构成得简单六方晶体,且在上下两个六方面心还各有一个原子,而且简单六方体中心还有3个原子。 属于这种晶格得金属有铍(Be)、Mg、Zn、镉(Cd)等。 所含原子数 1/6×6×2+1/2×2+3=6(个) 三、单晶体与多晶体 金属就是由很多大小、外形与晶格排列方向均不相同得小晶体组成得,

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

冲压模具技术外文翻译(含外文文献)

前言 在目前激烈的市场竞争中,产品投入市场的迟早往往是成败的关键。模具是高质量、高效率的产品生产工具,模具开发周期占整个产品开发周期的主要部分。因此客户对模具开发周期要求越来越短,不少客户把模具的交货期放在第一位置,然后才是质量和价格。因此,如何在保证质量、控制成本的前提下加工模具是值得认真考虑的问题。模具加工工艺是一项先进的制造工艺,已成为重要发展方向,在航空航天、汽车、机械等各行业得到越来越广泛的应用。模具加工技术,可以提高制造业的综合效益和竞争力。研究和建立模具工艺数据库,为生产企业提供迫切需要的高速切削加工数据,对推广高速切削加工技术具有非常重要的意义。本文的主要目标就是构建一个冲压模具工艺过程,将模具制造企业在实际生产中结合刀具、工件、机床与企业自身的实际情况积累得高速切削加工实例、工艺参数和经验等数据有选择地存储到高速切削数据库中,不但可以节省大量的人力、物力、财力,而且可以指导高速加工生产实践,达到提高加工效率,降低刀具费用,获得更高的经济效益。 1.冲压的概念、特点及应用 冲压是利用安装在冲压设备(主要是压力机)上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件(俗称冲压或冲压件)的一种压力加工方法。冲压通常是在常温下对材料进行冷变形加工,且主要采用板料来加工成所需零件,所以也叫冷冲压或板料冲压。冲压是材料压力加工或塑性加工的主要方法之一,隶属于材料成型工程术。 冲压所使用的模具称为冲压模具,简称冲模。冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。 与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点,主要表现如下; (1) 冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。这是

R180柴油机曲轴工艺及夹具外文文献翻译、中英文翻译、外文翻译

中国地质大学长城学院 本科毕业设计外文资料翻译 系别:工程技术系 专业:机械设计制造及其自动化 姓名:刘庆鹏 学号: 05211602 年月日

外文资料翻译原文 R180柴油机曲轴工艺设计及夹具设计 一、研究目的及意义 曲轴是柴油机的关键零部件之一,主要用于往复运动的机械中,与连杆配合将作用在活塞上的气体压力变为旋转的动力。而随着机械化生产逐渐成为当今主流,传统的制造工艺已经不能满足人们的需求。结合实际进行理论分析,在保证产品质量,提高生产效率,降低生产成本的的前提下,对R180柴油机曲轴工艺进行优化设计。 二、R180曲轴工艺现状 从目前的整体水平来看,R180柴油机曲轴基本都是两种材质:一是钢锻曲轴;二是球墨铸铁曲轴。根据材质选择的不同,其生产方式也不同。为了保证生产精度,铸造方式生产的曲轴已经广泛运用于R180柴油机的运行。球墨铸铁具有良好的切削性能,并且可以进行各种热处理以及表面强化处理,故球墨铸铁被广泛运用于曲轴的生产。但是,曲轴毛坯的铸造工艺生产效率低下,工艺装备参差不齐,性能不够稳定、精度低、报废率高居不下,这一系列的问题都需要优化。 从目前整体水平来看, 毛坯的铸造工艺存在生产效率低,工艺装备落后,毛坯机械性能不稳定、精度低、废品率高等问题。从以下几个工艺环节采取措施对提高曲轴质量具有普遍意义。①熔炼国内外一致认为,高温低硫纯净铁水的获得是生产高质量球铁的关键所在。为获得高温低硫磷的纯净铁水,可用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分。②球化处理③孕育处理冲天炉熔化球铁原铁水,对铜钼合金球铁采用二次孕育。这对于防止孕育衰退,改善石墨形态,细化石墨及保证高强度球铁机械性能具有重要作用。④合金化配合好铜和钼的比例对形成珠光体组织十分有利,可提高球铁的强度,而且铜和钼还可大大降低球铁件对壁厚的敏感性。⑤造型工艺气流冲击造型工艺优于粘土砂造型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量的特点,这对于多拐曲轴尤为重要。⑥浇注冷却工艺采用立浇—立冷,斜浇—斜冷、斜浇—反斜冷三种浇注方式较为理想,其中后一种最好。斜浇—反斜冷的优点是:型腔排气充分,铁水充型平稳,浇注系统撇渣效果好,冒口对铸件的补缩效果好,适应大批量流水线生产。 目前,国内大部分专业厂家普遍采用普通机床和专用组合机床组成的流水线生产,生产效率、自动化程度较低。曲轴的关键技术项目仍与国外相差1~2个数量级。国外的机加工工艺大致可归纳为如下几个特点。①广泛采用数控技术和

