磁共振对比剂的研究概况

磁共振对比剂的研究概况
磁共振对比剂的研究概况

中国校外教育教学研究

下旬刊08/2019磁共振对比剂的研究概况

◆陈斌

(皖北卫生职业学院)

【摘要】自1973年L a u t e r b u r 首次将磁共振成像(M R I )技术应用于疾病诊断以来,在扫描序列种类、时间分辨率和图像质量方面均得到迅速发展。统计发现,M R I 检查病例中约30%需使用对比剂来改变体内局部组织中水质

子的弛豫时间,提高正常与病灶的成像对比度,从而使M R I 能更敏感地检测微小病灶或特异性病灶。因此,研究新型的M R I 对比剂及示踪技术,对于实验影像学特别是分子影像学,具有广阔的应用前景和潜在的市场价值。

【关键词】磁共振对比剂M R I

一、磁共振成像造影剂

磁共振成像(m a g n e t i c r e s o n a n c e i m a g i n g ,M R I )技术主要是利用生物体不同组织中水分子质子在外加磁场

影响下产生不同的共振信号来成像,信号的强弱取决于

组织内水的含量和水质子的弛豫时间。水占人体总重

的2/3以上,人体各种组织、器官的水含量存在着差

异。许多疾病的病变过程都会导致水含量的改变,并

通过质子共振成像表现出来。M R I 可获得丰富的诊断

信息,与计算机断层照相术(c o m p u t e ra s s i s t e dt o m o Gg r a p h y ,C T ),及核素成像相比没有放射引起的电离损害。此技术已广泛应用于人体的头部、神经系统、腹

部及血管的造影,对检测组织坏死、局部缺血和各种恶

性病变特别有效,并能进行早期诊断,监测人体循环系

统的代谢,其成像对比度优于C T 扫描术。

M R I 临床应用的早期,由于其优良的软组织分辨

力,许多学者认为不需要造影剂。但随着临床应用的

逐步开展,人们发现某些不同组织或肿瘤组织的弛豫时

间相互重叠使M R I 诊断困难,而且M R I 不能进行动态

扫描和测定器官的功能,随着德国先灵公司G d -D T P A 的成功开发,医生们发现增强提供的信息远多于平扫,

这激励着各国研究者努力开发各种不同类型的造影剂,

以提高M R I 的诊断性能,扩大其应用范围,研究较多

的包括M n-D P D P 、G d-B O P T A 、G d-E O B -D T P A 、超顺磁性氧化铁(S P I O )等。而且,近年来M R I 技术在扫描序列种类、时间分辨率及图像质量等方

面均有显著提高,这都得益于磁共振对比剂的出现和

发展。

二、磁共振对比剂的基本要求

应用于人体的M R I 造影剂,首先必须满足药物的

基本要求,如具有生物相容性、低毒性,良好的水溶性

和足够的稳定性等,此外,还应具备以下特性。

1.高弛豫率弛豫率(R e l a x i v i t y ,R ),定义为造影剂中含铁浓度与弛豫时间T 2倒数(1/T 2)的直线方程的斜率。是反映

磁共振造影剂对横向驰豫过程速率的影响程度,弛豫率

越大,负性造影剂的造影效果也就越明显,获得的M R I 图像更清晰,是评价造影剂的重要指标之一。

2.组织或器官选择性M R I 常规对比剂的应用能够改变病灶的信号强度,

但是在病灶尤其是微小病灶的定性方面仍有困难,为进一步提高诊断的特异性,理想的造影剂应该能选择性地富集于靶组织或器官,具有高度的选择性或特异性。靶向造影剂大部分由载体介导到达靶位点,这就要求载体本身与靶位点具有特异性、高度亲合性,而且与磁性物质结合后稳定。常用的载体有单克隆抗体、受体蛋白、多肤、多聚糖、脂质体等。器官、组织、细胞甚至分子靶向性的磁共振成像造影剂是目前研究的一个热点,肝胆、网状内皮系统对比剂己经进入临床使用,分布于血液的血池造影剂也已进入临床试验,但抗体受体型的对比剂仍处于动物实验阶段。3.低毒性一些游离的稀土金属离子毒性虽强,但其配合物毒性很低,而且因具有较多的未成对电子,易形成稳定的配合物,具有相对较长的电子自旋弛豫时间,也就是具有较强的顺磁性。如G d 3+具有很强的顺磁作用,但毒性很大不能以离子形式注入生物活体内,D T P A (p e n t e t i c a c i d ,喷替酸)是核医学中常用的配位基,与G d 3+鳌合后可降低的G d 3+毒性,且G d 3+-D T P A 稳定性很高,配合常数为1023,在生物体内无G d 3+与D T P A 配体分离的现象。4.在体内有适当的存留时间而又易于从体内排除造影剂在体内有适当的存留时间,可以为成像提供必要的时间,但又易于从体内排除,不至于在体内蓄积。如AM I -25(即f e r u m o x i d e s ,菲立磁)在人类血中的半衰期是2h ,但其颗粒尺寸最易被肝脏中的网状内皮细胞所摄取,因而它们很快从循环血液中清除掉,注射剂量的70%由肝脏聚集,并且至少12h 后才开始从肝中排除发生衰减,造影效应可以持续较长时间。三、磁共振对比剂的应用近年来兴起的分子影像学,是一门涉及影像学与现代分子生物学及其他学科的边缘学科,它通过无创性的方法,在细胞和分子水平检测活体分子的主要事件,显示体内特异性基因或蛋白质表达的部位、水平、分布及持续时间等。其中,将S P I O 作为特异性对比剂设计相应的分子探针,再结合各种病变的特点进行M R I 成像并做出评估,已经成为研究的热点,具体用于以下几个方面。1.示踪体外和活体干细胞(如神经干细胞、胚胎干细胞和间充质干细胞等)用于辨别干细胞移植后在受体中的迁徙、增殖情

