初三数学模拟题2

合集下载

中考数学模拟试卷及答案两套

中考数学模拟试卷及答案两套

山东省滕州市初中2016届九年级数学第一次模拟说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 请将第Ⅰ卷的正确选项用2B铅笔填涂在机读答题卡上;第Ⅱ卷用蓝、黑色的钢笔或签字笔解答在试卷上,其中的解答题都应按要求写出必要的解答过程.2. 本试卷满分为120分,答题时间为120分钟.3. 不使用计算器解题.第Ⅰ卷选择题36分一、选择题本大题共12个小题,每小题3分,满分36分在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 若m-n=-1,则m-n2-2m+2n的值是A. 3B. 2C. 1D. -12. 已知点A a,2013与点A′-2014,b是关于原点O的对称点,则ba 的值为A. 1B. 5C. 6D. 43. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为图1A .12,B .15,C .12或15,D .184. 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A. 1个B. 2个C. 3个5. 如图,在⊙O 中,弦AB,CD 相交于点P,若∠A=40°,∠APD=75°,则∠B=A. 15°B. 40°C. 75°D. 35°6. 下列关于概率知识的说法中,正确的是 A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨.B.“抛掷一枚硬币,正面朝上的概率是21”表示:每抛掷两次,就有一次正面朝上.C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖.D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是61”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是61.7. 若抛物线12--=x x y 与x 轴的交点坐标为)0,(m ,则代数式20132+-m m 的值为图2A. 2012B. 2013C. 2014D. 20158. 用配方法解方程0142=++x x ,配方后的方程是A. 3)2(2=-xB. 3)2(2=+xC. 5)2(2=-xD. 5)2(2=+x9. 要使代数式12-a a有意义,则a 的取值范围是 A. 0≥a B. 21≠a C. 0≥a 且21≠a D . 一切实数 10. 如图,已知⊙O 的直径CD 垂直于弦AB,∠ACD=°,若CD=6 cm,则AB 的长为A. 4 cmB. 23cmC. 32cmD. 62cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系. 某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元. 设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是A .625)1(4502=+xB.625)1(450=+xC .625)21(450=+x D.450)1(6252=+x12. 如图,已知二次函数y=ax2+bx+ca≠0的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m am+bm≠1的实数.其中正确结论的有A. ①②③B. ①③④C. ③④⑤D. ②③⑤山东省滕州初中2016届九年级第一次模拟数学试题第Ⅱ卷总分表题号二三四五六总分总分人复查人得分第Ⅱ卷非选择题84分二、填空题本大题共6个小题,每小题3分,满分18分只要求填写最后结果.13. 若方程0132=--x x 的两根分别为1x 和2x ,则2111x x +的值是_____________.14. 已知⊙O 1与⊙O 2的半径分别是方程x 2-4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t=____________.15. 如图,在△ABC 中,AB=2,BC=,∠B=60°,将△ABC绕点A 按顺时针旋转一定角度得到△ADE,当点B 的对应点 D 恰好落在BC 边上时,则CD 的长为 .16. 已知),(11y x A ,),(22y x B 在二次函数462+-=x x y 的图象上,若321<<x x ,则21____y y 填“>”、“=”或“<”.17. 如图,直线AB 与⊙O 相切于点A,AC 、CD 是⊙O 的两条弦,且CD ∥AB,若⊙O 的半径为52,CD=4,则弦AC 的长为. 18. 已知101=-aa ,则a a 1+的值是______________.得 分 评卷人三、解答题本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分19.1计算题:20)1(3112)3(----+--; 2解方程:1222+=-x x x .20. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q 的坐标x,y.1画树状图或列表,写出点Q 所有可能的坐标; 2求点Qx,y 在函数y =-x +5的图象上的概率;3小明和小红约定做一个游戏,其规则为:若x 、y 满足xy >6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗说明理由;若不公平,请写出公平的游戏规则.四、解答题本大题共2个题,第21题10分,第22题10分,本大题满分20分21. 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A,B 的坐标分别是A3,3、B1,2,△AOB 绕点O 逆时针旋转90°后得到△11OB A . 1画出△11OB A ,直接写出点1A ,1B 的坐标;2在旋转过程中,点B 经过的路径的长; 3求在旋转过程中,线段AB 所扫过的面积.22. 某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个. 市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.1如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元2请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润BE五、几何题本大题满分12分23. 如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB,延长CD 交BA 的延长线于点E .1求证:CD 为⊙O 的切线;2求证:∠C=2∠DBE.3若EA=AO=2,六、综合题本大题满分14分24. 如图,抛物线y= 21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A 一1,0.1求抛物线的解析式及顶点D 的坐标; 2判断△ABC 的形状,证明你的结论;得 分 评卷人3点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.数学试题参考答案及评分标准一、选择题本大题共12个小题,每小题3分,满分36分二、填空题本大题共6个小题,每小题3分,满分18分13. -3 14. 0或 2 15. 16. > 17. 52 18. 14三、解答题本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分19.计算题:1原式=1)13(321--+-注:每项1分 ………………3分=13--. ……………………………………………………4分2解:整理原方程,得:0142=--x x . ……………………………………1分解这个方程:……方法不唯一,此略.52,5221-=+=∴x x (4)分20. 解:画树状图得:1点Q 所有可能的坐标有: 1,2,1,3,1,4 2,1,2,3,2,4 3,1,3,2,3,4 4,1,4,2,4,3共12种. …………4分2∵共有12种等可能的结果,其中在函数y=﹣x+5的图象上的有4种,即:1,4,2,3,3,2,4,1,……………………………………………5分 ∴点x,y 在函数y=﹣x+5的图象上的概率为:=. …………………7分3∵x 、y 满足xy >6有:2,4,3,4,4,2,4,3共4种情况,x 、y 满足xy <6有1,2,1,3,1,4,2,1,3,1,4,1共6种情况.……………………………………………………9分()31124==小明胜P ,()21126==小红胜P……………………………10分 游戏不公平∴≠2131 . …………………………………………………11分公平的游戏规则为:若x 、y 满足6≥xy 则小明胜, 若x 、y 满足xy<6则小红胜. …………………………………………12分四、解答题本大题共2个题,第21题10分,第22题10分,本大题满分20分21.1如图,)3,3(1-A ,)1,2(1-B …………………………………………3分注:画图1分,两点坐标各1分.2由)2,1(B 可得:5=OB , (4)弧1BB =πππ255241241=⨯⨯=⋅r …6 3由)3,3(A 可得:23=OA ,又5=OB ,πππ2918414121=⨯⨯=⋅=OA S OAA 扇形,πππ455414121=⨯⨯=⋅=OB S OBB 扇形, ……………………………8分则线段AB 所扫过的面积为:πππ4134529=- . ……………………10分22.解:1设售价应涨价x 元,则:770)10120)(1016(=--+x x , …………………………………………2分解得:11=x ,52=x . ……………………………………………………3分又要尽可能的让利给顾客,则涨价应最少,所以52=x 舍去. ∴ 1=x .答:专卖店涨价1元时,每天可以获利770元. ……………………………4分2设单价涨价x 元时,每天的利润为W 1元,则:810)3(107206010)10120)(1016(221+--=++-=--+=x x x x x W 0≤x ≤12即定价为:16+3=19元时,专卖店可以获得最大利润810元. ……6分设单价降价z 元时,每天的利润为W 2元,则:750)1(307206030)30120)(1016(222+--=++-=+--=z z z z z W 0≤z ≤6即定价为:16-1=15元时,专卖店可以获得最大利润750元. ………8分综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元. …10分五、几何题本大题满分12分 23.1证明:连接OD,∵BC 是⊙O 的切线,∴∠ABC=90°, …………1分 ∵CD=CB, ∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD ⊥CD, ……………3分 ∵点D 在⊙O 上, ∴CD 为⊙O 的切线. ………4分2如图,∠DOE=∠ODB+∠OBD=2∠DBE,…………………6分由1得:OD ⊥EC 于点D,∴∠E+∠C=∠E+∠DOE =90°, ………………7分∴∠C=∠DOE =2∠DBE. ………………………………………………………8分 3作OF ⊥DB 于点F,连接AD,由EA=AO 可得:AD 是Rt △ODE 斜边的中线, ∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°, ………………………………9分又∵OB=AO=2,OF ⊥BD,∴ OF=1,BF=, ………………………………10分∴BD=2BF=2,∠BOD=180°-∠DOA=120°, ……………………………11分∴3341322136021202-=⨯⨯-⨯=-=ππBODOBD S S S 三角形扇形阴影.…12分注:此大题解法不唯一,请参照给分.六、综合题本大题满分14分24.解:1∵点)01(,-A 在抛物线221y 2-+=bx x 上, ∴02)1()1(212=--⨯+-⨯b ,∴23-=b , …………………………………2分 ∴抛物线的解析式为223212--=x x y . ………………………………………3分 ∵825)23(212232122--=--=x x x y , ∴顶点D 的坐标为)825,23(-. …………………………………………………5分 2△ABC 是直角三角形. 当0=x 时,2-=y ,∴)2,0(-C ,则2=OC .…6分当0=y 时,0223212=--x x ,∴4,121=-=x x ,则)0,4(B .………7分 ∴1=OA ,4=OB , ∴5=AB .∵252=AB ,5222=+=OC OA AC ,20222=+=OB OC BC , ∴222AB BC AC =+, ……………………………………………………8分∴△ABC 是直角三角形. ……………………………………………………9分 3作出点C 关于x 轴的对称点C ′,则)2,0('C .连接C ′D 交x 轴于点M,根据轴对称性及两点之间线段最短可知,CD 一定,当MC+MD 的值最小时,△CDM 的周长最小. ………………10分设直线C ′D 的解析式为b ax y +=,则:则⎪⎩⎪⎨⎧-=+=825232b a b ,解得2,1241=-=b a ,…11分∴21241'+-=x y D C …………………………12分 当0=y 时,021241=+-x ,则4124=x ,……13分 ∴)0,4124(M . …………………………………14分济南市2016年初三年级学业水平考试数学全真模拟试卷3第Ⅰ卷选择题共45分一、选择题本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.1.|-2 014|等于014 014 C.±2 014 0142.下面的计算正确的是-5a=1 +2a2=3a3C.-a-b=-a+b a+b=2a+b3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是>b-c +c<b+c >bc D.a cb b4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子颗 颗 颗 颗5.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是 ,10 , , ,106.一个几何体的三视图如图所示,则这个几何体是7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y =2的解的是8.对于非零的两个实数a,b,规定ab=11b a-,若22x-1=1,则x 的值为 5531A. B. C. D.6426-9.已知2x y 30-++=(),则x+y 的值为10.如图,已知⊙O 的两条弦AC 、BD 相交于点E,∠A =70°,∠C = 50°,那么sin ∠AEB 的值为A.231C.D.2211.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是12.如图,点D为y轴上任意一点,过点A-6,4作AB垂直于x轴交x轴于点B,交双曲线6yx-=于点C,则△ADC的面积为整个常规赛季中,科比罚球投篮的命中率大约是%,下列说法错误的是A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于°°°°15.如图,在正方形ABCD中,AB=3 cm,动点M自A点出发沿AB方向以每秒1 cm的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3 cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为ycm 2,运动时间为xs,则下列图象中能大致反映y 与x 之间的函数关系的是第Ⅱ卷非选择题 共75分二、填空题本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.16.a 10a b -+=-,则=___________.17.命题“相等的角是对顶角”是____命题填“真”或“假”.18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有______种租车方案.19.如图,从点A0,2发出的一束光,经x 轴反射,过点B5,3,则这束光从点A 到点B 所经过的路径的长为______.20.若圆锥的母线长为5 cm,底面半径为3 cm,则它的侧面展开图的面积为________cm2结果保留π.21.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=______度.三、解答题本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.22.本小题满分7分1解方程组:x3y1, 3x2y8.+=-⎧⎨-=⎩2解不等式组2x312x0+>⎧⎨-≥⎩,并把解集在数轴上表示出来.23.本小题满分7分1如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙O的切线;2已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.24.本小题满分8分一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.1甲、乙两公司单独完成此项工程,各需多少天2若让一个公司单独完成这项工程,哪个公司的施工费较少25.本小题满分8分自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:1本次调查中,张老师一共调查了多少名同学2求出调查中C类女生及D类男生的人数,将条形统计图补充完整;3为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.本小题满分9分如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.1求y与x的函数关系式;2若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;3如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.27.本小题满分9分已知如图,一次函数1y x 12=+的图象与x 轴交于点A,与y 轴交于点B,二次函数21y x bx c 2=++的图象与一次函数1y x 12=+的图象交于B 、C 两点,与x 轴交于D 、E 两点,且D 点坐标为1,0. 1求二次函数的解析式.2在x 轴上有一动点P,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P,使得△PBC 是以P 为直角顶点的直角三角形若存在,求出点P 运动的时间t 的值;若不存在,请说明理由.3若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△ABD 相似,若存在,求a 的值;若不存在,说明理由.28.本小题满分9分如图,已知抛物线y=ax2+bx+ca≠0的顶点坐标为2 43(,),且与y轴交于点C0,2,与x轴交于A,B两点点A在点B的左边.1求抛物线的解析式及A,B两点的坐标.2在1中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小若存在,求AP+CP的最小值,若不存在,请说明理由.3以AB为直径的⊙M与CD相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案17.假19.π22.1解:x3y13x2y8+=-⎧⎨-=⎩,①,②①×3-②,得11y=-11,解得:y=-1,把y=-1代入②,得:3x+2=8, 解得x=2.∴方程组的解为x2 y1.=⎧⎨=-⎩,2解:2x312x0+>⎧⎨-≥ ⎩,①,②由①得:x>-1;由②得:x≤2.不等式组的解集为:-1<x≤2,在数轴上表示为:23.1证明:连接OE.∵BE是∠CBA的角平分线,∴∠ABE=∠CBE.∵OE=OB,∴∠ABE=∠OEB, ∴∠OEB=∠CBE,∴OE∥BC,∴∠OEC=∠C=90°,∴AC是⊙O的切线.2证明:∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°.∵四边形ADBE是平行四边形,∴平行四边形ADBE是矩形.24.解:1设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需天.根据题意,得:111x1.5x12 +=,解得:x=20,经检验,知x=20是方程的解且符合题意.=30,故甲、乙两公司单独完成此项工程,各需20天、30天.2设甲公司每天的施工费为y元,则乙公司每天的施工费为y-1 500元.根据题意得:12y+y-1 500=102 000,解得:y=5 000,甲公司单独完成此项工程所需的施工费:20×5 000=100 000元;乙公司单独完成此项工程所需的施工费:30×5 000-1 500=105 000元;故甲公司的施工费较少.25.解:1张老师一共调查了:6+4÷50%=20人;2C类女生人数:20×25%-3=2人;D类男生人数:20-3-10-5-1=1人;将条形统计图补充完整如图所示:3列表如图,共6种情况,其中一位男同学一位女同学的情况是3种,所选两位同学恰好是一位男同学和一位女同学的概率是12. 26.解:1∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°, ∴∠APB=∠CEP.又∵∠B=∠C=90°,∴△ABP ∽△PCE,2AB BP 2x 1m ,,y x x.PC CE m x y 22∴==∴=-+-即 22221m 1m m y x x (x ),22228=-+=--+ ∴当m x 2=时,y 取得最大值,最大值为2m .8 ∵点P 在线段BC 上运动时,点E 总在线段CD 上, 2m1,m 8∴≤≤解得∴m 的取值范围为:0m <≤3由折叠可知,PG=PC,EG=EC,∠GPE=∠CPE.又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,∴∠APG=∠APB .∵∠BAG=90°,∠B=90°,∴AG ∥BC,∴∠GAP=∠APB,∴∠GAP=∠APG,∴AG=PG=PC .解法一:如图所示,分别延长CE 、AG,交于点H,则易知ABCH 为矩形,HE=CH-CE=2-y,GH=AH-AG=4-4-x=x, 在Rt △GHE 中,由勾股定理得:GH 2+HE 2=GE 2, 即:x 2+2-y 2=y 2,化简得:x 2-4y+4=0①.2221m 1y x x m 4221y x 2x,223x 8x 40x x 232BP 2.3=-+=∴=-+-+===∴由()可知,,这里,代入①式整理得:,解得:或,的长为或解法二:如图所示,连接GC .∵AG ∥PC,AG=PC,∴四边形APCG为平行四边形,∴AP=CG.易证△ABP≌GNC,∴CN=BP=x.过点G作GN⊥PC于点N,则GH=2,PN=PC-CN=4-2x.在Rt△GPN中,由勾股定理得:PN2+GN2=PG2,即:4-2x2+22=4-x2,整理得:3x2-8x+4=0,解得:x=23或x=2,∴BP的长为23或2.解法三:过点A作AK⊥PG于点K.∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG-PK=4-2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:4-2x2+22=4-x2,整理得:3x2-8x+4=0,解得:2x x23==或,∴BP的长为22. 3或∴点C的坐标为4,3.设符合条件的点P存在,令Pa,0.当P为直角顶点时,如图,过C作CF⊥x轴于F.∵∠BPC=90°,∴∠BPO+∠CPF=90°.又∵∠OBP+∠BPO=90°,∴∠OBP=∠CPF,∴Rt △BOP ∽Rt △PFC,BO OP 1t ,PF FC 4t 3∴==-,即 整理得:t 2-4t+3=0,解得:t=1或t=3,∴所求的点P 的坐标为1,0或3,0, ∴运动时间为1秒或3秒.3存在符合条件的t 值,使△APQ 与△ABD 相似. 设运动时间为t,则AP=2t,AQ=at.∵∠BAD=∠PAQ, ∴当AP AQ AP AQ AB AD AD AB==或时,两三角形相似.at 2t AB 5AD 333a a ,53====∴==,或∴存在a使两三角形相似且a a 53== 28.解:1由题意,设抛物线的解析式为:22y a x 4?a 0.3=--≠()() ∵抛物线经过0,2,22a 042,3∴--=() 解得:a=16, 22212y x 4.6314y x x 2.6314y 0x x 20,63∴=--=-+=-+=()即:当时, 解得:x=2或x=6,∴A2,0,B6,0.2存在,如图2,由1知:抛物线的对称轴l 为x=4,∵A 、B 两点关于l 对称,连接CB 交l 于点P,则AP=BP,∴AP+CP=BC 的值最小.∵B6,0,C0,2 ,∴OB=6,OC=2,BC AP CP BC ∴=∴+== ∴AP+CP的最小值为 3如图3,连接ME,∵CE 是⊙M 的切线,∴ME ⊥CE,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE, ∵在△COD 与△MED 中,COD DEM ODC MDE OC ME ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△COD ≌△MEDAAS, ∴OD=DE,DC=DM.设OD=x,则CD=DM=OM-OD=4-x, 则Rt △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=4-x 2. 33x ,D(,0).22∴=∴ 设直线CE 的解析式为y=kx+b, ∵直线CE 过C0,2,D 3,02两点, 43k k b 032b 2b 2⎧⎧=-+=⎪⎪⎨⎨⎪⎪==⎩⎩,,则解得:,, ∴直线CE 的解析式为4y x 2.3=-+。

