构造函数法证明导数不等式的八种方法

构造函数法证明导数不等式的八种方法
构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法

1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法:

一、移项法构造函数 【例1】

已知函数

x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1

11

分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数

111

)1ln()(-++

+=x x x g ,从其导数入手即可证明。 【解】1111)(+-

=-+='x x

x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数

当0>x

时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数

故函数

()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞

于是函数

()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,

即0)1ln(≤-

+x x ∴x x ≤+)1ln( (右面得证),

现证左面,令111)1ln()(-++

+=x x x g , 2

2)

1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,

即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,

当1->x

时,0)0()(=≥g x g ,即011

1

)1ln(≥-++

+x x ∴111)

1ln(+-

≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11

1

,1

有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要

证不等式,只要求函数的最大值不超过0就可得证.

2、作差法构造函数证明

【例2】已知函数.ln 2

1

)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;

分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f

2ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到06

1

)1(>=F

要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

【解】设)()()

(x f x g x F -=,即x x x x F ln 2

13

2)(23--=,

则x x x x F 12)(2

-

-='=x

x x x )12)(1(2++- 当1>x 时,)(x F '=

x

x x x )12)(1(2

++-

从而)(x F 在),1(∞+上为增函数,∴06

1)1()(>=>F x F

∴当1>x

时 0)()(>-x f x g ,即)()(x g x f <,

故在区间),

1(∞+上,函数)(x f 的图象在函数33

2)(x x g =的图象的下方。

【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断

所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。读者也可以设)()()(x g x f x F -=做一

做,深刻体会其中的思想方法。

3、换元法构造函数证明

【例3】 证明:对任意的正整数n ,不等式321

1)11ln(n

n n ->+ 都成立. 分析: 从所证结构出发,只需令

x n

=1

,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()

(23++-=x x x x h ,求导即可达到证明。

【解】令)1ln()(2

3

++-=x x x x h ,则1

)1(31123)(2

32

+-+=

++-='x x x x x x x h 在),0(+∞∈x 上恒正, 所以函数)(x h 在),0(+∞上单调递增,∴),0(+∞∈x 时,恒有,0)0()(=>h x h

即0)1ln(23

>++-x x x

,∴32)1ln(x x x ->+

对任意正整数n ,取321

1)11ln(),0(1n

n n n x

->++∞∈=

,则有 【警示启迪】我们知道,当()F x 在[,]a b 上单调递增,则x a >时,有()F x ()F a >.如果()f a =()a ?,

要证明当x a >时,

()f x >()x ?,那么,只要令()F x =()f x -()x ?,就可以利用()F x 的单调增性来推导.也

就是说,在()F x 可导的前提下,只要证明'()F x >0即可.

4、从条件特征入手构造函数证明

【例4】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b ,

求证:.a

)(a f >b )(b f

【解】由已知 x

)(x f '+)(x f >0 ∴构造函数 )()(x xf x F =,

则=)('

x F

x )(x f '+)(x f >0, 从而)(x F 在R 上为增函数。

b a > ∴)()(b F a F > 即 a )(a f >b )(b f

【警示启迪】由条件移项后)()(x f x f x +',容易想到是一个积的导数,从而可以构造函数)()(x xf x F =,求导即可

完成证明。若题目中的条件改为)()(x f x f x >',则移项后)()(x f x f x -',要想到是一个商的导数的分子,平时解题多注意总结。

5、主元法构造函数

例.(全国)已知函数x x x g x x x f ln )(,)1ln()(=-+=

(1) 求函数)(x f 的最大值;

(2) 设b a <<

0,证明 :2ln )()2

(2)()(0a b b a g b g a g -<+-+<.

分析:对于(II )绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.证明如下: 证明:对x x x g ln )

(=求导,则1ln )('+=x x g .

在)2

(

2)()(b a g b g a g +-+中以b 为主变元构造函数,

设)2

(2)()()(x

a g x g a g x F +-+=,则2ln ln )]2(

[2)()('''x a x x a g x g x F +-=+-=. 当a x <<0时,0)('

当a x

>时,0)('>x F ,因此)(x F 在),(+∞a 上为增函数.

从而当a x

=时, )(x F 有极小值)(a F .