95

磁共振成像造影剂的合成与应用

磁共振成像造影剂的合成与应用 自从1973年Lauterbur首次实现磁共振成像(MRI)以来,这一技术在生物、医学等领域得到迅速发展和广泛应用。 MRI技术的基本原理与脉冲傅利叶变换核磁共振技术相似,不同的是它增设了一个线性剃度磁场,对样品磁核进行“空间编码”,使处于不同空间位置的同种磁核有不同的共振频率,在利用投影重建或傅利叶变换方法就能得到磁核的空间分布图像。这种技术弥补了计算机X射线断层照相术(CT扫描术)的不足,对检测组织坏死、局部缺血和各种恶性病变特别有效,并能对其进行早期诊断;对人体各循环系统的代谢过程进行监测,其成像对比度优于CT扫描术。 随着MRI在临床的广泛运用,人们对进一步提高磁共振影像对比度提出了更高的要求。其中运用的最多的就是运用造影剂改变组织的磁共振特征性参数,即缩短驰豫时间。在各类磁共振造影剂中,研究的最多的是多胺多羧酸类钆配合物,如经典的二亚乙基三胺五乙酸(DTPA)和1,4,7,10,四氮杂环十二烷, N,N’,N’’,N’’’四乙酸(DOTA)钆配合物。 HOOCCOOH NNCOOHHOOC NNNNNHOOCCOOHCOOHHOOCCOOH DTPA DOTA 将DTPA和DOTA为基本骨架进行修饰,可以提高一些方面的性能。如在骨架上引入各类基团,可以增强配合物的稳定性、改变其疏水性能、提高组织或器官选择性。将配合物修饰为电中性,使之渗透压与血浆相近,可以降低毒副作用。将小分子钆配合物结合到大分子上,可以改变它们的生物物理学和药理学的性质,引起很多科学家的重视。

高分子的造影剂在血管中有较长的保留时间,而且比较起小分子造影剂来说能够提高磁共振的驰豫效果。常见的含钆配合物的高分子磁共振造影剂有以下几类: 1. 配合物在聚合物侧链的造影剂: 高分子链采用经典的化学方法,将伯胺用酰化、烷基化、还原胺化等方法进行功能化,可以 在侧链上引入配合物,目前主要是用常见的试剂,如DTPA或者二亚乙基三胺五乙酸酐(DTPAA)来功能化高分子。将这些配体的羧基基团与大分子侧链上的活性的伯胺反应,通过形成酰胺键的形式将配合物结合到大分子的侧链,连接的配体与DTPA自身比较有些改变:一个乙酸变成了酰胺,但是还是八配位的.由于取代一个酰胺,将影响配合物的驰豫性能。 OOOOOO ligand++--NHNHNHNHHCOHCO33 )(CH)(CH))(CH(CH(CH)2323)2323(CH2323 NHNHRNH2NHR2NH2NHR Weissleder等用聚赖氨酸(PLL)骨架侧链上的胺基与DTPA等配体反应得到大分子钆配合物.由于分子链上连接了大量的钆配合物,并显示出了很高的驰豫效率[1,2]. 2. 主链含配合物的线性聚合物造影剂 Kellar等通过α,ω二胺基的不同分子量的聚PEG与配体反应制备了一系列线性聚合物[3]。这些物质与前面讨论的连接在聚合物侧链的复合物不同,它们的 配合物直接连接在聚合物的主链中,他们还制备了一系列不同分子量,通过酰胺 OO

化学交换饱和转移类对比剂在磁共振成像中的研究进展

万方数据

万方数据

万方数据

化学交换饱和转移类对比剂在磁共振成像中的研究进展 作者:吴春苗, 靳激扬, WU Chunmiao, JIN Jiyang 作者单位:东南大学附属中大医院放射科,南京,210009 刊名: 国际医学放射学杂志 英文刊名:INTERNATIONAL JOURNAL OF MEDICAL RADIOLOGY 年,卷(期):2009,32(5) 被引用次数:3次 参考文献(23条) 1.Ward KM;Aletrus AH;Balaban PS A new class "of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) 2000 2.Zhang S;Wu K;Biewer MC1H and 17O NMR detection of a lanthanide-bound water molecule at ambient temperatures in pure water as solvent 2001 3.Aime S;Barge A;Castelli DD Paramagnetic lanthanide (Ⅲ) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications 2002 4.Goffeney N;Butte JW;Duyn J Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange 2001 5.Terreno E;Castelli DD;Cravotto G Ln (Ⅲ)-DOTAMGly complexes:a versatile series to assess the determinants of the efficacy of paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging applications 2004 6.Terreno E;Cabella C;Carrera C From spherical to osmotically shrunken paramagnetic liposomes:an improved generation of LIPOCEST MRI agents with highly shifted water protons 2007 7.Zhou J;Lal B;Wilson DA Amide proton transfer (APT) contrast for imaging of brain tumors 2003 8.Zhou J;Wilson DA;Sun PZ Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX,CEST,and APT experiments 2004 9.Aime S;Delli Castelli D;Terreno E Supramolecular adducts between poly-L-arginine and[TmIIIdotp]:a route to sensitivityenhanced m magnetic resonance imaging-chemical exchange saturation transfer agents 2003 10.Aime S;Delli Castelli D;Terreno E Highly sensitive MRI chemical exchange saturation transfer agents using liposomes 2005 11.Aime S;Delli Castelli D;Lawson D Gd-loaded liposomes as T1,susceptibility,and CEST agents,all in one 2007 12.Aime S;Carrera C;Deili Castelli D Tunable imaging of cells labeled with MRI-PARACEST agents 2005 13.Gilad AA;van Laarhoven HW;McMabon Mr Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles 2009 14.Zhou J;Blakeley JO;Hua J Practical data acquisition method for human brain tumor amide proton transfer(APT) imaging 2008 15.Liu G;Ali MM;Yoo B PARACEST MRI with improved temporal resolution 2009 16.Gilad AA;McMahon MT;Walczak P Artificial reporter gene providing MRI contrast based on proton exchange 2007