2022年中考数学模拟卷二习题课件新版新人教版

2022年中考数学模拟卷二习题课件新版新人教版

上一栏目 解答题 19 20 21 22 23 24 25 下一栏目
21.(8分)如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同 样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草. 若草坪的面积为566平方米,问小路应为多宽? 解:设小路宽为x米. 依题意,可得(32-2x)(20-x)=566, 整理,得x2-36x+37=0, 解得x1=18+ 28(7舍去), x2=18- 2.87 答:小路宽应为(18- 28)米7 .
2
2
上一栏目 解答题 19 20 21 22 23 24 25 下一栏目
∴S=S△ACM+S△ADM+S△BDM=4+2x-2-x2+4x+5=-x2+6x+7, ∴S关于x的函数解析式为S=-x2+6x+7(1<x<5). ∵S=-x2+6x+7=-(x-3)2+16, ∴当x=3时,四边形ADBC的面积S有最大值,最大值为16.
= 3 (x>0)和y=- 6 (x>0)的图象交于B,A两点.若C是y轴上任意一点,
x
x
则△ABC的面积为( D)
A.3
B.6
C.9
D. 9
2
选择题 1 2 3 4 5 6 7 8 9 10 下一栏目
10.如图1,在矩形ABCD中,AB>AD,对角线AC,BD相交于点O,动点P由
点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的
上一栏目 附加题
附加题(20分)
如图,直线y=mx+1与x轴、y轴分别相交于A,B两点,与双曲线y=x(k)(x>0)
相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0).
(1)求双曲线的解析式;
解:把A(-2,0)代入y=mx+1中,得m= 1 ,∴y=1 x+1.

2023上海松江区初三二模数学试卷及答案

2023上海松江区初三二模数学试卷及答案

第1页共4页(图1)AGED CB2023年松江区初中毕业生学业模拟考试试卷九年级数学(满分150分,完卷时间100分钟)2023.04考生注意:1.本考试设试卷和答题纸两部分,试卷包括试题与答题要求,所有答题必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分。