因为,,0)(a b a F >=所以0)(>b F ,即.0)2

(

2)()(>+-+b

a g

b g a g 又设2ln )()()(a x x F x G --=.则)ln(ln 2ln 2

ln

ln )('x a x x

a x x G +-=-+-=. 当0>x

时,0)('

因为,,0)

(a b a G >=所以0)(

(

2)()(a b b

a g

b g a g -<+-+. 6、构造二阶导数函数证明导数的单调性 例.已知函数21()2

x

f x ae x =-

(1)若f(x)在R 上为增函数,求a 的取值范围; (2)若a=1,求证:x >0时,f(x)>1+x 解:(1)f ′(x)= ae x -x,

∵f(x)在R上为增函数,∴f ′(x)≥0对x∈R恒成立, 即a≥xe-x对x∈R恒成立

记g(x)=xe-x,则g′(x)=e-x-xe-x=(1-x)e -x , 当x>1时,g′(x)<0,当x<1时,g′(x)>0. 知g(x)在(-∞,1)上为增函数,在(1,+ ∞)上为减函数, ∴g(x)在x=1时,取得最大值,即g(x)max=g(1)=1/e, ∴a ≥1/e, 即a 的取值范围是[1/e, + ∞) (2)记F(X)=f(x) -(1+x) =)0(12

12

>---x x x e x

则F ′(x)=e x -1-x,

令h(x)= F ′(x)=e x -1-x,则h ′(x)=e x -1

当x>0时, h ′(x)>0, ∴h(x)在(0,+ ∞)上为增函数, 又h(x)在x=0处连续, ∴h(x)>h(0)=0

即F ′(x)>0 ,∴F(x) 在(0,+ ∞)上为增函数,又F(x)在x=0处连续, ∴F(x)>F(0)=0,即f(x)>1+x .

小结:当函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把不等式的恒成立问题可转化为求函数最值问题.不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为)(x f m >(或)(x f m <)恒成立,于是m 大于)(x f 的最大值(或m 小于)(x f 的最小值),从而把不等式恒成立问题转化为求函数的最值问题.因此,利用导数求函数最值是解决不等式恒成立问题的一种重要方法.

7.对数法构造函数(选用于幂指数函数不等式) 例:证明当2

111)

1(,0x x

e

x x

+

+

<+>时

8.构造形似函数

例:证明当a b b a e a b >>>证明,

例:已知m 、n 都是正整数,且,1n m <<

证明:m n n m )1()1(+>+

【思维挑战】

1、设x a x x x f a ln 2ln 1)(,02+--=≥

求证:当1>x 时,恒有1ln 2ln 2

+->x a x x , 2、已知定义在正实数集上的函数

,

ln 3)(,22

1)(2

2b x a x g ax x x f +=+=其中a >0,且a a a b ln 32522-=, 求证:)()(x g x f ≥ 3、已知函数x

x

x x f +-

+=1)1ln()(,求证:对任意的正数a 、b , 恒有.1ln ln a

b b a -

≥- 4、)(x f 是定义在(0,+∞)上的非负可导函数,且满足)()(x f x f x -'≤0,对任意正数a 、b ,若

a <

b ,则必有 ( )

(A )af (b )≤bf (a ) (B )bf (a )≤af (b )

(C )af (a )≤f (b )

(D )bf (b )≤f (a )

【答案咨询】

1、提示:x

a

x x x f 2ln 21)(+

-=',当1>x ,0≥a 时,不难证明1ln 2'x f ,即)(x f 在),0(+∞内单调递增,故当1>x 时,

0)1()(=>f x f ,∴当1>x 时,恒有1ln 2ln 2+->x a x x

2、提示:设b x a ax x x f x g x F --+=-=ln 3221)()()(2

2则x

a a x x F 232)(-+='

=x

a x a x )

3)((+- )0(>x 0>a ,∴ 当a x =时,0)(='x F ,

故)(x F 在),0(a 上为减函数,在),(+∞a 上为增函数,于是函数)(x F 在),0(+∞上的最小值是

0)()()(=-=a g a f a F ,故当0>x 时,有0)()(≥-x g x f ,即)()(x g x f ≥

3、提示:函数

)(x f 的定义域为),1(+∞-,2

2)1()1(111)(x x x x x f +=

+-+=

'