关于磁共振成像技术的学习心得体会-学习心得体会

关于磁共振成像技术的学习心得体会-学习 心得体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而

却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个栗子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE磁共振平台的MERGE序列较常规梯

对比剂不良反应的应急预案

五对比剂不良反应的预防与应急预案 1做好患者的心理护理,患者情绪的紧张和焦虑可诱发和加重对比剂不良反应,因此必须向患者做好耐心解释,给患者以安全感,营造温馨愉快的检查气氛,解除患者心理负担,并提前告知患者静脉推注对比剂后会出现的感觉,如发热、恶心、发痒等,让患者有所了解,缓解患者紧张情绪,减少不良反应的发生。 2详细询问药物或其他过敏史,特别是药物和对比剂过敏史,了解患者全身情况,尤其是肝、肾和心脏功能,严格掌握适应证和禁忌证及有无高危因素。 3增强检查扫描前一般进食半饱,避免空腹或进食过饱,以免刺激或加重检查过程中不良反应的发生。 4对比剂使用前先做过敏试验,扫描前预防性用药,常规静脉注射地塞米松10mg,可减少或减轻过敏反应的发生,提高对对比剂的耐受力。 5严格控制对比剂的用量,掌握注射速度。对比剂的应用量应控制在能达到诊断目的的水平即可,尽量少用。 6推注药液过程中,严密观察患者的生命体征及用药后的反应,一旦发生过敏反应,立即停止推注,给予抗过敏处理。 7增强扫描结束后,常规嘱患者多饮水以利对比剂排泄,观察30min方可离去。如发生轻度不良反应则要相应延长观察时间,以防止对比剂延迟反应的发生。 轻度反应患者可出现头痛、头晕、恶心呕吐、荨麻疹、面部潮红、眼睑口唇水肿、流涕、喷嚏、流泪、胸闷气促、呼吸困难等反应。这些反应于对比剂的用量及给药方式无关。如出现上述症状,应立即停止注入对比剂,积极处理过敏反应。 1首先静脉注射地塞米松5~10mg,0.1%盐酸肾上腺素0.5~1mg,必要时15min 后重复一次。 2持续氧气吸入,保持呼吸道通畅。 3异丙嗪25mg肌肉注射。 4呼吸困难、喘弊者给予氨茶碱0.5g加入液体中静脉点滴。 5密切观察患者体温、脉搏、呼吸、血压、瞳孔的变化,并做好记录。 6碘过敏反应轻微者多能在短时间内自行缓解,无需特殊治疗处理。 重度反应患者可出现喉头水肿、脉搏细弱、口唇紫绀、呼吸困难、脸色苍白、皮温降低、血压下降、中枢性抽搐,以至休克。发现上述情况,应立即停止检查,就地抢救。 1平卧、保暖、氧气吸入。 2立即使用肾上腺素、地塞米松、异丙嗪等抗过敏药物。 3针刺人中、十宣、涌泉等穴,或耳针取神门、肾上腺等穴。 4对神经血管性水肿着可肌注非那根25-50mg;喉头或支气管痉挛者,皮下或肌 注0.1℅肾上腺素0.5-1.0ml,或安茶碱0.5-1.5g或喘定1-2g置于生理盐水或葡萄糖液200-400ml中静脉滴注;静脉滴注氢化可的松100-400mg或肌注地塞米松5-10mg,以抑制机体的过敏反应;经上述处理,病情不见好转,血压不见回升者,需补充血容量,并酌情给予多巴胺、阿拉明等升血压药物,呼吸受喉头水肿者可行气管切开,山梗菜碱等呼吸兴奋剂,抑制者可应用尼可刹米、. 呼吸心跳骤停者行人工呼吸及胸外心脏按压等。根据情况予以输氧、抗颠痫和抗休克治疗。

主要含钆磁共振造影剂的问题

现有主要含钆磁共振造影剂的问题 含钆造影剂的应用历史 含钆磁共振成像(MRI)造影剂(含钆造影剂)用以提高图像的对比度,使身体各部分的异常组织或患处显像。主要用于头部、脊柱和全身等的核磁共振成像(MRI)检查。通过静脉注射入人体内。游离的钆具有高毒性,在体内分布于骨骼和肝脏,并可迅速导致肝脏环死。所有的含钆造影剂都是螯合物,螯合后能改变其在体内的分布以确保图像对比强度,同时改善其毒副作用。 含钆造影剂于1976年进行动物实验,1987年经美国食品药品监督管理局(FDA)批准后在美国正式投入使用。钆双铵(Gadodiamide)是第—个应用于临床的含钆造影剂,其分子量约500道尔顿。其他类型的含钆造影剂还有:钆喷酸葡胺(Gadopcntetate dimeglumine)、钆贝葡胺(Gadobenate dimeglemine)、钆特醇(Gadoteridol)、钆特酸葡胺(Gadoterate meglumine)等,含钆造影剂分为离子型和非离子型,一般认为非离子型渗透压较低,安全系数更高。在我国,含钆造影剂钆喷酸葡胺注射液(商品名:马根维显)首先于1988年获得进口批准,目前我国上市的含钆类造影剂有钆贝葡胺注射液(商品名:莫迪司)、钆双胺注射液(商品名:欧乃影)、钆喷酸葡胺注射液和钆特酸葡胺注射液(商品名:多它灵)。 含钆造影剂存在的主要问题 1、含钆造影剂引起的肾源性系统纤维化 含钆造影剂可能诱发NSF不是最近才发现的。早在2006年1月,奥地利一项研究中报道5名NSF患者可能与使用过含钆造影剂相关。随后丹麦医药管理局于2006年5月报告了25例使用含钆造影剂后发生NSF的病例,其中20例发生在丹麦,5例发生在奥地利。同年6月美国也通告了此信息。随着与含钆造影剂有关的NSF病例报告逐渐增多,多项相关研究的陆续发表,美国FDA于2006年12月更新了含钆造影剂可能会诱发NSF的信息,认为含钆造影剂与NSF有一定的相关性。英国等欧盟国家于2007年2月警告了含钆造影剂可能引起NSF 的风险,并修改了含钆造影剂的说明书。