2.答题前,务必在答题纸上填写姓名、学校和考号。

3.答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。

一、选择题(本大题共6题)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.3-的倒数是()(A )3;(B )0.3-;(C )31;(D )31-.2.是同类二次根式的是()(A;(B(C;(D3.一次函数23y x =-+的图像不经过...()(A )第一象限;(B )第二象限;(C )第三象限;(D )第四象限.4.下列方程中,有实数根的是()(A )2210x x ++=;(B )210x x ++=;(C )01=+x ;(D )111-=-x xx .5.下列命题正确的是()(A )三点确定一个圆;(B )圆的任意一条直径都是它的对称轴;(C )等弧所对的圆心角相等;(D )平分弦的直径垂直于这条弦.6.如图1,点G 是△ABC 的重心,四边形AEGD 与△ABC 面积的比值是()(A )12;(B )13;(C )14;(D )25.二、填空题(本大题共12题)【请将结果直接填入答题纸的相应位置上】第2页共4页ABDC(图2)E7.计算:32a a⋅=.8.因式分解:23a a -=.9.不等式组26,20x x >-⎧⎨-+>⎩的解集是.10.某个多边形的每个外角都是72 ,这个多边形是边形.11.在一副扑克牌中拿出2张红桃、3张黑桃共5张牌,从中任取1张是红桃的概率是.12.已知点),(11y x A 和点),(22y x B 在反比例函数1y x=的图像上,那么当210x x <<时,1y 2y .(填“>”、“=”、“<”)13.将抛物线2=y x 向左平移1个单位,所得新抛物线的表达式为.14.如图2,已知在矩形ABCD 中,点E 在边AD 上,且AE =2ED .设AB a =uu u r r ,BC b =uu u r r,那么BE =uu u r (用a r 、b r的式子表示).15.已知相交两圆的半径长分别为R 和r ,如果两圆的圆心距为6,且2R r =,试写出一个符合条件的r 的值:.16.一辆客车从甲地驶往乙地,同时一辆私家车从乙地驶往甲地.两车之间的距离s (千米)与行驶的时间x (小时)之间的函数关系如图3所示.已知私家车的速度是90千米/时,客车的速度是60千米/时,那么点A 的坐标是.17.已知□ABCD 中,AB =4,ABC ∠与DCB ∠的角平分线分别交边AD 于点E 、F ,且EF =3,那么边AD 的长为.18.我们定义:二次项系数之和为1,图像都经过原点且对称轴相同的两个二次函数称作互为友好函数.那么2=24y x x +的友好函数是.CD Bs (千米)A Ox (小时)(图3)600第3页共4页等级分布扇形图BACD(图4)DABC三、解答题(本大题共7题)19.(本题满分10分)计算:(11218231π--+-+20.(本题满分10分)解方程组:22210,2 4.x y x xy y --=⎧⎨++=⎩②①21.(本题满分10分,每小题各5分)如图4,四边形ABCD 中,AD ∥BC ,AD ⊥CD ,AD =1,CD =2.(1)如果BC =3,求cot B 的值;(2)如果AB =BC ,求四边形ABCD 的面积.22.(本题满分10分,第(1)小题2分,第(2)小题3分,第(3)小题5分)某校对六年级学生进行了一次安全知识测试,按成绩x 分(x 为整数)评定为A 、B 、C 、D 四个等级.其中A 等级:90≤x ≤100,B 等级:80≤x <90,C 等级:60≤x <80,D 等级:0≤x <60.从中随机抽取了一部分学生的成绩进行分析,绘制成如下的统计图表(部分信息缺失).请根据所给信息,回答下列问题:(1)扇形图中,B 等级所在扇形的圆心角为°;(2)此次测试成绩的中位数处在等级中;(填A 、B 、C 、D )(3)该校决定对D 等级的学生进行安全再教育,已知a 是b 的5倍,那么该校六年级300名学生中,需接受安全再教育的约有多少人?等级频数(人数)频率A15B 3040%C a Db第4页共4页123x13y O -1-12A(图6)23.(本题满分12分,每小题各6分)如图5,已知正方形ABCD ,E 、F 分别为边CD 、AD 的中点,AE 与BF 交于点M ,DN ⊥AE ,垂足为点N .(1)求证:AM=MN ;(2)联结BE ,求∠MBE 正弦值.24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)在平面直角坐标系xOy 中(如图6),已知直线+2y x =-与y 轴交于点A ,抛物线()()210y x t t =-->的顶点为B .(1)若抛物线经过点A ,求抛物线解析式;(2)将线段OB 绕点B 顺时针旋转90 ,点O 落在点C 处,如果点C 在抛物线上,求点C 的坐标;(3)设抛物线的对称轴与直线+2y x =-交于点D ,且点D 位于x 轴上方,如果45BOD ︒∠=,求t 的值.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图7,AB 是半圆O 的直径,C 是半圆O 上一点,点O '与点O 关于直线AC 对称,射线AO '交半圆O 于点D ,弦AC 交O O '于点E 、交OD 于点F .(1)如图8,如果点O′恰好落在半圆O 上,求证: =OA BC ';(2)如果30DAB ∠= ,求EFO D'的值;(3)如果OA=3,1O D '=,求OF 的长.BAO(备用图)(图8)B AOCO ′ECFBAOO ′(图7)DEBA CDEF MN (图5)数学第1页共4页2023年松江区初中毕业生学业模拟考试试卷九年级数学参考答案一、选择题(本大题共6题,每题4分,满分24分)1.D2.B3.C4.A5.C6.B二、填空题(本大题共12题,每题4分,满分48分)7.5a ;8.)(3a a -;9.3-<x <2;10.五;11.25;12.>;13.2+1y x =()14.23b a - ;15.答案不唯一;16.(4,0);17.5或11;18.22y x x =--.三、解答题(本大题共7题,满分78分)19.(本题满分10分)解:原式=121-+++……………………………每个2分=2………………………2分20.(本题满分10分)解:由②得:2+4x y =()…………2分,得:+2x y =或+2x y =-.………2分原方程组可化为21,2,x y x y -=⎧⎨+=⎩21,2.x y x y -=⎧⎨+=-⎩……………………………2分解这两个方程组,得原方程组的解为115,31,3x y ⎧=⎪⎪⎨⎪=⎪⎩221,1.x y =-⎧⎨=-⎩………………………4分21.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)作AE ⊥BC 于点E ,………1分则四边形AECD 是矩形,AD =CE=1,AE =CD=2,………2分∵BC=3,∴BE=2,………1分∴cot B =1BEAE=………1分(2)设AB=x ,则BE=x -1,………1分Rt △ABE 中,222AB AE BE =+,即22212x x =-+(),………2分解得52x =,∴52BC =………………1分(图4)DABCE数学第2页共4页∴1157()(1)22222ABCD S AD BC CD =+⋅=+⨯=四边形………………1分22.(本题满分10分,第(1)小题2分,第(2)小题3分,第(3)小题5分)(1)144;………2分(2)B ;……3分(3)抽样人数3040%=75÷………1分∵a +b=30,a=5b ,∴a=25,b=5,………2分53002075⨯=∴六年级进行安全再教育的学生约有20人.………2分23.(本题满分12分,第(1)小题6分,第(2)小题6分)证明:(1)点E 、F 分别为正方形ABCD 的边CD 、DA 的中点,AF =DE ,△ABF ≌△DAE (SAS ),…………2分∴∠1=∠2,∵∠1+∠2=90︒,∴∠2+∠3=90︒,∴AE ⊥BF,…………2分∴BF ∥DN ………1分∵AF=DF ∴AM =MN …………1分(法二:Rt △ADN 中,12FN AD AF ==…………1分∴AM =MN ……………1分)(2)△ABM ≌△ADN,(或△AMF ≌△DNE )…………1分∴AM =DN …………1分tan ∠NDE =tan ∠DAE =12,…………1分设NE=a ,则DN =AM =MN=2a ,ME=3a ,…………1分BF=AE=5a ,MF=a ,∴BM=4a ,BE=5a ,…………1分∴sin ∠MBE=35ME BE =…………1分24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)(1)∵直线+2y x =-与y 轴交于点A ,∴A (0,2)……………1分∵抛物线()21y x t =--经过点A ,∴221t =-∴=t ,∵0t >,∴t 1分∴抛物线解析式(21y x =-………1分(2)作BE ⊥y 轴于点E ,作CF ⊥BE 于点F ,则OE=1,BE=t ,△OBE ≌△BCF .则BF=1,CF=t ,∴C +11t t -(,)……………2分C123x13y O -1-12A 6BACDEF MN123(图5)数学第3页共4页123x13y O -1-12A (图6)BDE ∵点C 在抛物线上,∴()2111t t t -=+--,∴=1t ∴C 2(,0)………2分(3)D t t (,2-),B t (,-1)………1分∵∠OAD=∠BOD=45 ,∠AOD=∠ODB ∴△AOD ∽△ODB ………2分∴OA OD OD BD=∴22OD BD =∴()222(3)2t t t -=-+∴210t t --=,12t ±=∵0t >,∴12t +=………2分25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)解:(1)∵点O '与点O 关于直线AC 对称,∴O A OA '=,OO AC '⊥………1分∵点O′恰好落在半圆O 上,∴O O OA '=∴△O AO '是等边三角形,=60AOO ∠' ………1分联结OC ,由OO AC '⊥得,=AO O C ''∴==60AOO COO ∠'∠' ………1分∴==60AOO BOC ∠'∠ ∴ =OA BC '………1分(2)∵30DAB ∠= ,=OA OD ,∴30ADO ∠= ∴45AFO ∠=∵点O '与点O 关于直线AC 对称,O E OE '=,OO AC '⊥∴45EOF ∠=,△OEF 是等腰直角三角形……2分联结O F ',△OO F '是等腰直角三角形,设=EF t ,则=OE t ,=2O O t ',O F 'Rt △O DF ',30ADO ∠= ,O D '=……2分∴24EF O D =='………1分(3)联结OC ,∠1=∠2,∠2=∠3,∴∠1=∠3,CBAOO ′D E 123F CFBAOO ′(图7)DEAOO ′BC∴OC∥AD,∴OC OFAD DF=,………1分当点O'在圆内,OC=OD=3,AD=4,34OFDF=,∴97OF=………2分当点O'在圆外,OC=OD=3,AD=2,32OFDF=∴95OF=………2分CBA OO′D E123F数学第4页共4页。

2023年广东省深圳市中考数学模拟试卷(二)(含解析)

2023年广东省深圳市中考数学模拟试卷(二)(含解析)

2023年广东省深圳市中考数学模拟试卷(二)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如图是一个正方体的展开图,把展开图折叠成小正方体后,和“中”字所在面相对的面上的字是( )A. 20B. 23C. 必D. 胜2. 2023的相反数是( )A. 2023B. −2023C. −2023D. 20233. 一元一次不等式x+4≥2的解集是( )3A.B.C.D.4. 某高速(限速120km/ℎ)某路段的车速监测仪监测到连续6辆车的车速分别为:118,106,105,120,118,112(单位:km/ℎ),则这组数据的中位数为( )A. 115B. 116C. 118D. 1205. 下列运算正确的是( )A. (−a2)3=a6B. (−a3)2=−a6C. (2a2b)3=6a6b3D. (−3b2)2=9b46.一块含30°角的直角三角板和直尺如图放置,若∠1=145°,则∠2的度数为( )A. 63°B. 64°C. 65°D. 66°7. 某商店需要购进甲乙两种商品,已知甲的进价比乙多50元,分别用2万元进货甲乙两种商品,购买乙的件数比甲多20件,现设乙的进价为x 元,则下列方程正确的是( )A. 20000x +50−20000x =20 B. 20000x−50−20000x =20C. 20000x−20000x +50=20 D. 20000x −20000x−50=208.如图分别是2个高压电塔的位置.已知电塔A ,B 两点水平之间的距离为80米(AC =80m ),∠BAC =α,则从电视塔A 到B 海拔上升的高度(BC 的长)为( )A. 80tanαB. 80tan αC. 80sinαD. 80sin α9. 在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx +c 的图象可能是( )A. B.C. D.10.如图,在正方形ABCD中,E,F是对角线AC上的两点,且EF=2AE=2CF,连接DE并延长交AB于点M,连接DF并延长交BC于的值为( )点N,连接MN,则S△AMDS△MBNA. 34B. 23C. 1D. 12二、填空题(本大题共5小题,共15.0分)11. 分解因式:a3−4ab2=______.12. 已知方程2x2−mx+3=0的一个根是−1,则m的值是______ .13. 如图,在△ABC中,AB=AC,分别以点A,B为圆心,AB的长为半径画弧,两弧相交于点M和点N,作直线M大于12N分别交BC、AB于点D和点E,若AC=6,BC=10,则△ADC的周长为______ .14. 如图,正方形ABCD放置在直角坐标系中,反比例函数y=k(k≠0)经过A点和边CD的中x点E,已知B(0,2),则k的值为______ .15. 如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠C=∠E=60°,点D在BC边上,AC与DE相交于点F,DFCF =3,则ADBD=______ .三、解答题(本大题共7小题,共55.0分。