∴当01<<-x 时,0)(<'x f ,即)(x f 在)0,1(-∈x 上为减函数

当0>x

时,0)(>'x f ,即)(x f 在),0(+∞∈x 上为增函数

因此在)(,0x f x 时=取得极小值0)0(=f ,而且是最小值

于是

x x x f x f +≥

+=≥1)1ln(,0)0()(从而,即x

x +-≥+111)1ln( 令a b x b a x -=+->=+1111,01则 于是a

b b a -≥1ln 因此a

b

b a -≥-1ln ln

4、提示:x x f x F )

()(=,0

)()()(2

'≤-='x x f x xf x F ,故x x f x F )()(=在(0,+∞)上是减函数,由b a < 有b

b f a a f )()(≥? af (b)≤bf (a) 故选(A )

1、由f(x)=ln(1+x)-x的导数为1/(x+1)-1=-x/(x+1)<0得知f(x)在(-1,∞)上单调减少.

2、所以bn=ln(1+n)-n,an=ln(n+1)-bn=n

一、√n<√(n+2)-c/√(n+2) 得 c

=1+(√(n+2)-√n)^2/2

由于队所有n成立,而√(n+2)-√n可以任意小,且当c=1时,不等式依然成立,

所以c的范围是(-∞,1]

二、分两步证明,先用归纳法证明不等式(1) a1a3...a(2n-1)/[a2a4...a(2n)]<1/√(2n+1)

n=1时a1/a2=1/2=1/√4<1/√3

设n=k时成立,即a1a3.a(2k-1)/[a2a4...a(2k)]<1/(√2k+1)

所以a1a3...a(2k-1)a(2k+1)/[a2a4...a(2k)a(2k+2)]<(2k+1)/[√(2k+1)(2k+2)]

=√(2k+1)√(2k+3)/[(2k+2)√(2k+3)]

<(2k+1+2k+3)/[2(2k+2)√(2k+3)]

=1/√(2k+3)

所以当n=k+1时,不等式(1)成立.

所以对任意n>0不等式(1)成立.

第二步运用第一问的不等式(c=1)时,1/√(n+2)<√(n+2)-√n

得a1/a2+a1a3/[a2a4]+...+a1a3...a(2n-1)/[a2a4...a(2n)<√3-√1+√5-√3+...+√(2n+1)-√(2n-1) =√(2n+1)-1=√[a(2n)+1]-1

证毕.

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

利用导数证明不等式的两种通法

利用导数证明不等式的两种通法 吉林省长春市东北师范大学附属实验学校 金钟植 岳海学 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问 题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最 大值)大于或等于零(小于或等于零)。 例1 已知(0, )2 x π ∈,求证:sin tan x x x << 分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2 π 上 单调递减即可。 证明: 令()sin f x x x =- ,其中(0,)2 x π ∈ 则/ ()cos 1f x x =-,而(0,)cos 1cos 102 x x x π ∈?