第六章 磁共振成像对比剂

第六章磁共振成像对比剂 磁共振成像的优势之一是具有良好的组织对比,使MR 发现病变的敏感性显著提高。但是,正常组织与病变组织的弛豫时间有较大的重叠,仅有MR平扫,定性诊断困难,而且有时难以发现小病灶。磁共振成像对比剂能改变组织的弛豫时间,改变组织的信号强度,从而提高组织对比。 1.磁共振对比剂的分类 根据MRI对比剂在体内的分布,磁敏感性、对组织的特异性等将磁共振成像对比剂分为细胞内外对比剂、磁敏感性对比剂和组织特异性对比剂三大类。也可根据化学结构分类。 1.1细胞内、外对比剂 ·细胞外对比剂细胞外对比剂是应用最早、目前应用最广泛的钆制剂属此类对比剂。它在体内非特异性分布,可在血管内或细胞外间隙自由通过。 ·细胞内对比剂以体内某一组织或器官的一些细胞作为目标靶来分布。如网织内皮系统对比剂和肝细胞对比剂。此类对比剂注入静脉后,立即从血中廓清并与相关组织结合。可使摄取的组织与摄取对比剂的组织之间产生对比。 1.2磁敏感性对比剂 物质在磁场中产生磁性的过程称为磁化。不同物质在单位磁场中产生磁化的能力称为磁敏感性(也称磁化率),用磁化强度表示。根据物质磁敏感性的不同,MRI对比剂可分为顺磁性、超顺磁性和铁磁性三类。 1.2.1顺磁性对比剂 顺磁性对比剂中顺磁性金属原子的核外电子不成对,故磁化率较高,在磁场中具有磁性,而在磁场外则磁性消失。如镧系元素钆、锰、铁等均为顺磁性金属元素,其化合物溶于水时,呈顺磁性。 顺磁性对比剂浓度低时,主要使T1缩短,浓度高时,主要使T2缩短,超过T1效应,使MR信号降低。常用T1效应作为T1加权像中的阳性对比剂。 1.2.2超顺磁性对比剂 超顺磁性对比剂是指由磁化强度介于顺磁性和铁磁性之间的各种磁性微粒或晶体组成的对比剂。其磁化速度比顺磁性物质快,在外加磁场不存在时,其磁性消失,如超顺磁性氧化铁(superparamagnetic iron oxide,SPIO)。 1.2.3铁磁性对比剂

对比剂过敏反应处理制度

对比剂过敏反应处理制 度 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

对比剂过敏反应处理应急预案 在应用对比剂时,对比剂的浓度越高、剂量越大、注射速度越快,过敏反应会机率会越高。所以在介入治疗过程中除应严格控制对比剂应用外,还要做好对比剂不良反应的识别及对症处理。 一、轻度不良反应 1、临床表现:患者会出现面色潮红、恶心呕吐、头晕、皮肤瘙痒、球 结膜充血、少数红疹、轻度荨麻疹等。 2、处理:出现类似情况时,应暂时停止注射对比剂,让患者安静休息 并密切观察发展趋势,一般无需用药症状自行缓解,必要时遵医嘱应用地塞米松或其他抗组胺药物。患者须观察至少30min方可离开导管室,由医务人员车床护送回病房并做好交接班。 二、中度不良反应 1、临床表现:患者可出现胸闷、气短、剧烈呕吐、腹痛腹泻、大量皮 疹、球结膜充血、血压可出现短暂性下降。 2、处理:出现此类叫危急的反应,应立即停止注射对比剂,患者平卧 吸氧,保持呼吸道的通畅;遵医嘱应用抗过敏药物:如地塞米松、非那根等,肌注抗组胺药物、皮下注射肾上腺素等药物对症处理。同时应做好护理记录并观察30min病情稳定后由医务人员用车床护送回病房,做好交接班。 三、严重不良反应 1、临床表现:患者会出现意识模糊、血压下降、脉搏细速、呼吸衰竭、 心跳骤停等严重循环衰竭的表现。

2.处理:一旦出现严重不良反应,必须立即停止注射对比剂就地抢救, 遵医嘱应用抗过敏药物、抗组胺药物、肾上腺素等药物、呼吸囊辅助呼吸等对症处理,同时通知相关科室进行协助抢救;若出现呼吸心跳骤停,应立即进行CPR、气管插管以确保患者呼吸道通畅。病情稳定后护送CCU观察,并做好抢救记录及交接班。

磁共振成像技术实验

目录 第一章NM20台式磁共振成像仪硬件概述....................... 错误!未定义书签。 第一节系统硬件框图 ......................................... 错误!未定义书签。 第二节部件接插口.............................................. 错误!未定义书签。 第三节部件连线 ................................................ 错误!未定义书签。 第四节系统开关机 0 第二章NMI20台式磁共振成像仪软件概述 ...................... 错误!未定义书签。 第一节软件界面............................................... 错误!未定义书签。 第二节软件菜单栏介绍....................................... 错误!未定义书签。 第三节软件工具栏介绍 ........................................ 错误!未定义书签。 第四节功能选项卡 ............................................ 错误!未定义书签。第三章部分可开设的实验项目 (2) 实验一机械匀场和电子匀场实验 (2) 实验二测量磁共振中心频率(拉莫尔频率) (9) 实验三旋转坐标系下的FID信号 (16) 实验四自动增益实验 (24) 实验五硬脉冲回波 (29) 实验六软脉冲FID实验 (38) 实验七软脉冲回波 (43) 实验八硬脉冲CPMG序列测量T2 (49) 实验九乙醇的化学位移测量 (54) 实验十自旋回波序列质子密度像 (59) 实验十一自旋回波权重像 (66) 实验十二一维梯度编码成像 (70)