九年级数学第一次调研考试模拟试题(二)

九年级数学第一次调研考试模拟试题(二)

九年级数学第一次调研考试模拟试题(二)一.选择题(共12小题,每题3分,共36分)1.的倒数是()A.﹣2022 B.2022 C .D .2.下列计算正确的是()A.3mn﹣2mn=1 B.(m2n3)2=m4n6 C.(﹣m)3•m=m4 D.(m+n)2=m2+n23.下列大学的校徽图案为轴对称图形的是()A.清华大学 B.北京大学 C.中国人民大学 D.浙江大学4.如图,AB∥CD,∠1=120°,∠2=80°,则∠3的度数为()A.10°B.20°C.30°D.60°第4题第5题第6题第9题5.如图,在菱形ABCD中,∠ABC=60°,连接AC、BD ,则的值为()A .B .C .D .6.如图,把两个边长分别为1,2的小长方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个正方形ABCD(中间空心部分记为正方形A′B′C′D′.下列说法错误的是()A.小正方形A'B'C′D′的边长为1 B.每个直角三角形的面积为1C.大正方形ABCD面积是小正方形A′B′C′D′面积的4倍 D.大正方形ABCD 的边长为7.疫情期间,某商店连续7天销售口罩的盒数分别为10,12,14,13,12,12,11.关于这组数据,以下结论错误的是()A.众数是12 B.平均数是12 C.中位数是12 D .方差是8.在反比例函数y =(k为常数)的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3),若x1<0<x2<x3,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y19.如图,点C,D在以AB为直径的半圆上,且∠ADC=120°,点E 是上任意一点,连接BE、CE.则∠BEC的度数为()A.20°B.30°C.40°D.60°10.如图,△ABC的内切圆⊙O与AB,BC,AC分别相切于点D,E,F,连接OE,OF,∠C=90°,AC=6,BC=8,则阴影部分的面积为()A .B .C.4﹣πD .11.如图,Rt△ABC中,∠C=90°,AC=BC,点D、E分别是边AB、AC上的点,把△ADE沿DE折叠,点A恰好落在BC上的点F处,若点F为BC的中点,则的值是()A .B .C .D .12.如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x =,有下列结论:①abc>0;②a+b>0;③4a+2b+3c<0;④无论a,b,c取何值,抛物线一定经过(,0);⑤4am2+4bm﹣b≥0.其中正确结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,每题4分,共24分)13.已知关于x,y 的二元一次方程组,则x+y =.14.已知a ,b 满足等式a 2+6a+9+=0,则a2021b2020=.15.若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n的值为.16.如图,直线y=x﹣4与y轴交于点C,与x轴交于点B,与反比例函数y=的图象在第一象限内交于点A,连接OA,若BC=2AB,则k的值为.17.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.18.在平面直角坐标系中,正方形ABCD的边AD在y轴正半轴上,边BC在第一象限,且A(0,3)、B(5,3),将正方形ABCD绕点A顺时针旋转α(0°<α<180°),若点B的对应点B′恰好落在坐标轴上,则点C的对应点C′的坐标为.三.解答题(共7小题,共60分)19.已知m2+3m﹣4=0,求代数式(m+2﹣)÷的值.20.某数学小组为调查重庆实验外国语学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A:乘坐电动车,B:乘坐普通公交车或地铁,C:乘坐学校的定制公交车,D:乘坐家庭汽车,E:步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.21.如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.22.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的P处,无人机测得操控者A的俯角为37°,测得教学楼楼顶的点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,一次函数y=k1x+b的图象与反比例函数y =的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b >的x的取值范围;(3)若点P在线段AB上,且S△AOP:S△BOP=1:4,求点P的坐标.24.如图,在Rt△ABC中,∠ABC=90°,以AB的中点O为圆心,AB为直径的圆交AC于D,E是BC 的中点,DE交BA的延长线于F.(1)求证:FD是圆O的切线:(2)若BC=4,FB=8,求AB的长.25.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m).(1)求抛物线的解析式.(2)点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E,求线段PE最大时点P的坐标.(3)点F是抛物线上的动点,在x轴上是否存在点D,使得以点A,C,D,F为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的点D的坐标;如果不存在,请说明理由.。

【浙教版】初三数学下期中第一次模拟试题附答案(2)

【浙教版】初三数学下期中第一次模拟试题附答案(2)