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

利用导数证明不等式的常见题型

利用导数证明不等式的常见题型 山西大学附属中学 韩永权 邮箱:hyq616@https://www.360docs.net/doc/ef11859207.html, 不等式的证明是近几年高考的一个热点题型,它一般出现的压轴题的位置,解决起来比较困难。本文给出这一类问题常见的证明方法,给将要参加高考的学子一些启示和帮助。只要大家认真领会和掌握本文的内容,定会增强解决对这一类问题的办法。下面听我慢慢道来。 题型一 构造函数法,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 例1(人教版选修2-2第32页B 组1题)利用函数的单调性,证明不列不等式 (1)),0(,sinx π∈-x x x (3)0,1≠+>x x e x (4)0,ln ><x 时,求证:x x x ≤+≤+- )1ln(1 1 1 证明:令x x x f -+=)1ln()(,则1 111)(+- =-+='x x x x f ∴当01<<-x 时,0)(>'x f ,当0>x 时,0)(<'x f ,()f x 在),1(+∞-上的最大值为 0)0()(max ==f x f ,因此,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln((右面得证), 再证左面,令11 1 )1ln()(-+++=x x x g ,2 2)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时,函数)(x g 在),1(+∞-上的最小值为 0)0()(m i n ==g x g ,∴0)0()(=≥g x g ,即011 1 )1ln(≥-+++x x ∴111)1ln(+-≥+x x (左面得证),综上,当x x x x ≤+≤-+->)1ln(11 1 ,1有时 启示:证明分三个步骤,一是构造函数,二是对函数求导,判断函数的单调性,三是求此函数的最值,得 出结论。 题型二 通过对函数的变形,利用分析法,证明不等式 例.bx x x h +=ln )(有两个不同的零点21,x x ①求b 的取值范围;②求证:1221x x e >. 解析:①()ln h x x bx =+,其定义域为(0,+∞).由()0h x =得ln -x b x =,记ln ()x x x ?=-,则2 l n 1 ()x x x ?-'=, 所以ln ()x x x ?=-在(0,)e 单调减,在(,)e +∞单调增,所以当x e =时ln ()x x x ?=-取得最小值1e -. 又(1)0?=,所以(0,1)x ∈时()0x ?>,而(1,)x ∈+∞时()0x ?<,所以b 的取值范围是(1 e -,0). ②由题意得1122ln 0,ln 0x bx x bx +=+=, 所以12122121ln ()0,ln ln ()0x x b x x x x b x x ++=-+-=,所以 12122121 ln ln ln x x x x x x x x +=--,不妨设21x x <, 要证212x x e >,需证12122121 ln (ln ln )2x x x x x x x x +=->-.即证2121212()ln ln x x x x x x -->+, 设21(1)x t t x =>,则2(1)4()ln ln 211 t F t t t t t -=-=+-++, 所以2 22 14(1)()0(1)(1) t F t t t t t -'=-=>++,所以函数()F t 在(1,+∞)上单调增, 而(1)0F =,所以()0F t >即2(1) ln 1 t t t ->+,所以212x x e >.

构造函数证明不等式

构造函数证明不等式 构造函数证明不等式构造函数证明:[2的平方/(2的平方-1)*3的平方/(3的平方-1)*...*n的平方/(n的平方-1)]>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n +3) 不等式左边=2ln2-ln1-ln3+2ln3-ln2-ln4+...+2lnn-ln(n-1)-ln(n+1) =ln2-ln1+lnn-ln(n+1)=ln[n^2/(n+1)] 构造函数f(x)=ln[x^2/(x+1)]-(4x-4)/(6x+3) 对f(x)求导,有:f'(x)=[(x+2)/x(x+1)]+[1/(x+1/2)]^2 当x>2时,有f'(x)>0有f(x)在x>2时严格递增从而有 f(n)>=f(2)=ln(4/3)-4/15=0.02>0 即有ln[n^2/(n+1)]>(4n-4)/(6n+3) 原不等式等证 【解】: ∏{n^2/(n^2-1)}[n≥2] > e^((4n-4)/(6n+3)) ∵n^2/(n^2-1)=n^2/(n+1)(n-1) ∴∏{n^2/(n^2-1)}[n≥2] = 2n/(n+1) 原式可化简为:2n/(n+1) > e^((4n-4)/6n+3)) 构建函数:F(n)=2n/(n+1)-e^((4n-4)/(6n+3))

其一阶导数F’(n)={2-4e^((4n-4)/(6n+3))}/(n+1)^2 ∵e^((4n-4)/(6n+3)) ∴F’(n)>0 [n≥2] 而F[2]=4/(2+1)-e^((8-4)/(12+3))=4/3-e^(4/15)>0 所以F(n)>0 [n≥2] 即:2n/(n+1) > e^((4n-4)/6n+3)) 故得证。 一、结合勘根定理,利用判别式“△”的特点构造函数证明不等式例1 若a,b,c∈R,且a≠0,又4a+6b+c>0,a-3b+c求证:9b2>4ac. 证明构造函数f(x),设f(x)=ax2+3bx+c(a≠0), 由f(2)=4a+6b+c>0, f(-1)=a-3b+c根据勘根定理可知:f(x)在区间(-1,2)内必有零点. 又f(x)为二次函数,由勘根定理结合可知: f(x)必有两个不同的零点. 令ax2+3bx+c=0可知△=(3b)2-4ac>0, 所以可得:9b2>4ac.命题得证. 评析本题合理变换思维角度,抓住问题本质,通过构造二次函数,将所要证明的结论转化成判别式“△”的问题,再结合勘根定理和二次函数知识,从而使问题获得解决. 二、结合构造函数的单调性证明不等式 例2 (2005年人教A版《选修4-5不等式选讲》例题改编)已知a,b,c 是实数,求证:

构造函数法证明导数不等式的八种方法(新)

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤- +x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

2021届高考数学(理)一轮复习学案:第3章导数及其应用第4节利用导数证明不等式

第四节 利用导数证明不等式 课堂考点探究 考点1 单变量不等式的证明 单变量不等式的证明方法 (1)移项法:证明不等式f (x )>g (x )(f (x )<g (x ))的问题转化为证明f (x )-g (x )>0(f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x ); (2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数; (3)最值法:欲证f (x )<g (x ),有时可以证明f (x )max <g (x )min . 直接将不等式转化为函数的最值问题 已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-3 4a -2. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1= x +1 2ax +1 x . 当a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. 当a <0,则当x ∈? ????0,-12a 时,f ′(x )>0;当x ∈? ????-12a ,+∞时,f ′(x )<0. 故f (x )在? ????0,-12a 上单调递增,在? ?? ??-12a ,+∞上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a 取得最大值,最大值为f ? ????-12a =ln ? ??? ?-12a -1-1 4a . 所以f (x )≤-34a -2等价于ln ? ????-12a -1-14a ≤-34a -2,即ln ? ????-12a +1 2a +1≤0.设g (x ) =ln x -x +1,则g ′(x )=1 x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x ) <0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大 值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ? ????-12a +1 2a +1≤0, 即f (x )≤-3 4a -2. 将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

【高中数学】利用导数证明不等式

第四节利用导数证明不等式 考点1作差法构造函数证明不等式 (1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可. (2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I). 设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决. 已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值. (1)求实数a的值; (2)当x>1时,求证:f(x)>3(x-1). [解](1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x, 所以f′(x)=a+ln x+1, 因为函数f(x)在x=e-2处取得极小值, 所以f′(e-2)=0,即a+ln e-2+1=0, 所以a=1,所以f′(x)=ln x+2. 当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2, 所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增, 所以f(x)在x=e-2处取得极小值,符合题意,所以a=1. (2)证明:由(1)知a=1,所以f(x)=x+x ln x. 令g(x)=f(x)-3(x-1), 即g(x)=x ln x-2x+3(x>0). g′(x)=ln x-1,由g′(x)=0,得x=e. 由g′(x)>0,得x>e;由g′(x)<0,得0<x<e. 所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧 趣题引入 已知函数 设, 证明:分析:主要考查利用导数证明不等式的能力。证明:,设 当时 ,当时 , 即在上为减函数,在上为增函数 ∴,又 ∴, 即 设 当时,,因此在区间上为减函数; 因为,又 ∴, 即 故综上可知,当 时,本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此, 设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。技巧精髓 一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、 不等式综合中的一个难点,也是近几年高考的热点。 二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的 单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个 x x x g ln )(=b a <<02ln )(2 ( 2)()(0a b b a b g a g -<+-+<1ln )(+='x x g )2 (2)()()(x a g x g a g x F +-+=2 ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=?+-='a x <<00)(<'x F a x >0)(>'x F )(x F ),0(a x ∈),(+∞∈a x 0)()(min ==a F x F a b >0)()(=>a F b F 0)2 (2)()(>+-+b a g b g a g 2ln )(2 (2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2 ln ln )(x a x x a x x G +-=-+-='∴0>x 0)('0)()(=

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、从条件特征入手构造函数证明 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f 【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f 2 x . 求不等式0)2(4)2015()2015(2 >--++f x f x 的解集. 2、移项法构造函数 【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+- )1ln(1 1 1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11 1 )1ln()(-+++=x x x g ,从其导数入手即可证明。 3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2 )(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f + 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令 x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2 3 ++-=x x x x h ,求导即可达到证明。

四种构造函数法证明不等式

四种构造函数法证明不等式 利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,如何恰当构造函数,往往成为解题的关键. 考点一“比较法”构造函数证明不等式 当试题中给出简单的基本初等函数,例如f(x)=x3,g(x)=ln x,进而证明在某个取值范围内不等式f(x)≥g(x)成立时,可以类比作差法,构造函数h(x)=f(x)-g(x)或φ(x)=g(x)-f(x),进而证明h(x)min≥0或φ(x)max≤0即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明g(x)>0(f(x)>0)的前提下,也可 以类比作商法,构造函数h(x)=f(x) g(x)? ? ? ? ? φ(x)= g(x) f(x),进而证明h(x)min≥1(φ(x)max≤1). 【例题】已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)求证:当x>0时,x2<e x. 【解析】(1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增.