第7章磁共振成像对比剂

第7章磁共振成像对比剂 1高浓度顺磁造影剂对质子弛豫时间的影响为 缩短,T2改变不大 缩短,T2延长 延长,T2缩短 缩短,T2缩短 延长,T2延长 2超顺磁性颗粒造影剂对质子弛豫时间的影响为 缩短,T2缩短 缩短,T2延长 不变,T2缩短 不变,T2延长 延长,T2缩短 3铁磁性颗粒造影剂对质子弛豫时间的影响为 缩短,T2缩短 缩短,T2延长 不变,T2缩短 不变,T2延长 延长,T2缩短 4顺磁性物质缩短T1和T2弛豫时间与哪种因素有关 A.顺磁性物质的浓度 B.顺磁性物质的磁矩 C.顺磁性物质局部磁场的扑动率 D.顺磁性物质结合的水分子数 E.以上均是 5、使用MRI对比剂的目的主要是 A、增加病灶的信号强度 B、降低病灶的信号强度 C、提高图像的信噪比和对比噪声比,有利于病灶的检出 D、减少图像伪影 E、用于CT增强未能检出的病灶 6、目前临床最常用MRI对比剂是 A、Mn-DPDP B、Gd-DTPA C、Gd-EOB-DTPA D、SPIO E、USPIO 的不良反应可包括: A.头晕 B.头痛 C.恶心 D.心前区不适 E.以上均是 8.对比增强MRA对流动失相位不敏感的主要原因是: A、注射了造影剂、 B、扫描速度更快、 C、选择了很短的TR和TE、 D、应用了表面线圈、

E、应用了高切换率的梯度场、 D、主要是由于静止组织信号明显衰减,血流呈现相对高信号。 E、注射造影剂有助于保持梯度回波序列的血流高信号。 9.GD—DTPA的临床应用常规剂量为: A、kg体重 B、1mmol/kg体重 C、2mmol/kg体重 D、3mmol/kg体重 E、4mmol/kg体重 10、Gd-DTPA增强可用于: A、鉴别水肿与病变组织 B、碘过敏不能行CT增强者 C、在一定过程上区分肿瘤性病变与非肿瘤性病变 D、发现脑膜病变 E、以上均对 11.属网状内皮细胞性MR特异对比剂的是 A.钆喷替酸葡甲胺与大分子蛋白质结合物B.锰螯合物,如Mn-DPDP C.钆螯合物,如Gd-EOB-DTPA D.极小的超顺磁氧化铁颗粒 E.超顺磁氧化铁颗粒,如AMI-25等 12.下列有关MR对比剂的叙述哪项正确 A.利用对比剂的衰减作用来达到增强效果B.利用对比剂本身的信号达到增强效果C.直接改变组织信号强度来增加信号强度 D.通过影响质子的弛豫时间,间接地改变组织信号强度 E.通过改变梯度场的强度来进行增强 13MR对比剂的增强机理为 A.改变局部组织的磁环境直接成像 B.改变局部组织的磁环境间接成像 C.增加了氢质子的个数 D.减少了氢质子的浓度 E.增加了水的比重 14低浓度顺磁造影剂对质子弛豫时间的影响为( A) 缩短,T2改变不大 缩短,T2延长延长,T2缩短 缩短,T2缩短延长,T2延长 15.下列颅内肿瘤注射造影剂后增强不明显的是 A.脑膜瘤 B.垂体瘤 C.听神经瘤 D.脑转移瘤 E.脑良性胶质瘤 16.关于细胞外对比剂的描述,错误的是 A.应用最早、最广泛 B.钆制剂属此类对比剂

磁共振造影剂市场情况介绍

现有磁共振造影剂市场情况介绍影响造影剂市场的因素 社会经济水平的提高 一个国家的医学发展水平是和其整体经济、文化、科技发展水平以及人民的收入水平相称的。改革开放30 年来,我国的综合国力、科技发展水平、医学发展水平都大大提高,整体医疗水平与发达国家的差距明显缩小。 医学影像学科(主要是放射科)是临床医学的一个分支。同其他医学学科一样,医学影像学科在改革开放的30年里实现了快速的发展。随着癌症等重要疾病越来越受到社会和患者的重视,医学影像学科在可预见的将来必将保持快速的发展。造影剂作为医学影像学科必不可少的诊断与鉴别诊断用药品,其市场前景也将十分广阔。 影像诊断和治疗设备的广泛使用 医学影像学科对设备条件的依赖度非常高。过去我国的设备水平与发达国家差距很大。改革开放极大地提高了我国各级医院的经济实力。近年来,全国各地各级医院先进影像检查设备增加和更新很快。如1.5T、3.0T 的磁共振机,现在已经成为省级三甲医院的标准配置,甚至已经进入了发达地区的县级医院。目前,国际上最先进的检查和治疗设备几乎是同时在国内和国外发布,甚至首先在国内发布。随着检查设备的进步,医学影像检查的速度加快、准确性提高,医学影像学科在医院中的地位大大提高,各科医生对医学影像学科更加信赖和依赖,因此各级医院所完成检查的病人数量逐年增加。 影像诊断和治疗方法的提高 设备条件的改善为医学影像学科提供了许多新的检查方法和工作领域,对造影剂的需求也越来越大。过去造影剂主要用在脏器的增强扫描,现在应用领域已经大大扩展。如磁共振的“造影剂增强血管成像(CE-MRA)”等新的检查方法就是近年来随着设备性能的提高而发展起来的。另外,心血管的介入检查和治疗也在各级医院逐渐推广。这些方法都要大量用到造影剂。随着这些方法的逐渐推