一、选择题1.已知一个扇形的半径长为3,圆心角为60°,则这个扇形的面积为( )A .12πB .πC .3π2D .3π2.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为( )A .12cmB .18cmC .20cmD .24cm 3.如图,从一块半径是2米的圆形铁皮(⊙O )上剪出一个圆心角为60°的扇形(点,,A B C 在⊙O 上),将剪下的扇形围成一个圆锥,则这个圆锥的底面圆的半径是( )米.A .32B .33C .36D .24.如图,正方形ABCD 的四个顶点都在⊙O 上,在AD 上取一点E (点E 不与D 重合),连接EC ,ED ,则∠CED 的度数为( )A .30°B .45°C .60°D .75°5.二次函数2y ax bx c =++的图象如图所示,其对称轴是1x =-,且过点(0,2),下列结论中正确的是( )A .0abc <B .20a b +=C .2am bm a b +<-D .方程220ax bx c ++-=的解为12x =-,20x = 6.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表: x﹣1 0 1 3 y﹣1 3 5 3 则代数式﹣2b a (4a +2b +c )的值为( ) A .92 B .152 C .9 D .157.二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的有①abc >0;②b 2﹣4ac <0;③2a >b ;④(a +c )2<b 2;⑤a ﹣2b +4c >0.( )A .1个B .2个C .3个D .4个 8.函数k y x=与()20y kx k k =-≠在同一直角坐标系中的图象大致是下图中的( ) A . B . C . D . 9.如图,在ABC 中,AD 平分BAC ∠,//DE AC 交AB 于点E ,//DF AB 交AC 于点F ,且AD 交EF 于点O ,若8AF EF ==,则sin DAC ∠的值为( )A .13B .32C .12D .2210.如图,传送带和地面所成斜坡AB 的坡度为1∶2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5米B .5米C .25米D .45米 11.如图,要测量小河的宽度,在小河边取PA 的垂线PB 上的一点C ,测得50PC m =,35PCA ∠=︒,则小河的宽度PA 等于( )A .50tan35m ︒B .50sin55m ︒C .50sin35m ︒D .50tan55m ︒ 12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE =2,则tan ∠DBE 的值是( )A .12B .2C 5D 5 二、填空题13.如图,点P 为⊙O 外一点,PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =90°.若⊙O 的半径为2,则图中阴影部分的面积为_____(结果保留π).14.已知扇形的弧长为4π,半径为9,则此扇形的圆心角为_______度.15.用一根长为24cm 的绳子围成一个矩形,则围成矩形的最大面积是_____cm 2. 16.写出一个二次函数,使其满足:①图象开口向下;②当0x >时,y 随着x 的增大而减小.这个二次函数的解析式可以是______.17.若方程20ax bx c ++=的两个根是3-和1,那么二次函数2y ax bx c =++的图象的对称轴是直线x = _____________________18.如图,∠DBC =30°,AB =DB ,利用此图求tan75°= _____ .19.若sin cos 2A A +=,则锐角A ∠=______.20.如图,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC =1200m ,求此时飞机到目标B 的距离AB 为_______m .21.如图,在ABCD 中,60ABC ∠=︒,6BC =,4DC =.点E F 、分别是边AB AD 、的中点,连结CE BF 、.点G H 、分别是BF CE 、的中点,连结GH ,则线段GH 的长为______.22.如图,在Rt ABC △中,90ABC ∠=︒,30ACB ∠=︒,2AB =,点E 为AC 上任意一点(不与点A 、C 重合),连结EB ,分别过点A 、B 作BE 、AE 的平行线交于点F ,则EF 的最小值为__________.三、解答题23.如图,在Rt △ABC 中∠B =30°,∠ACB =90°,AB =6.延长CA 到O ,使AO =AC ,以O 为圆心,OA 长为半径作⊙O 交BA 延长线于点D ,连结OD ,CD .(1)求扇形OAD 的面积.(2)判断CD 与⊙O 的位置关系,并说明理由.24.如图,AB 是O 的弦,AC 是O 的直径,将AB 沿着AB 弦翻折.恰好经过圆心O .若O 的半径为6,求图中阴影部分的面积.25.如图,在平面直角坐标系中,(0,1)A ,(2,0)B ,将线段AB 绕原点O 逆时针旋转90°,得到线段A B '',且点A ',B ',B 均在抛物线上.(1)求该抛物线的函数表达式.(2)该抛物线的对称轴上有一点Q ,使ABQ △是以AB 为直角边的直角三角形,求Q 点的坐标.26.新年前夕,信业超市在销售中发现:某服装平均每天可售出20套,每件盈利40元.为了迎接新年,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.(1)要想平均每天在销售服装上盈利1200元,那么每套应降价多少元?(2)商场要想每天获取最大利润,每套应降价多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据计算公式直接套用求解即可.【详解】根据题意,得260333602S ππ⨯⨯==, 故选C .【点睛】本题考查了扇形的面积计算问题,熟记扇形面积计算公式,准确判断计算条件是解题的关键.2.D解析:D【分析】连接OB,过点O作OC⊥AB于点D,交圆O于点C,由题意可知CD为8,然后根据勾股定理求出BD的长,进而可得出AB的长.【详解】如图,连接OB,过点O作OC⊥AB于点D,交圆O于点C,则AB=2BD,∵圆的直径为26cm,∴圆的半径r=OB=13cm,由题意可知,CD=8cm,∴OD=13-8=5(cm),∴()221692512BD OB OD cm=-=-=,∴AB=24cm,故选:D.【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.3.B解析:B【分析】连接OA,作OD⊥AB于点D,利用三角函数即可求得AD的长,则AB的长可以求得,然后利用弧长公式即可求得弧长,即底面圆的周长,再利用圆的周长公式即可求得半径.【详解】解:连接OA,作OD⊥AB于点D.在直角△OAD中,OA=2,∠OAD=12∠BAC=30°,则AD=OA•cos30°=3,则AB=2AD=23,则扇形的弧长=6023180π⨯=233π,设圆锥的底面圆的半径是r,则2π×r=233π,解得:r=33故选:B.【点睛】本题考查了垂径定理,锐角三角函数,弧长公式,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4.B解析:B【分析】连接DO、CO,利用正方形的性质可求得圆心角的度数为90°,再根据圆周角定理求解即可得出结论.【详解】解:如图,连接DO、CO,∵四边形ABCD为正方形,∴∠COD=90°,∴∠CED=12∠COD=45°.故选:B.【点睛】考查了正方形和圆的性质,掌握正方形的性质及圆周角定理并能正确的作出辅助线是解答此题的关键.5.D解析:D【分析】根据抛物线的开口方向,对称轴的定义,抛物线的最值,结合图像逐一计算判断即可.【详解】∵抛物线开口向下,∴a <0,∵对称轴在原点的左侧, ∴2b a-<0, ∴b <0, ∵抛物线的对称轴是1x =-,且过点(0,2),∴c=2>0,2b a-= -1即b=2a , ∴abc >0,∴选项A ,B 错误;根据图像知,当x= -1时,函数取得最大值,且最大值为y=a-b+c ,当x=m 时,函数值y=2am bm c ++,∴2am bm c ++≤a -b+c ,∴2am bm a b +≤-,∴选项C 错误;∵c=2,b=2a ,∴方程220ax bx c ++-=变形为220ax ax +=,∵a <0,∴220x x +=,解得12x =-,20x =,∴方程220ax bx c ++-=的解为12x =-,20x =,∴选项D 正确;故选D .【点睛】本题考查了二次函数的开口方向,对称轴,最值问题,熟练掌握最值的意义,对称轴的意义是解题的关键. 6.B解析:B【分析】由当x=0和x=3时y 值相等,可得出二次函数图象的对称轴为直线x=32,进而可得出2b a -的值,由x=1时y=5,可得出当x=2时y=5,即4a+2b+c=5,再将2b a -=32及4a+2b+c=5代入2b a -(4a+2b+c )中即可求出结论. 【详解】解:∵当x =0和x =3时,y 值相等,∴二次函数图象的对称轴为直线x =32, ∴3=22b a -. ∵当x =1时,y =5,∴当x =2×32﹣1=2时,y =5, ∴4a +2b +c =5. ∴2b a -(4a +2b +c )=32×5=152. 故选:B .【点睛】 本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数的性质及二次函数图象上点的坐标特征,找出2b a-和(4a+2b+c )的值是解题的关键. 7.C解析:C【分析】由函数图象可知a <0,对称轴﹣1<x <0,图象与y 轴的交点c >0,函数与x 轴有两个不同的交点;即可得出b ﹣2a >0,b <0;△=b 2﹣4ac >0;再由图象可知当x =1时,y <0,即a +b +c <0;当x =﹣1时,y >0,即a ﹣b +c >0;当x =﹣12时,y >0,即14a ﹣12b +c >0,即可求解.【详解】解:由函数图象抛物线开口向下,对称轴﹣1<x <0,图象与y 轴的交点c >0, ∴a <0,2b a -<0,c >0, ∴b <0,∴abc >0,故①正确;∵函数与x 轴有两个不同的交点,∴△=b 2﹣4ac >0,故②错误;∵2b a->﹣1, ∴2a <b ,故③错误;当x =1时,y <0,即a +b +c <0;当x =﹣1时,y >0,即a ﹣b +c >0;∴(a +b +c )(a ﹣b +c )<0,即(a +c )2<b 2;故④正确;∵x =﹣12时,y >0, ∴14a ﹣12b +c >0,即a ﹣2b +4c >0,故⑤正确; 故选:C .【点睛】此题考查二次函数的图象,根据图象确定式子的正负,正确理解函数图象,由图象得到相关信息,掌握二次函数的性质,根的判别式与图象的关系是解题的关键.8.B解析:B【分析】根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.【详解】解:分两种情况讨论:①当k>0时,反比例函数k y x=在一、三象限,而二次函数()20y kx k k =-≠开口向上,与y 轴交点在原点下方,故C 选项错误,B 选项正确; ②当k<0时,反比例函数k y x=在二、四象限,而二次函数()20y kx k k =-≠开口向下,与y 轴交点在原点上方,故A 选项与D 选项错误.故选B .【点睛】 本题考查了反比例函数图象性质和二次函数图象性质.关键是根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.9.C解析:C【分析】先证明四边形AEDF 是平行四边形,在根据题意得到四边形AEDF 是菱形,即可得到结果;【详解】由题意://DE AC ,//DF AB ,即//DE AF ,//DF EA ,∴四边形AEDF 是平行四边形,又∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∵//AE DF ,∴BAD ADF ∠=∠,∴DAF FDA ∠=∠,∴FA FD =,∴四边形AEDF 是菱形,∴EF AD ⊥,且O 为EF 的中点,8EF =,∴4OF =,∴在Rt △OAF 中,41sin 82OF DAF AF ∠===; ∴1sin 2DAC ∠=; 故答案选C .【点睛】本题主要考查了菱形的判定与性质,结合三角函数计算是解题的关键. 10.C解析:C【分析】作BC ⊥底面于点C ,根据坡度的概念、勾股定理列式计算即可;【详解】作BC ⊥底面于点C ,设BC x =,∵传送带和底面所成斜坡AB 的坡度为1∶2,∴2AC x =,由勾股定理得:222AC BC AB +=,即()222210x x +=,解得:25x =,即25BC =.故答案选C .【点睛】本题主要考查了解直角三角形的应用-坡度坡角问题,准确计算是解题的关键. 11.A解析:A【分析】根据正切函数可求小河宽PA 的长度.【详解】解:∵PA ⊥PB ,PC=50米,∠PCA=35°,∴小河宽PA=PCtan ∠PCA=50tan35°(米).故选:A .【点睛】考查考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.12.B解析:B【分析】在直角三角形ADE 中,3AE AB BE cos 5AD AD A -===,求得AD ,AE .再求得DE ,即可得到tan ∠DBE .【详解】设菱形ABCD 边长为t .∵BE =2,∴AE =t−2. ∴3AE AB BE cos 5AD AD A -===, ∴3t 25t-=, ∴t =5.∴AE =5−2=3.∴DE4.∴tan ∠DBE =DE 4=BE 2=2. 故选:B .【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握边角之间的关系. 二、填空题13.4-π【分析】连接OAOB 由S 阴影=S 正方形OBPA-S 扇形AOB 则可求得结果【详解】解:连接OAOB ∵PAPB 分别与⊙O 相切于点AB ∴OA ⊥APOB ⊥PBPA=PB ∴∠OAP=∠OBP=90°=∠解析:4-π【分析】连接OA ,OB ,由S 阴影=S 正方形OBPA -S 扇形AOB 则可求得结果.【详解】解:连接OA ,OB ,∵PA ,PB 分别与⊙O 相切于点A ,B ,∴OA ⊥AP ,OB ⊥PB ,PA=PB ,∴∠OAP=∠OBP=90°=∠BPA ,∴四边形OBPA 是正方形,∴∠AOB=90°,∴阴影部分的面积=S 正方形OBPA -S 扇形AOB 则=22-904360π⨯⨯=4-π. 故答案为:4-π.【点睛】此题考查了切线长定理,正方形的判定与性质,扇形面积公式等知识.解题关键是连接半径,构造正方形,把阴影部分面积转化为正方形面积与扇形面积差.14.80【分析】设此扇形的圆心角为x°代入弧长公式计算得到答案【详解】解:设此扇形的圆心角为x°由题意得解得x=80故答案为:80【点睛】本题考查的是弧长的计算掌握弧长的公式是解题的关键解析:80【分析】设此扇形的圆心角为x°,代入弧长公式计算,得到答案.【详解】解:设此扇形的圆心角为x°,由题意得,94180x ππ=, 解得,x=80,故答案为:80.【点睛】 本题考查的是弧长的计算,掌握弧长的公式180n r l π=是解题的关键. 15.36【分析】设围成矩形的长为xcm 则宽为=(12﹣x )cm 设围成矩形的面积为Scm2根据矩形的面积公式列出S 关于x 的二次函数将其写成顶点式根据二次函数的性质可得答案【详解】解:设围成矩形的长为xcm解析:36【分析】设围成矩形的长为xcm ,则宽为2422x -=(12﹣x ) cm ,设围成矩形的面积为Scm 2,根据矩形的面积公式列出S 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】解:设围成矩形的长为xcm ,则宽为2422x - =(12﹣x ) cm , 设围成矩形的面积为Scm 2,由题意得:S =x (12﹣x )=﹣x 2+12x=﹣(x ﹣6)2+36,∵二次项系数为负,抛物线开口向下,∴当x =6cm 时,S 有最大值,最大值为36cm 2.故答案为:36.【点睛】本题考查了二次函数在几何图形问题中的应用,熟练掌握二次函数的性质是解题的关键; 16.y=-x2-2x-1【分析】首先由①得到a <0;由②得到-≤0;只要举出满足以上两个条件的abc 的值即可得出所填答案【详解】解:二次函数y=ax2+bx+c①开口向下∴a <0;②当x >0时y 随着x 的解析:y=-x 2-2x-1.【分析】首先由①得到a <0;由②得到-2b a ≤0;只要举出满足以上两个条件的a 、b 、c 的值即可得出所填答案.【详解】解:二次函数y=ax 2+bx+c ,①开口向下,∴a <0;②当x >0时,y 随着x 的增大而减小,-2b a≤0,即b <0; ∴只要满足以上两个条件就行,如a=-1,b=-2,c=-1时,二次函数的解析式是y=-x 2-2x-1.故答案为:y=-x 2-2x-1.【点睛】本题主要考查了二次函数的性质,熟练运用性质进行计算是解此题的关键.此题是一道开放型的题目.17.【分析】先根据题意得出抛物线与x 轴的交点坐标再由两点坐标关于抛物线的对称轴对称即可得出结论【详解】解:∵方程ax2+bx+c=0的两个根是-3和1∴二次函数y=ax2+bx+c 的图象与x 轴的交点分别解析:1-【分析】先根据题意得出抛物线与x 轴的交点坐标,再由两点坐标关于抛物线的对称轴对称即可得出结论.【详解】解:∵方程ax 2+bx+c=0的两个根是-3和1,∴二次函数y=ax 2+bx+c 的图象与x 轴的交点分别为(-3,0),(1,0).∵此两点关于对称轴对称,∴对称轴是直线x=312-+=-1. 故答案为:-1.【点睛】本题考查的是抛物线与x 轴的交点,熟知抛物线与x 轴的交点与一元二次方程根的关系是解答此题的关键. 18.【分析】由推出根据三角形的外角等于与它不相邻的两内角和知设表示出进一步表示根据求解【详解】解:设故答案是:【点睛】本题考查了解直角三角形的知识熟悉相关性质是解题的关键解析:2+【分析】由AB BD =推出∠=∠A ADB ,根据三角形的外角等于与它不相邻的两内角和知15A ∠=︒,75ADC ∠=︒.设CD x =,表示出AB 、BD 、BC ,进一步表示AC .根据tan tan 75AC ADCCD 求解. 【详解】解:AB BD =,A ADB ∴∠=∠.302DBC A ,15A ∴∠=︒,75ADC ∠=︒.设CD x =, 21sin 2CDx AB BD x DBC , 222223BC BD CD x x x , (23)AC AB BC x ,tan tan75ADC AC CD = 23=+.故答案是:23+.【点睛】本题考查了解直角三角形的知识,熟悉相关性质是解题的关键. 19.45【分析】根据特殊锐角的三角函数值即可求解【详解】解:∵∵即∴∠A=45°【点睛】本题主要考查特殊锐角三角函数值解题的关键是熟记特殊锐角的三角函数值解析:45︒ 【分析】根据特殊锐角的三角函数值即可求解.【详解】解:∵sin cos 2A A +=∵22sin 45=cos 4522︒︒=, 即sin 45cos 452︒+︒=∴∠A =45°【点睛】 本题主要考查特殊锐角三角函数值,解题的关键是熟记特殊锐角的三角函数值. 20.2400【分析】根据题意得:根据含角的直角三角形的性质计算即可得到答案【详解】∵俯角α=30°∴∵AC=1200m ∴m 故答案为:2400【点睛】本题考查了直角三角形的知识;解题的关键是熟练掌握含角的解析:2400【分析】根据题意得:30ABC ∠=,根据含30角的直角三角形的性质计算,即可得到答案.【详解】 ∵俯角α=30°∴30ABC ∠=∵AC =1200m∴22400AB AC ==m故答案为:2400.【点睛】本题考查了直角三角形的知识;解题的关键是熟练掌握含30角的直角三角形的性质,从而完成求解.21.【分析】先证△CHM ∽△CEB 得出HM 是△CBE 的中位线再证HM 是△BCQ的中位线最后利用勾股定理得出结论【详解】解:如图:作HM ∥AB 交BC 于点M 连接BH 并延长交CD 于Q 连接AC ∴△CHM ∽△CE【分析】先证△CHM ∽△CEB ,得出HM 是△CBE 的中位线,再证HM 是△BCQ 的中位线,最后利用勾股定理得出结论.【详解】解:如图:作HM ∥AB 交BC 于点M ,连接BH ,并延长交CD 于Q ,连接AC , ∴△CHM ∽△CEB ,∵点H 是CE 的中点, ∴12CH HM CM CE EB CB === , ∴HM 是△CBE 的中位线, ∴HM=12BE , ∵E 为AB 的中点,AB=4,∴HM=12BE=12×(12×4)=1, 同理可证:HM 是△BCQ 的中位线,∴CQ=2HM=2×1=2,∴点Q 为CD 的中点,点H 为BQ 的中点,∵F 为AO 的中点,∴FQ=12AC , ∵G 为BF 的中点,点H 为BQ 的中点,∴GH=12FQ ,∴GH=12×(12AC)=14AC , 在△ABC 中,∠ABC=60°,AB=4=CD ,BC=6,过点A 作AN ⊥BC ,∴BN=AB·cos60°=2,AN=AB·sin60°=2∴CN=6-2=4,在Rt △AZC 中,=∴GH=14⨯2.,【点睛】本题考查了相似三角形的判定与性质,三角形的中位线定理,解直角三角形及勾股定理的应用,解题的关键是正确作出辅助线.22.【分析】由题意过点B作BH⊥AC于H先解直角三角形求出BH再根据垂线段最短进行分析即可求解【详解】解:如图过点B作BH⊥AC于H在Rt△ABC中∵∠ABC=90°AB=2∠C=30°∴AC=2AB=解析:3【分析】由题意过点B作BH⊥AC于H,先解直角三角形求出BH,再根据垂线段最短进行分析即可求解.【详解】解:如图,过点B作BH⊥AC于H,在Rt△ABC中,∵∠ABC=90°,AB=2,∠C=30°,∴AC=2AB=4,3∵∠BHC=90°,∴BH=13,2∵BF//AC,∵当EF⊥AC时,EF的值最小,最小值33【点睛】本题考查解直角三角形的应用和平行线的性质以及垂线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题23.(1)求扇形OAD的面积为32π;(2)CD与⊙O相切,理由见解析.【分析】(1)求出∠OAD=60°,得出等边三角形OAD,求出半径和圆心角,利用扇形的面积公式求得即可;(2)求出∠ADC=∠ACD=12∠OAD=30°,进而求出∠ODC=90°,即可证得CD是⊙O的切线.【详解】(1)证明:∵AB=4,∠ACB=90°,∠B=30°,∴AC=12AB=2,∠BAC=60°,∴∠OAD=∠BAC=60°,∵OD=OA,∴△OAD是等边三角形,∴∠AOD=60°,∵AO=AC=2,∴S扇形AOD=23623 602ππ⨯⨯=;(2)CD所在直线与⊙O相切,证明:∵△OAD是等边三角形,∴AD=OA,∵AO=AC,∴AD=AC,∴∠ADC=∠ACD,∵∠OAD=60°,∴∠ADC=30°,∴∠ODC=60°+30°=90°,∴OD⊥DC,∴CD是⊙O的切线.【点睛】本题考查了扇形的面积,切线的判定,含30度角的直角三角形的性质,勾股定理,等边三角形的性质和判定的应用,主要考查学生综合运用性质进行推理和计算的能力,综合性比较强,有一定的难度.24【分析】根据翻折的意义,垂径定理的性质,直径上的圆周角是直角,扇形的面积等,把阴影的面积等量转化为三角形OBC的面积求解即可.【详解】解:如图,连接OB ,BC .过点O 作OD ⊥AB ,垂足为E ,连接BD ,根据题意,得OE=ED=12OD=12OB , ∴∠ABO=∠OAB=30°,∵AC 是圆的直径,∴∠ABC=90°,∠ACB=60°, ∴△OBC 是等边三角形,△OBD 是等边三角形,∴弓形OnB 的面积=弓形BmC 的面积,∴=S S △OBC 阴影=34×26=93.【点睛】本题考查了垂径定理,直径上的圆周角,阴影部分的面积,熟练掌握圆的基本性质,把阴影面积合理转型为三角形的面积是解题的关键.25.(1)22y x x =-++;(2)(12,-3)或(12,2) 【分析】(1)利用旋转的性质得出A′(-1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)分AQ 是斜边、BQ 是斜边两种情况,利用勾股定理分别求解即可.【详解】解:(1)线段AB 绕原点O 逆时针旋转90°,得到线段A B '',又A (0,1),B (2,0),∴A′(-1,0),B′(0,2),∵A′(-1,0),B′(0,2),B (2,0),设抛物线的解析式为:y=a (x+1)(x-2)将B′(0,2)代入得出:2=a (0+1)(0-2),解得:a=-1,故满足条件的抛物线的解析式为y=-(x+1)(x-2)=-x 2+x+2;(2)由抛物线的表达式知,函数的对称轴为x=12,故设点Q (12,m ), 则()222112AQ m ⎛⎫=+- ⎪⎝⎭,222122BQ m ⎛⎫=-+ ⎪⎝⎭,AB 2=22+1=5, 当AQ 是斜边时,则()22221112522m m ⎛⎫⎛⎫+-=-++ ⎪ ⎪⎝⎭⎝⎭, 解得m=-3,当BQ 是斜边时,()22221115222m m ⎛⎫⎛⎫+-+=-+ ⎪ ⎪⎝⎭⎝⎭, 解得m=2,故点Q 的坐标为(12,-3)或(12,2). 【点睛】本题主要考查了待定系数法求二次函数的解析式,二次函数的性质,坐标和图形的变换-旋转,其中(2),利用勾股定理得出方程求出m 是解题关键.26.(1)应降价20元;(2)每套应降价15元【分析】(1)设每件衬衫应降价x 元,利用每件利润×总销量=总利润,列方程求解即可; (2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)解:设每件衬衫应降价x 元,根据题意,得 ()()402021200x x -+=,整理,得22604000x x -+=,解得110x =,220x =.∵尽快减少库存,∴20x答:应降价20元.(2)解:设每件衬衫应降价x 元,总利润为W 元,根据题意,得.()()40202W x x =-+2260800x x =-++, 当152b x a=-=时,利润最大, ()()4015202151250W =-+⨯=最大利润.【点睛】此题主要考查了一元二次方程以及二次函数的应用,正确利用每件利润×总销量=总利润得出关系式是解题关键.。