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

证明不等式的基本方法-比较法

第二讲证明不等式的基本方法 课题:第01课时不等式的证明方法之一:比较法 一.教学目标 (一)知识目标 (1)了解不等式的证明方法——比较法的基本思想; (2)会用比较法证明不等式,熟练并灵活地选择作差或作商法来证明不等式;(3)明确用比较法证明不等式的依据,以及“转化”的数学思想。 (二)能力目标 (1)培养学生将实际问题转化为数学问题的能力; (2)培养学生观察、比较、抽象、概括的能力; (3)训练学生思维的灵活性。 (三)德育目标 (1)激发学习的内在动机; (2)养成良好的学习习惯。 二.教学的重难点及教学设计 (一)教学重点 不等式证明比较法的基本思想,用作差、作商达到比较大小的目的 (二)教学难点 借助与0或1比较大小转化的数学思想,证明不等式的依据和用途 (三)教学设计要点 1.情境设计 用糖水加糖更甜,实际是糖的质量分数增大这个生活常识设置问题情境,激发学生学习动机,通过将实际问题转化为不等式大小的比较,引入新课。 2.教学内容的处理 (1)补充一系列不同种类的用作差、作商等比较法证明不等式的例题。 (2)补充一组证明不等式的变式练习。 (3)在作业中补充何时该用作差法,何时用作商法的习题,帮助同学们更好地理解比较法。 3.教学方法 独立探究,合作交流与教师引导相结合。 三.教具准备 水杯、水、白糖、调羹、粉笔等 四.教学过程 (一)、新课学习: 1.作差比较法的依据: a b a >b ? > - a a =b b - ? = a a

导数证明不等式题型全

导数题型一:证明不等式 不等式的证明问题是中学数学教学的一个难点,传统证明不等式的方法技巧性强,多数学生不易想到,并且各类不等式的证明没有通性通法.随着新教材中引入导数,这为我们处理不等式的证明问题又提供了一条新的途径,并且在近年高考题中使用导数证明不等式也时有出现,但现行教材对这一问题没有展开研究,使得学生对这一简便方法并不了解.利用导数证明不等式思路清晰,方法简捷,操作性强,易被学生掌握。下面介绍利用单调性、极值、最值证明不等式的基本思路,并通过构造辅助函数,证明一些不等式。 一.构造形似函数型 例1.求证下列不等式 (1)) 1(2)1ln(22 2x x x x x x +-<+<-),0(∞+∈x (相减) (2)πx x 2sin >)2,0(π ∈x (相除两边同除以x 得π2 sin >x x ) (3)x x x x -<-tan sin )2, 0(π∈x (4)已知:)0(∞+∈x ,求证x x x x 11ln 11<+<+;(换元:设x x t 1+=) (5)已知函数()ln(1)f x x x =+-,1x >-,证明:11ln(1)1x x x - ≤+≤+ 巩固练习: 1.证明1>x 时,不等式x x 132- > 2.0≠x ,证明:x e x +>1 3.0>x 时,求证:)1ln(2 2 x x x +<-

4.证明: ).11(,3 2)1ln(3 2<<-+-≤+x x x x x 5.证明: 331an x x x t +>,)2 ,0(π∈x . 二、需要多次求导 例2.当)1,0(∈x 时,证明:22)1(ln )1(x x x <++ 例3.求证:x >0时,211x 2 x e x ->+ 例4.设函数f (x )=ln x + 2a x 2-(a +1)x (a >0,a 为常数).若a =1,证明:当x >1 时,f (x )< 12x 2-21 x x +三、作辅助函数型 例5.已知:a 、b 为实数,且b >a >e ,其中e 为自然对数的底,求证:a b >b a . 例6.已知函数f(x)=ln(1+x)-x,g(x)=xlnx, (i)求函数f(x)的最大值; (ii)设0>b a ,证明b a b a b a b a ≤++)2 ( (3)若2021π << 四、同增与不同增

相关文档
最新文档