磁共振常用英文缩写

磁共振常用英文缩写 A ACR 美国放射学会 ADC 模数转换器、表面扩散系数 B BBB 血脑屏障 BOLD 血氧合水平依赖性(成像法) C CBF 脑血流量 CBV 脑血容量 CE 对比度增强 CSI 化学位移成像 CHESS 化学位移选择性(波谱分析法) CNR 对比度噪声比 CNS 中枢神经系统 Cr 肌酸 CSF 脑脊液 D DAC 数模转换器 DDR 偶极-偶极驰豫、对称质子驰豫

DICOM 医学数字成像和通信标准 DTPA 对二亚乙基三胺五乙酸 DWI 扩散加权成像 DSA 数字减影成像术 DRESS 磷谱研究所用空间定位法,又称深度分辨表面线圈波普E EPI 回波平面成像 TE 回波时间 ETL 回波链长度 ETS 回波间隔时间 EVI 回波容积成像 EDTA 乙二胺四乙酸 ETE 有效回波时间 EPR 电子顺磁共振 ESR 电子自旋共振 F FFT 快速傅里叶变换 FLASH 快速小角度激发 FSE 快速自旋回波 FE 场回波 FID 自由感应衰减 FOV 成像野

FISP 稳定进动快速成像 FLAIR 液体抑制的反转恢复 fMRI 功能磁共振成像 FID 自由感应衰减信号 FIS 自由感应信号 FT 傅里叶变换 FWHH 半高宽 G GM 灰质 GMC 梯度矩补偿 GMN 梯度矩置零 GMR 梯度矩重聚 GRE 梯度回波 H HPG-MRI 超极化气体磁共振成像术I IR 反转序列 IRSE 反转恢复自旋回波序列 K K-space K空间 L LMR 定域磁共振

M MRA 磁共振血管成像 MRCM 磁共振对比剂 MRI 磁共振成像 MRM 磁共振微成像 MRS 磁共振波谱学 MRSI 磁共振波谱成像 MRV 磁共振静脉造影 MT 磁化转移 MTC 磁化转移对比度 MAST 运动伪影抑制技术 MIP 最大密度投影法 MTT 平均转运时间 MESA 多回波采集 MPR 多平面重建 MP-RAGE 磁化准备的快速采集梯度回波序列MS-EPI 多次激发的EPI N NEX 激励次数 NMR 核磁共振 NMRS 核磁共振波谱学 NSA 信号(叠加)平均次数

造影剂

CT、磁共振检查为什么要注射造影剂? 浙江在线健康网https://www.360docs.net/doc/ef1203782.html, 2012年11月23日 浙江在线健康网11月23日讯(通讯员张颖颖)人体中的病变五花八门、形形色色,随着现代医学日新月异发展,诊断设备及检测手段越来越多。一些常见病及疑难病症,通过医学影像学检查都能作出早期准确诊断。很多患者都疑问CT、磁共振扫描为什么又要从静脉内注射造影剂作增强检查,甚至需要病人或家属签字,许多患者存在不解和疑惑。 杭州市红十字会医院放射科司马斌医生说,患者需正确理解其必要性,消除恐惧心理,以主动接受配合完成此项检查。司马斌说,CT、磁共振检查有平扫和增强扫描之分,临床上有些疾病只需平扫就能够得到明确诊断。还有一些病变,在平扫时不能被发现和明确诊断,必须做增强扫描,尤其是肿瘤。注射造影剂后进行扫描,称之为增强扫描,其目的主要是增加病变组织与正常组织的密度差别,让病灶“暴露无遗”,同时根据病灶的血供及周围血管分布情况进行诊断与鉴别诊断,以及做手术前疗效评估都很有帮助的。 增强扫描意义有以下几个方面:1、提高对病灶尤其是小病灶的检出率。2、提高对病灶的定性能力。3、在已确定为恶性肿瘤的,增强扫描的目的在于提高肿瘤分期的准确性,或判断肿瘤手术切除的可能性。4、对于血管性病变的诊断和显示,动态增强扫描更是必不可少的;如颅脑、腹腔内有一个小结节或小肿块,通过增强扫描,它可以鉴别究竟是血管影还是肿瘤或小的淋巴结。 具体说,人体各系统增强扫描主要的适应症为:1.颅脑:脑肿瘤、脑血管病变、颅内感染性病变和先天变异等; 2.胸部:适应于病变与正常组织密度相近的病灶、鉴别病变与血管断面、观察病变血供情况、血管本身有无病变;3.腹部:肝癌、肝血管瘤、局限性脂肪肝、肝门癌栓、胆管及胆总管病变、胰脾占位性病变及腹腔肿块等; 4.其他血管性病变以及其他部位病变等。一般CT、磁共振增强无绝对禁忌症,但对急性脑外伤、脑卒中、药物过敏、哮喘、肾衰、心肺功能不全的患者增强需要慎重。 CT检查使用造影剂,为三碘苯环的衍生物,分为两类:一类是离子型造影剂,另一类是非离子型造影剂。前者是三碘苯甲酸的盐,主要是钠盐和葡甲胺盐如泛影葡

2020年医用设备使用人员(MRI技师)业务能力考评 章节题库(MRI技师-磁共振成像对比剂)【圣才

2020年医用设备使用人员(MRI技师)业务能力考评章节题库 第三篇MRI技师 第7章磁共振成像对比剂 试卷大题名称:单项选择题 试卷大题说明:以下每一道考题下面有A、B、C、D、E五个备选答案。请从中选择一个最佳答案。 1.应用Gd-DTPA增强扫描常用的技术是()。 A.T2WI B.T1WI C.PDWI D.DWI E.SWI 【答案】B 【解析】Gd-DTPA行增强扫描时,利用T1效应特性,选用T1加权脉冲序列。 2.MR对比剂的增强机制为()。 A.改变局部组织的磁环境直接成像 B.改变局部组织的磁环境间接成像 C.增加了氢质子的个数