2023年山东省枣庄市中考数学模拟试卷(二)(含解析)

2023年山东省枣庄市中考数学模拟试卷(二)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 在下列四个实数中,最大的实数是( )A. −5B. 12C. −1D. 22. 下列运算中,正确的是( )A. a+a=2a2B. a2⋅a3=a6C. (−2a)2=4a2D. (a−1)2=a2+13. 一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为( )A. 145°B. 140°C. 135°D. 130°4. 对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2−b2,根据这个定义,代数式(x+y)☆y可以化简为( )A. xy+y2B. xy−y2C. x2+2xyD. x25. 《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为( )A. {5x+6y=15x−y=6y−x B. {6x+5y=1 5x+y=6y+xC. {5x+6y=14x+y=5y+x D. {6x+5y=1 4x−y=5y−x6. 已知关于x的方程2x+mx−2=3的解是正数,那么m的取值范围为( ) A. m>−6且m≠−2 B. m<6C. m>−6且m≠−4D. m<6且m≠−27.如图,点C,D在以AB为直径的⊙O上,且CD平分∠ACB,若CD =43,∠CAB=75°,则AB的长是( )A. 83B. 43C. 8D. 48.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=1,则k的值为( )A. 1B. 22C. 2D. 29.如图,在正方形ABCD中,对角线AC,BD交于点O,折叠正方形A BCD,使AB边落在AC上,点B落在点H处,折痕AE交BC于点E,交BO 于点F,连接FH,下列结论:①AD=DF;②四边形BEHF为菱形;③FHAD=2−1;④S△ABES△ACE =ABAC.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个10. 如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )A. 2个B. 3个C. 4个D. 5个第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 新冠肺炎患者喷嚏、咳嗽、说话的飞沫,直接吸入都会导致感染,所以我们要戴口罩,医用口罩可以过滤小至0.00000004米颗粒,用科学记数法表示0.00000004是______ .12. 已知关于x的不等式组{x−a>05−2x≥−1无解,则a的取值范围是______.13.如图,在平面直角坐标系xOy中,点A在第一象限内,点B在x轴正半轴上,△OCD是以点O为位似中心,且与△OAB的相似比的位似图形.若点A的坐标为(3,2),则点C的坐标为______.为1314.如图,在等腰Rt△ABC中,∠BAC=90°,BC=42.分AB的长为半径画弧分别与△ABC别以点A,B,C为圆心,以12的边相交,则图中阴影部分的面积为______ .(结果保留π)15. 如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为______.16. 直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3 C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2022B2022C2022C2021中的点B2022的坐标为______.三、解答题(本大题共8小题,共72.0分。

2023年黄埔区初三数学二模试卷及答案

黄浦区2023年九年级学业水平考试模拟考数 学 试 卷2023年4月(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。