金属材料与热处理课后习题答案

第1章金属的结构与结晶 一、填空: 1、原子呈无序堆积状态的物体叫,原子呈有序、有规则排列的物体称为。一般固态金属都属于。 2、在晶体中由一系列原子组成的平面,称为。通过两个或两个以上原子中心的直线,可代表晶格空间排列的的直线,称为。 3、常见的金属晶格类型有、和三种。铬属于晶格,铜属于晶格,锌属于晶格。 4、金属晶体结构的缺陷主要有、、、、、和 等。晶体缺陷的存在都会造成,使增大,从而使金属的提高。 5、金属的结晶是指由原子排列的转变为原子排列的过程。 6、纯金属的冷却曲线是用法测定的。冷却曲线的纵坐标表示,横坐标表示。 7、与之差称为过冷度。过冷度的大小与有关, 越快,金属的实际结晶温度越,过冷度也就越大。 8、金属的结晶过程是由和两个基本过程组成的。 9、细化晶粒的根本途径是控制结晶时的及。 10、金属在下,随温度的改变,由转变为的现象称为

同素异构转变。 二、判断: 1、金属材料的力学性能差异是由其内部组织结构所决定的。() 2、非晶体具有各向同性的特点。() 3、体心立方晶格的原子位于立方体的八个顶角及立方体六个平面的中心。() 4、金属的实际结晶温度均低于理论结晶温度。() 5、金属结晶时过冷度越大,结晶后晶粒越粗。() 6、一般说,晶粒越细小,金属材料的力学性能越好。() 7、多晶体中各晶粒的位向是完全相同的。() 8、单晶体具有各向异性的特点。() 9、在任何情况下,铁及其合金都是体心立方晶格。() 10、同素异构转变过程也遵循晶核形成与晶核长大的规律。() 11、金属发生同素异构转变时要放出热量,转变是在恒温下进行的。() 三、选择 1、α—Fe是具有()晶格的铁。 A、体心立方 B、面心立方 C、密排六方 2、纯铁在1450℃时为()晶格,在1000℃时为()晶格,在600℃时为 ()晶格。A、体心立方 B、面心立方 C、密排六方 3、纯铁在700℃时称为(),在1000℃时称为(),在1500℃时称为()。

智能照明系统的外文文献原稿和译文

智能照明系统的外文文献原稿和译文

Introduction Introduction With the continuous development of our economy, rapidly rising living standards, people working and living environment have become increasingly demanding, while the lighting system requirements have become more sophisticated, the traditional lighting technology has been a strong blow. On the one hand because of information technology and computer technology changes in lighting technology, providing technical support; the other hand, due to energy shortage, the state more and more attention on energysaving lighting, new lighting control technology to develop rapidly to meet with By energy conservation, comfort, convenience requirements. Lighting control lighting control from the traditional manual method, automated lighting control to today's intelligent lighting control. Intelligent lighting control system is based on computercontrolled alldigital platform, modular, distributed bus control system, the central processor modules communicate directly through the network bus, the bus makes use of lighting, dimming, blinds, scene control to achieve intelligent, and become a complete bus system. Can be based on changes in the external environment in the device automatically adjust the status of the bus to reach safety, energy conservation, human effects, and can use in the future, in accordance with the requirements of users through the computer Way to increase or modify the system's functionality, without having to relaying of cables, intelligent lighting control system, high reliability, flexible control, lighting control is the traditional way can not be done. The basic components and monitoring the contents of the system System The basic components and monitoring the contents of the system System components Intelligent lighting control system is usually dimmer module, switch module, input module, the control panel, liquid crystal display touch screen, smart sensors, PC interface, time management module, handheld programmer, monitoring computer (need to bridge a large network connection) and other components composition.