D.减少了氢质子的浓度 E.增加了水的比重 【答案】B 3.关于磁共振对比剂的毒理学,错误的是()。 A.自由Gd离子化学毒性强 B.Gd-DTPA进入血液后很快能与血清蛋白结合形成胶体 C.Gd-DTPA不经肝脏代谢 D.Gd-DTPA对肾功能不全者慎用 E.Gd-DTPA发生严重不良反应的概率低 【答案】B 【解析】Gd离子(而非Gd-DTPA)进入血液后很快能与血清蛋白结合形成胶体。 4.在磁共振成像中,为区分水肿和肿瘤的范围常采用()。 A.T1加权成像 B.T2加权成像 C.质子密度加权成像 D.Gd-DTPA增强后的T1加权成像 E.增强后的T2加权成像 【答案】D 5.高浓度顺磁对比剂对质子弛豫时间的影响为()。

A.T1缩短,T2改变不大 B.T1缩短,T2延长 C.T1延长,T2缩短 D.主要使T2缩短 E.T1延长,T2延长 【答案】D 【解析】顺磁性对比剂浓度低时,主要使T1缩短。浓度高时,主要使T2缩短,超过T1效应,使MR信号降低。常用T1效应作为T1加权像中的阳性对比剂。 6.Gd-DTPA作用原理为()。 A.能显著缩短周围组织的弛豫时间 B.能显著延长周围组织的弛豫时间 C.可穿过血脑屏障 D.可进入有毛细血管屏障的组织 E.分布具有专一性 【答案】A 【解析】Gd-DTPA的主要成分钆为顺磁性很强的金属离子钆,能显著缩短周围组织的弛豫时间。有助于对小病灶及弱强化的病灶的检出。 7.顺磁性对比剂浓度低时,对质子弛豫时间的影响为()。 A.T1、T2均延长

磁共振成像概述

磁共振成像概述 磁共振成像( Magnetic Resonance Imaging )是利用人体内氢原子核在强磁场内共振产生影像的一种医学检查和诊断的方法。 ?MRI是什么? –——无线电波成像 ?MRI的特点? –——是软组织分辨率最高的影像检查手段 ?MRI的适应症? –——可适用全身检查 ?功能MRI是什么? –——可提供活体的结构、代谢信息 磁共振信号=无线电波 依据质子拉莫尔频率,其波长位于短波或超短波。 如:0.5T 拉莫尔频率为21.3MHz, 波长为14.08m(短波) 1.5T 拉莫尔频率为63.9MHz, 波长为4.69m(超短波) 磁共振成像的定义: 磁共振成像(magnetic resonance imaging,MRI)是利用射频(radio frequency,RF)电磁波对置于磁场中的含有自旋不为零的原子核的物质进行激发,发生核磁共振(nuclear magnetic resonance,NMR),用感应线圈采集磁共振信号,按一定数学方法进行处理而建立的一种数字图像。 核磁共振的含义:

核—磁共振现象涉及原子核(特别是氢原子核) 磁—磁共振过程发生在强大静磁场的巨大磁体内在静磁场上叠加射频场按时做激励诱发共振叠加梯度磁场进行空间标记并控制成像 共振—借助宏观世界自然现象解释微观世界的物理学原理(如音叉振动),核子间能量吸收与释放可产生共振(磁场中) 共振现象的三个基本条件 (1) 必须有一个主动振动的频率 (2)主动振动频率与被动振动的物体固有频率必须相同 (3) 主动振动物体具有一定强度并与被振动物体保持一定距离 磁共振具备三种磁场才能完成:即静磁场,梯度磁场,射频脉冲磁场。磁共振现象: 处于恒定磁场中的氢原子核,在特定频率(拉摩尔Larmor )的射频脉冲( RF ) 影响下交替吸收、释放能量的过程。 什么是核磁共振现象? 位于静磁场中的人体组织受到射频场的作用产生磁共振信号并利用梯度场进行空间编码实现对信号的定位,通过计算机的重建处理,从而得到图像。 1.人体磁共振的基本成像过程:人体未进入静磁场,体内氢质子群 磁矩自然无规律排列; 2. 进入静磁场,所有自旋的氢质子重新排列定向,磁矩指向N 或S 极; 3. 通过射频线圈与静磁场垂直方向施加射频脉冲,受检部位氢质子

对比剂不良反应的预防与应急预案

对比剂不良反应的预防与应急预案 1做好患者的心理护理,患者情绪的紧张和焦虑可诱发和加重对比剂不良反应,因此必须向患者做好耐心解释,给患者以安全感,营造温馨愉快的检查气氛,解除患者心理负担,并提前告知患者静脉推注对比剂后会出现的感觉,如发热、恶心、发痒等,让患者有所了解,缓解患者紧张情绪,减少不良反应的发生。 2详细询问药物或其他过敏史,特别是药物和对比剂过敏史,了解患者全身情况,尤其是肝、肾和心脏功能,严格掌握适应证和禁忌证及有无高危因素。 3严格控制对比剂的用量,掌握注射速度。对比剂的应用量应控制在能达到诊断目的的水平即可,尽量少用。 4推注药液过程中,严密观察患者的生命体征及用药后的反应,一旦发生过敏反应,立即停止推注,给予抗过敏处理。5手术结束后,常规嘱患者多饮水以利对比剂排泄,观察尿量。