一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列实数中,最小的数是( ▲ ) (A )0;(B )2−;(C )3−;(D )1.2.下列轴对称图形中,对称轴条数最多的是( ▲ ) (A )等边三角形;(B )菱形;(C )等腰梯形;(D )圆.3.设a 是一个不为零的实数,下列式子中,一定成立的是( ▲ ) (A )32a a −>−;(B )32a a >;(C )32a a −>−;(D )32a a>. 4.某校为了解学生在假期阅读课外书籍的情况,将调查所得的50个数据整理成下表:课外书籍(本) 1 2 3 4 5 人数(人)10102055对于这组数据,下列判断中,正确的是( ▲ ) (A )众数和平均数相等; (B )中位数和平均数相等;(C )中位数和众数相等;(D )中位数、众数和平均数都相等.5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =−,其图像经过( ▲ ) (A )第一、二象限; (B )第三、四象限; (C )第一、三象限;(D )第二、四象限.6.要检验一个四边形的桌面是矩形,可行的测量方案是( ▲ )(A )任选两个角,测量它们的角度; (B )测量四条边的长度;(C )测量两条对角线的长度;(D )测量两条对角线的交点到四个顶点的距离.二、填空题:(本大题共12题,每题4分,满分48分)7.冬季某日中午12时的气温是3℃,经过10小时后气温下降8℃,那么该时刻的气温是 ▲ ℃.8.计算:318−= ▲ .9.已知()211f x x =+,那么()1f −= ▲ . 10.已知关于x 的方程230x x k −+=无实数根,那么k 的取值范围是 ▲ .11.小丽和小明两个同学玩“石头,剪刀、布”的游戏,在一个回合中出现平局的概率是 ▲ . 12.已知某反比例函数的图像在其所在的每个象限内,y 的值随x 的值增大而增大,那么这个反比例函数可以是 ▲ .(只需写出一个)13.已知一次函数的图像经过点(1,3),且与直线26y x =+平行,那么这个一次函数的解析式是 ▲ . 14.某学校为了解七年级学生某天书面作业完成时间的情况,从该校七年级学生中随机抽取40人进行调查,调查结果绘制成图1所示的频数分布直方图(每个小组包括最小值,不包括最大值).根据图中信息,该校七年级200名 学生中,这一天书面作业完成时间少于.. 90分钟的约有 ▲ 人.15.已知点G 是△ABC 的重心,设CA a = ,CB b = ,那么CG 用a 、b可表示为 ▲ .16.在直角坐标平面内,已知点A (1,-3),B (4,-1),将线段AB 平移得到线段11A B (点A 的对应点是点1A ,点B 的对应点是点1B ),如果点1A 坐标是(-2,0),那么点1B 的坐标是 ▲ .17.七巧板是中国传统智力玩具,现用以下方法制作一副七巧板:如图2所示,取一张边长为20厘米的正方形纸板,联结对角线BD ;分别取BC 、CD 中点E 、F ,联结EF ;过点A 作EF 垂线,分别交BD 、EF 于G 、H 两点;分别取BG 、DG 中点M 、N ,联结MH 、NF ,沿图中实线剪开即可得到一副七巧板.其中四边形GHFN 的面积是 ▲ 平方厘米.18.我们规定:在四边形ABCD 中,O 是边BC 上的一点.如果△OAB 与△OCD 全等,那么点O 叫做该四边形的“等形点”.在四边形EFGH 中,∠EFG =90°,EF ∥GH ,EF =1,FG =3,如果该四边形的“等形点”在边FG 上,那么四边形EFGH 的周长是 ▲ .3060 90 1204 61020频数时间(分钟)图1M N G HF EBCAD图2三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:2282()362x x x x x x x +−−÷−−−+.20.(本题满分10分) 解方程组:222 1 1 . x y y x y −−=−−= ,①②21.(本题满分10分) 小丽与妈妈去商场购物,商场正在进行打折促销,规则如下:优惠活动一:任选两件商品,第二件半价(两件商品价格不同时,低价商品享受折扣); 优惠活动二:所有商品打八折. (两种优惠活动不能同享)(1)如果小丽的妈妈看中一件价格600元的衣服和一双500元的鞋子,那么她选择哪个优惠活动会更划算?请通过计算说明;(2)如果小丽的妈妈想将之前看中的鞋子换成一条裤子,当裤子价格(裤子价格低于衣服价格)低于多少元时,小丽会推荐妈妈选择优惠活动二?为什么?已知,如图3,⊙O 的半径为2,半径OP 被弦AB 垂直平分,交点为Q ,点C 在圆上,且 BCBP =. (1)求弦AB 的长;(2)求图中阴影部分面积(结果保留π).CBAQ OP23.(本题满分12分) 已知:如图4,在正方形ABCD 中,点E 在对角线BD 的延长线上,作AF ⊥AE ,且AF =AE ,联结BF .(1)求证:BF = DE ;(2)延长AB 交射线EF 于点G ,求证:BF ADFG AE=.图3FBCADE图4如图5,在平面直角坐标系xOy 中,直线4y x =−−与x 轴、y 轴分别交于点A 、B ,抛物线2y x bx c =++经过点A 、B .(1)求抛物线的表达式;(2)设抛物线与x 轴的另一个交点为C ,点P 是△ABC 的外接圆的圆心,求点P 坐标; (3)点D 坐标是(0,4),点M 、N 在抛物线上,且四边形MBND 是平行四边形,求线段MN 的长.xO BAy图5如图6,在菱形ABCD中,BC=10,E是边BC上一点,过点E作EH⊥BD,垂足为点H,点G在边AD上,且GD=CE,联结GE,分别交BD、CH于点M、N.(1)已知3 sin5DBC∠=,①当EC=4时,求△BCH的面积;②以点H为圆心,HM为半径作圆H,以点C为圆心,半径为1作圆C,圆H与圆C有且仅有一个公共点,求CE的值;(2)延长AH交边BC于点P,当设CE=x,请用含x的代数式表示HPCN的值.N GH MDCB AE备用图图6NGH MDCB AE黄浦区2023年九年级学业水平考试模拟考参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.D ; 6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.-5; 8.12−; 9.12; 10.94k >; 11.13;12. 1y x=−(答案不唯一); 13. 21y x =+; 14. 170; 15. 1133a b +r r;16.(1,2); 17.50; 18.8或610+.三、解答题:(本大题共7题,满分78分)19.解:原式=2(2)82[](2)(3)(2)(3)2x x x x x x x x ++−⋅+−+−−…………………………………………………(6分)=2(2)2(2)(3)2x x x x x −+⋅+−− …………………………………………………………………(2分) =23x x −−. …………………………………………………………………………………(2分)20.解:由方程②,得 1x y =+. ③ ……………………………………………………(2分) 将③代入①,得 22(1)21y y y +−−=−. ………………………………………………………(2分) 解得 11y =−,22y =. ……………………………………………………………(4分) 将11y =−代入③,得 10x =; 将22y =代入③,得 23x =.所以,原方程组的解是110 1 x y ==− ,;223,2. x y ==…………………………………………………………(2分)21. 解:(1)选择优惠活动一更划算. ………………………………………………………………(1分) 活动一价格:6005000.5850+×=(元); ………………………………………………………………(2分) 活动二价格:6005000.8880+×=()(元). ……………………………………………………………(2分) ∵850880<,∴选择优惠活动一更划算.(2)当裤子价格低于400元时,推荐选择优惠活动二. …………………………………………… (1分) 设裤子的价格为x (x <600)元,则活动一的价格为(6000.5x +)元;……………………………………………………………(1分) 活动二的价格为(4800.8x +)元. ……………………………………………………………(1分) 由题意,得6000.54800.8x x +>+.……………………………………………………………………(1分) 解得400x <. ………………………………………………………………………………………(1分) ∴当裤子价格低于400元时,推荐选择优惠活动二.22. 解:(1)联结OB ,则2OB =.……………………………………………………………………(1分) ∵弦AB 垂直平分OP ,∴112OQ OP ==. ………………………………………………………(1分)在Rt △OBQ 中,223BQ OB OQ −. ………………………………………………………(1分)∵ 半径OP 垂直AB ,∴AQ BQ =, ……………………………………………………………(1分) ∴23AB =. ………………………………………………………………………………………(1分) (2)在Rt △OBQ 中,1cos 2POB ∠=,∴∠POB =60°.联结BC ,∵»»BCBP =,∠BOC =∠POB =60°. ……………………………………………………(1分) 又∵OC OB =,∴△OBC 是等边三角形.∴∠BCO =60°, ……………………………………………………………………………………(1分) ∵180BCO POC ∠+∠=o , ∴BC ∥OP , …………………………………………………………(1分) ∴PBC OBC S S =V V . ∴26022=3603OBC S S ππ==⋅阴扇形. ……………………………………………………………………(2分)23.证明:(1)∵四边形ABCD 是正方形,∴∠BAD =90°.…………………………………………(1分) ∵AF ⊥AE ,∴∠EAF =90°.∴∠BAF =∠EAD .……………………………………………………(2分) 又∵ AF =AE ,AB =AD ,∴△ABF ≌△ADE . ………………………………………………………………………………(2分) ∴BF = DE . ……………………………………………………………………………………(1分) (2)∵AF =AE ,∠EAF =90°,∴∠AFE =∠AEF =45°,…………………………………………………(1分) ∵四边形ABCD 是正方形,∴∠ADB =∠BDC =45°,∴∠ADE =∠AFG =135°, ………………………………………………………………………(1分) 又∵∠EAD =∠BAF ,∴△ADE ∽△AFG .………………………………………………………(2分) ∴DE ADFG AF=.…………………………………………………………………………………(1分) 又∵DE =BF ,AF =AE , ∴BF AD FG AE=.…………………………………………………………………………………… (1分)24.解:(1)点B 坐标是(0,4)−;………………………………………………………………………(1分)把0y =,代入4y x =−−,得4x =−,∴点A 坐标是(4,0)−.……………………………(1分) 将点A 、B 坐标代入2y x bx c =++,得24;0(4)(4).c b c =−=−+−+解得3;4.b c ==− …………………………………………………………………………………(1分)∴抛物线的表达式是234y x x =+−.………………………………………………………………(1分) (2)∵点P 是△ABC 的外接圆的圆心,∴点P 在AC 的垂直平分线上,即抛物线的对称轴上,∴点P 的横坐标是32−. …………………………………………………………………………(2分)设点P 坐标为3(,)2a −,∵PB =P A ,∴222233(0)[(4)][(4)](0)22a a −−+−−=−−−+−. 解得 32a =−.………………………………………………………………………………(1分)∴点P 的坐标是33(,)22−−.…………………………………………………………………………(1分) (3)∵点O 是BD 中点,即O 是平行四边形MBND 对角线交点,又∵四边形MBND 是平行四边形,∴点M ,N 关于原点O 对称,………………………………(1分) 不妨设点M 的横坐标为m (0m ≥),则点M 坐标是(m ,234m m +−),点N 坐标是(m −,234m m −−+), 把点(m −,234m m −−+)坐标代入234y x x =+−, 得 223434m m m m −−+=−−.解得 2m =.(负值已舍) ………………………………………………………………(1分) ∴点M 坐标是(2, 6),点N 坐标是(2, 6)−−,……………………………………………………(1分) ∴22[2(2)][6(6)]410MN =−−+−−=.…………………………………………………………(1分)25.解:(1)①联结AC 交BD 于点O , …………………………………………………………… (1分)∵四边形ABCD 是菱形,∴OC ⊥BO . 在Rt △BOC 中,BC =10, 3sin 5DBC ∠=, ∴CO =6,BO =8. …………………………………………………………………………………(1分) ∵EH ⊥BD ,∴EH ∥CO ,∴BH BEBO BC=.∴245BH =. ………………………………………………………………………………………(1分) ∴124726255BHC S =××=V . ………………………………………………………………………(1分) ②在菱形ABCD 中,AD ∥BC ,又∵GD =CE ,∴四边形CEGD 是平行四边形. ∴EG ∥CD , ∴EG ∥AB ,∴∠EMB =∠ABD .又∵∠ABD =∠CBD ,∴∠EMB =∠CBD ,∴BE =ME .又∵EH ⊥BD ,∴HM =BH ,…………………………………………………………………………(1分) 设CE x =,由(1)可得,∴485H r BH x ==−. ………………………………………………(1分)在Rt △HOC 中,222244[8(8)]6()655HC x x =−−+=+. 1°当两圆外切时, 224481()655x x −+=+,解得258x =.…………………………………………………………(1分) 2°当两圆内切时, 224481()655x x −−=+,解得6556x =.……………………………………………………………(1分) 综上所述,CE 长是258或6556.……………………………………………………………………(1分) (2)∵ AB =BC ,∠ABD =∠CBD ,BH 是公共边, ∴△ABH ≌△CBH .∴∠BAH =∠BCN .…………………………………………………………………………………(1分) 取BE 中点Q ,联结HQ , 又∵HM =BH ,∴HQ ∥EN ∥AB ,∴∠HQP =∠CEN ,∠QHP =∠BAH =∠BCN ,∴△HQP ∽△CEN .………………………………………………………………………………(1分) ∴HP HQCN CE=. …………………………………………………………………………………(1分) 又∵11022xHQ BE−==. ∴102HP xCN x−=. ……………………………………………………………………………………(2分)。