金属材料及热处理中英文专业词汇表

《金属材料及热处理》课程中英文专业词汇表 (第二部分) 刘国权辑录整理 主要来源:全国材料科学名词委员会与中国材料研究学会组编的《材料科学名词》文稿; 国家标准GB/T 7232-1999 “金属热处理工艺术语”等。 材料热处理基础术语 热处理 heat treatment 采用适当的方式对材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。 化学热处理 chemical heat treatment 将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理。 表面热处理 surface heat treatment 为改变工件表面的组织和性能,仅对其表面进行热处理的工艺。 局部热处理local heat treatment, partial heat treatment 仅对工件的某一部位或几个部位进行热处理的工艺。 预备热处理 conditioning heat treatment 为调整原始组织,以保证工件最终热处理或(和)切削加工质量,预先进行热处理的工艺。 真空热处理vacuum heat treatment, low pressure heat treatment在低于1×105Pa(通常是10-1~10-3Pa)的环境中进行的热处理工艺。 光亮热处理 bright heat treatment 工件在热处理过程中基本不氧化,表面保持光亮的热处理。磁场热处理 magnetic heat treatment 为改善某些铁磁性材料的磁性能而在磁场中进行的热处理。 可控气氛热处理controlled atmosphere heat treatment 将工件置于可控制其化学特性的气相氛围中进行的热处理。如无氧化、无脱碳、无增碳(氮)的热处理。 保护气氛热处理heat treatment in protective gases 在工件表面不氧化的气氛或惰性气体中进行的热处理。 离子轰击热处理plasma heat treatment, ion bombardment, glow discharge heat treatment 在低于1×105Pa(通常是10-1~10-3Pa)的特定气氛中利用工件(阴极)和阳极之 间等离子体辉光放电进行的热处理。 流态床热处理heat treatment in fluidized beds 工件由气流和悬浮其中的固体粉粒构成的流态层中进行的热处理。 高能束热处理high energy heat treatment 利用激光、电子束、等离子弧、感应涡流或火焰等高功率密度能源加热工件的热处理工艺总称。 稳定化热处理stabilizing treatment, stabilizing 为使工件在长期服役的条件下形状、尺寸、组织与性能变化能够保持在规定范围内的热处理。 形变热处理 thermomachanical treatment 将形变强化与相变强化相结合,以提高工件综合力学性能的一种复合强韧化工艺。 热处理工艺周期 thermal cycle 通过加热、保温、冷却,完成一种热处理工艺过程的周期。预热 preheating 在工件加热至最终温度前进行的一次或数次阶段性保温的过程。 奥氏体化 austenitizing工件加热至相变临界温度以上,以全部或部分获得奥氏体组织的操作。工件进行奥氏体化的保温温度和保温时间分别称为奥氏体化温度和奥氏体化 时间。