6对比剂不良反应类型 1)轻度反应患者可出现头痛、头晕、恶心呕吐、荨麻疹、面部潮红、眼睑口唇水肿、流涕、喷嚏、流泪、胸闷气促、呼吸困难等反应。这些反应于对比剂的用量及给药方式无关。如出现上述症状,应立即停止注入对比剂,积极处理过敏反应。 ①首先静脉注射地塞米松5~10mg,0.1%盐酸肾上腺素0.5~1mg,必要时15min后重复一次。 ②持续氧气吸入,保持呼吸道通畅。 ③异丙嗪25mg肌肉注射。 ④呼吸困难、喘弊者给予氨茶碱0.5g加入液体中静脉点 滴。 ⑤密切观察患者体温、脉搏、呼吸、血压、瞳孔的变化, 并做好记录。 ⑥碘过敏反应轻微者多能在短时间内自行缓解,无需特 殊治疗处理。

2)重度反应患者可出现喉头水肿、脉搏细弱、口唇紫绀、呼吸困难、脸色苍白、皮温降低、血压下降、中枢性抽搐,以至休克。发现上述情况,应立即停止检查,就地抢救。 ①平卧、保暖、氧气吸入。 ②立即使用肾上腺素、地塞米松、异丙嗪等抗过敏药物。 ③对神经血管性水肿者可肌注非那根25-50mg;喉头或 支气管痉挛者,皮下或肌注0.1℅肾上腺素0.5-1.0ml,或安茶碱0.5-1.5g或喘定1-2g置于生理盐水或葡萄糖液 200-400ml中静脉滴注;静脉滴注氢化可的松100-400mg或肌注地塞米松5-10mg,以抑制机体的过敏反应;经上述处理,病情不见好转,血压不见回升者,需补充血容量,并酌情给予多巴胺、阿拉明等升血压药物,呼吸受抑制者可应用尼可刹米、山梗菜碱等呼吸兴奋剂,喉头水肿者可行气管切开,呼吸心跳骤停者行人工呼吸及胸外心脏按压等。根据情况予以输氧、抗颠痫和抗休克治疗。 ④对症处理。烦躁不安者给予镇静剂,肌肉软瘫无力者

磁共振造影剂市场情况介绍

磁共振造影剂市场情况介绍 现有磁共振造影剂市场情况介绍 影响造影剂市场的因素 社会经济水平的提高 一个国家的医学发展水平是和其整体经济、文化、科技发展水平以及人民的收入水平相称的。改革开放30 年来,我国的综合国力、科技发展水平、医学发展水平都大大提高,整体医疗水平与发达国家的差距明显缩小。 医学影像学科(主要是放射科)是临床医学的一个分支。同其他医学学科一样,医学影像学科在改革开放的30年里实现了快速的发展。随着癌症等重要疾病越来越受到社会和患者的重视,医学影像学科在可预见的将来必将保持快速的发展。造影剂作为医学影像学科必不可少的诊断与鉴别诊断用药品,其市场前景也将十分广阔。 影像诊断和治疗设备的广泛使用 医学影像学科对设备条件的依赖度非常高。过去我国的设备水平与发达国家差距很大。改革开放极大地提高了我国各级医院的经济实力。近年来,全国各地各级医院先进影像检查设备增加和更新很快。如1.5T、3.0T 的磁共振机,现在已经成为省级三甲医院的标准配置,甚至已经进入了发达地区的县级医院。目前,国际上最先进的检查和治疗设备几乎是同时在国内和国外发布,甚至首先在国内发布。随着检查设备的进步,医学影像检查的速度加快、准确性提高,医学影像学科在医院中的地位大大提高,各科医生对医学影像学科更加信赖和依赖,因此各级医院所完成检查的病人数量逐年增加。 影像诊断和治疗方法的提高

设备条件的改善为医学影像学科提供了许多新的检查方法和工作领域,对造影剂的需求也越来越大。过去造影剂主要用在脏器的增强扫描,现在应用领域已经大大扩展。如磁共振的“造影剂增强血管成像(CE-MRA)”等新的检查方法就是近年来随着设备性能的提高而发展起来的。另外,心血管的介入检查和治疗也在各级医院逐渐推广。这些方法都要大量用到造影剂。随着这些方法的逐渐推广普及,造影剂的使用量还将上升。 就医观念的变化 使用造影剂的增强扫描可以为临床提供更多的诊断信息,一次平扫加一次增强构成一次完整的检查,这种观念越来越被医生和病人所接受,因此医学影像检查时的增强比例越来越高,造影剂的需求量逐年增加。改革开放提高了国民的收入水平,过去显得昂贵的增强扫描费用已经可以被越来越多的病人所承受,不再成为严重的负担,加上患者对自身健康的要求水准提高,对明确诊断的需求加大,增强扫描的比例逐步提高,这也是导致造影剂的用量逐年增多的原因之一。 现有造影剂市场情况 造影剂市场发展迅速 造影剂是影像诊断检查和介入治疗时所必需的药品,对于疾病的准确诊断和合理治疗必不可少。近年来,造影剂的临床用量逐年增多,在可遇见的将来,这一趋势仍将继续下去,因此造影剂行业是一个地地道道的朝阳产业。 按照人们一般的认识,药是用来治病的。因此,诊断用药在很长一段时间里几乎成了“被遗忘的角落”。1998 年,中国药品费用总支出为 550亿元人民币,其中诊断用药只有2.5 亿元,仅占总费用的0.45%。从患者数量来看,1998 年进行影像诊断检查的病例为 1050 万人次,其中使用造影剂的只有170 万人次,仅占检查人数的16%。而且,这些数据还是在大部分常规诊断用药已经进入了国家和各省、市社保目录的前提下产生的。

学习心得:关于磁共振成像技术学习的点滴体会

关于磁共振成像技术学习的点滴体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 Q1 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出

不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个例子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE 磁共振平台的MERGE序列较常规梯度回波序列更敏感,那你就会根据临床需求而加扫MERGE这个序列了。当然这其中的原因很简单就是因为这些脊髓内病变的含水量没有那么丰富,在FSE序列T2加权像一般TE时间很长导致这些髓内病变的高信号衰减掉了,而在梯度回波我们可以在相对短的时间内获取准T2加

相关文档
最新文档