外文翻译原文

204/JOURNAL OF BRIDGE ENGINEERING/AUGUST1999

JOURNAL OF BRIDGE ENGINEERING /AUGUST 1999/205 ends.The stress state in each cylindrical strip was determined from the total potential energy of a nonlinear arch model using the Rayleigh-Ritz method. It was emphasized that the membrane stresses in the com-pression region of the curved models were less than those predicted by linear theory and that there was an accompanying increase in ?ange resultant force.The maximum web bending stress was shown to occur at 0.20h from the compression ?ange for the simple support stiffness condition and 0.24h for the ?xed condition,where h is the height of the analytical panel.It was noted that 0.20h would be the optimum position for longitudinal stiffeners in curved girders,which is the same as for straight girders based on stability requirements.From the ?xed condition cases it was determined that there was no signi?cant change in the membrane stresses (from free to ?xed)but that there was a signi?cant effect on the web bend-ing stresses.Numerical results were generated for the reduc-tion in effective moment required to produce initial yield in the ?anges based on curvature and web slenderness for a panel aspect ratio of 1.0and a web-to-?ange area ratio of 2.0.From the results,a maximum reduction of about 13%was noted for a /R =0.167and about 8%for a /R =0.10(h /t w =150),both of which would correspond to extreme curvature,where a is the length of the analytical panel (modeling the distance be-tween transverse stiffeners)and R is the radius of curvature.To apply the parametric results to developing design criteria for practical curved girders,the de?ections and web bending stresses that would occur for girders with a curvature corre-sponding to the initial imperfection out-of-?atness limit of D /120was used.It was noted that,for a panel with an aspect ratio of 1.0,this would correspond to a curvature of a /R =0.067.The values of moment reduction using this approach were compared with those presented by Basler (Basler and Thurlimann 1961;Vincent 1969).Numerical results based on this limit were generated,and the following web-slenderness requirement was derived: 2 D 36,500a a =1?8.6?34 (1) ? ??? t R R F w ?y where D =unsupported distance between ?anges;and F y =yield stress in psi. An extension of this work was published a year later,when Culver et al.(1973)checked the accuracy of the isolated elas-tically supported cylindrical strips by treating the panel as a unit two-way shell rather than as individual strips.The ?ange/web boundaries were modeled as ?xed,and the boundaries at the transverse stiffeners were modeled as ?xed and simple.Longitudinal stiffeners were modeled with moments of inertias as multiples of the AASHO (Standard 1969)values for straight https://www.360docs.net/doc/ee8457055.html,ing analytical results obtained for the slenderness required to limit the plate bending stresses in the curved panel to those of a ?at panel with the maximum allowed out-of-?atness (a /R =0.067)and with D /t w =330,the following equa-tion was developed for curved plate girder web slenderness with one longitudinal stiffener: D 46,000a a =1?2.9 ?2.2 (2) ? ? ? t R f R w ?b where the calculated bending stress,f b ,is in psi.It was further concluded that if longitudinal stiffeners are located in both the tension and compression regions,the reduction in D /t w will not be required.For the case of two stiffeners,web bending in both regions is reduced and the web slenderness could be de-signed as a straight girder panel.Eq.(1)is currently used in the ‘‘Load Factor Design’’portion of the Guide Speci?cations ,and (2)is used in the ‘‘Allowable Stress Design’’portion for girders stiffened with one longitudinal stiffener.This work was continued by Mariani et al.(1973),where the optimum trans-verse stiffener rigidity was determined analytically. During almost the same time,Abdel-Sayed (1973)studied the prebuckling and elastic buckling behavior of curved web panels and proposed approximate conservative equations for estimating the critical load under pure normal loading (stress),pure shear,and combined normal and shear loading.The linear theory of shells was used.The panel was simply supported along all four edges with no torsional rigidity of the ?anges provided.The transverse stiffeners were therefore assumed to be rigid in their directions (no strains could be developed along the edges of the panels).The Galerkin method was used to solve the governing differential equations,and minimum eigenvalues of the critical load were calculated and presented for a wide range of loading conditions (bedding,shear,and combined),aspect ratios,and curvatures.For all cases,it was demonstrated that the critical load is higher for curved panels over the comparable ?at panel and increases with an increase in curvature. In 1980,Daniels et al.summarized the Lehigh University ?ve-year experimental research program on the fatigue behav-ior of horizontally curved bridges and concluded that the slen-derness limits suggested by Culver were too severe.Equations for ‘‘Load Factor Design’’and for ‘‘Allowable Stress Design’’were developed (respectively)as D 36,500a =1?4?192(3)? ?t R F w ?y D 23,000a =1?4 ?170 (4) ? ? t R f w ?b The latter equation is currently used in the ‘‘Allowable Stress Design’’portion of the Guide Speci?cations for girders not stiffened longitudinally. Numerous analytical and experimental works on the subject have also been published by Japanese researchers since the end of the CURT project.Mikami and colleagues presented work in Japanese journals (Mikami et al.1980;Mikami and Furunishi 1981)and later in the ASCE Journal of Engineering Mechanics (Mikami and Furunishi 1984)on the nonlinear be-havior of cylindrical web panels under bending and combined bending and shear.They analyzed the cylindrical panels based on Washizu’s (1975)nonlinear theory of shells.The governing nonlinear differential equations were solved numerically by the ?nite-difference method.Simple support boundary condi-tions were assumed along the curved boundaries (top and bot-tom at the ?ange locations)and both simple and ?xed support conditions were used at the straight (vertical)boundaries.The large displacement behavior was demonstrated by Mi-kami and Furunishi for a range of geometric properties.Nu-merical values of the load,de?ection,membrane stress,bend-ing stress,and torsional stress were obtained,but no equations for design use were presented.Signi?cant conclusions include that:(1)the compressive membrane stress in the circumfer-ential direction decreases with an increase in curvature;(2)the panel under combined bending and shear exhibits a lower level of the circumferential membrane stress as compared with the panel under pure bending,and as a result,the bending moment carried by the web panel is reduced;and (3)the plate bending stress under combined bending and shear is larger than that under pure bending.No formulations or recommendations for direct design use were made. Kuranishi and Hiwatashi (1981,1983)used the ?nite-ele-ment method to demonstrate the elastic ?nite displacement be-havior of curved I-girder webs under bending using models with and without ?ange rigidities.Rotation was not allowed (?xed condition)about the vertical axis at the ends of the panel (transverse stiffener locations).Again,the nonlinear distribu-

相关文档
最新文档