2024年江苏省南京市联合体中考数学模拟试卷(二)(含答案)

2024年江苏省南京市联合体中考数学模拟试卷(二)一、选择题:本题共6小题,每小题2分,共12分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.9的平方根是( )A. ±3B. 3C. ± 3D. 32.下列运算正确的是A. x 5+x 5=x 10B. x 5÷x 5=xC. x 5·x 5=x 10D. (x 5)5=x 103.m = 15的取值范围是( )A. 1<m <2B. 2<m <3C. 3<m <4D. 4<m <54.如图,菱形ABCD 的边长是2,E 是AB 的中点,且DE ⊥AB ,则菱形ABCD 的面积为( )A. 3B. 2 3C. 32D. 4 35.实数a ,b 满足a <0,a 2>b 2,下列结论:①a <b ,②b >0,③1a <1b ,④|a|>|b|.其中所有正确结论的序号是( )A. ①④B. ①③C. ②③D. ②④6.如图,在Rt △ABC 中,∠ABC =90°,BD 为⊙O 的切线,D 为切点,DA =DE ,则△ABD 和△CDE 的面积之比为( )A. 13B. 12C. 22D. 2−1二、填空题:本题共10小题,每小题2分,共20分。

7.−2的倒数是______;−2的相反数是______.8.若式子 x +1在实数范围内有意义,则x 的取值范围是______.9.计算5× 12 3的结果是______.10.方程1x−2=3x 的根是______.11.正方形ABCD内接于⊙O,E是AD的中点,连接BE、CE,则∠ABE=______°.12.如图,将△ABC绕点B顺时针旋转到△DBE的位置.连接AD,若∠ADB=60°,则∠1=______°.13.已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为______.14.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.15.如图,正十边形的两条对角线AB,CD交于点P,则∠APD=______°.16.如图,在矩形ABCD中,AB=6,BC=8,E是边BC上的动点,连接AE,过点E作EF⊥AE,与CD边交于点F,连接AF,则AF的最小值为______.三、计算题:本大题共1小题,共6分。

模拟测评2022年最新中考数学三年真题模拟 卷(Ⅱ)(含答案详解)

2022年最新中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列解方程的变形过程正确的是( )A .由321x x =-移项得:321x x +=-B .由4321x x +=-移项得:3214x x -=-C .由3121123x x -+=+去分母得:3(31)12(21)x x -=++D .由()42311x --=去括号得:4621x -+= 2、下列分式中,最简分式是( ) A .()()3485x y x y -+ B .22y x x y -+ C .2222x y x y xy ++ D .()222x y x y -+ 3、分式方程133x m x x +=--有增根,则m 为( ) A .0 B .1 C .3 D .6 4、日历表中竖列上相邻三个数的和一定是( ). A .3的倍数 B .4的倍数 C .7的倍数 D .不一定 ·线○封○密○外5、在2201922(8),(1),3,|1|,|0|,5--------中,负数共有( )个. A .4 B .3 C .2 D .16、如图,已知12,AB AB BC =⊥于点B ,AB AD ⊥于点A ,5,10AD BC ==.点E 是CD 的中点,则AE 的长为( )A .6B .132C .5D 7、计算3.14-(-π)的结果为( ) .A .6.28B .2πC .3.14-πD .3.14+π8、一元二次方程254x x +=-的一次项的系数是( )A .4B .-4C .1D .59、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x 元,根据题意列方程为( )A .60006000405x x =+- B .60006000405x x =-- C .60006000405x x =++ D .60006000405x x =-+ 10、若把分式2x y x y+-中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .不变 C .缩小10倍 D .缩小20倍第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC 中,BC=3cm ,∠BAC=60°,那么△ABC 能被半径至少为 cm 的圆形纸片所覆盖.2、已知圆锥的底面周长为4cm π,母线长为3cm .则它的侧面展开图的圆心角为________度.3、以下说法:①两点确定一条直线;②两点之间直线最短;③若||a a =-,则0a <;④若a ,b 互为相反数,则a ,b 的商必定等于1-.其中正确的是_________.(请填序号)4、如图,在ABC 中,2,,AB AC B C BD CE ∠∠====,F 是AC 边上的中点,则AD EF -________1.(填“>”“=”或“<”)5、用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是_____. 三、解答题(5小题,每小题10分,共计50分) 1、如图,在数轴上记原点为点O ,已知点A 表示数a ,点B 表示数b ,且a ,b 满足()2560a b ++-=,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点A 与点B 之间的距离记作AB . (1)=a ______,b =______; (2)若动点P ,Q 分别从A ,B 同时出发向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,当点P 和点Q 重合时,P ,Q 两点停止运动.当点P 到达原点O 时,动点R 从原点O 出发,以每秒3个单位长度的速度也向右运动,当点R 追上点Q 后立即返回,以同样的速度向点P 运动,遇到点P 后再立即返,以同样的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点R 也停止运动,求在此过程中点R 行驶的总路程,以及点R 停留的最后位置在数轴上所对应的有理数; ·线○封○密·○外(3)动点M从A出发,以每秒1个单位的速度沿数轴在A,B之间运动,同时动点N从B出发,以每秒2个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM ON=?若存在,请直接写出t值;若不存在,请说明理由.2、为鼓励居民节约用水,昆明市主城区居民生活用水推行每月阶梯水费收费制度,具体执行方案如下(注:自2021年1月4日起执行):(1)一户居民二月份用水8立方米,则需缴水费______元;(2)某用户三月份缴水费67元,则该用户三月份所用水量为多少立方米?(3)某户居民五、六月份共用水29立方米,缴纳水费129元,已知该用户六月份用水量大于五月份,且五、六月份的用水量均小于17.5立方米.求该户居民五、六月份分别用水多少立方米?3、综合与探究如图,直线243y x=-+与x轴,y轴分别交于B,C两点,抛物线243y ax x c=++经过B,C两点,与x轴的另一个交点为A(点A在点B的左侧),抛物线的顶点为点D.抛物线的对称轴与x轴交于点E.(1)求抛物线的表达式及顶点D的坐标;(2)点M是线段BC上一动点,连接DM并延长交x轴交于点F,当:1:4FM FD=时,求点M的坐标;(3)点P 是该抛物线上的一动点,设点P 的横坐标为m ,试判断是否存在这样的点P ,使90PAB BCO ∠+∠=︒,若存在,请直接写出m 的值;若不存在,请说明理由.4、如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于点A (-1,0)和点B (3,0),与y 轴交于点C ,顶点为点D .(1)求该抛物线的表达式及点C 的坐标; (2)联结BC 、BD ,求∠CBD 的正切值; (3)若点P 为x 轴上一点,当△BDP 与△ABC 相似时,求点P 的坐标. 5、已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB =(单位长度),慢车长4CD =(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b .若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以2个单位长度/秒的速度向左匀速继续行驶,且8a +与()216b -互为相反数.(1)求此时刻快车头A 与慢车头C 之间相距多少单位长度? ·线○封○密·○外(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A 和C 相距8个单位长度.(3)此时在快车AB 上有一位爱动脑筋的六年级学生乘客P ,他发现行驶中有一段时间t 秒钟,他的位置P 到两列火车头A ,C 的距离和加上到两列火车尾B ,D 的距离和是一个不变的值(即PA PC PB PD +++为定值).你认为学生P 发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由.-参考答案-一、单选题1、D【分析】对于本题,我们可以根据解方程式的变形过程逐项去检查,必须符合变形规则,移项要变号.【详解】解析:A .由321x x =-移项得:321x x -=-,故A 错误;B .由4321x x +=-移项得:3214x x -=--,故B 错误;C.由3121123x x -+=+去分母得:()()3316221x x -=++,故C 错误; D.由()42311x --=去括号得:4621x -+= 故D 正确.故选:D .【点睛】本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则.2、C【详解】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A 、分式的分子与分母中的系数34和85有公因式17,可以约分,故A 错误;B 、22y x x y -+=y x y x x y +-+()()=y −x ,故B 错误;C 、分子分母没有公因式,是最简分式,故C 正确;D 、()222x y x y -+=()2x y x y x y +-+()()=x yx y -+,故D 错误, 故选C . 【点睛】本题考查了最简分式,熟练掌握最简分式的概念是解题的关键.分式的化简过程,首先要把分子分母分解因式,然后进行约分.3、C【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的值,让最简公分母x −3=0,得到x =3,然后代入整式方程算出m 的值. 【详解】 解:方程两边都乘x −3,得x+x-3=m ∵原方程有增根, ∴最简公分母x −3=0, 解得x =3, 将x =3代入x+x-3=m ,得m =3, 故m 的值是3. 故选C . 【点睛】 本题考查了分式方程的增根.增根问题可按如下步骤进行:·线○封○密○外①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.4、A【分析】设中间的数字为x ,表示出前一个与后一个数字,求出和即可做出判断.【详解】解:设日历中竖列上相邻三个数的中间的数字为x ,则其他两个为x-7,x+7,则三个数之和为x-7+x+x+7=3x ,即三数之和为3的倍数.故选:A .【点睛】本题考查列代数式,解题的关键是知道日历表中竖列上相邻三个数的特点.5、A【分析】首先将各数化简,然后根据负数的定义进行判断.【详解】解:∵-(-8)=8,2019)1(1=--,293=--,-|-1|=-1,-|0|=0,224=-55-, ∴负数共有4个.故选A . 【点睛】 此题考查的知识点是正数和负数,关键是判断一个数是正数还是负数,要把它化简成最后形式再判断.负数是指小于0的数,注意0既不是正数,也不是负数. ·线6、B【分析】延长AE 交BC 于点F ,根据已知条件证明()ASA ADE FCE ≌,得出,5AE FE AD CF ===,根据勾股定理求出AF 的长度,可得结果.【详解】如图,延长AE 交BC 于点F ,∵,AB BC AB AD ⊥⊥,∴//AD BC ,∴D C ∠=∠,∵点E 是CD 的中点,∴DE CE =,在ADE 和FCE △中,,,,D C DE CE AED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ADE FCE ≌,∴,5AE FE AD CF ===,∴1055BF BC CF =-=-=,在Rt ABF中,13AF ===,∵点E 是AF 的中点, ∴11322AE AF ==, 故选:B .【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识点,熟练运用全等三角形的判定定理以及性质是解本题的关键.7、D【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】解: 3.14-(-π)= 3.14+π.故选:D .【点睛】本题考查减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.8、A【分析】方程整理为一般形式,求出一次项系数即可.【详解】方程整理得:x 2+4x +5=0,则一次项系数为4.故选A . 【点睛】 本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次·线项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.9、C【分析】首先设甲种陀螺单价为x元,则乙种陀螺单价为(5)x+元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程60006000405x x=++.【详解】首先设甲种陀螺单价为x元,则乙种陀螺单价为(5)x+元,根据题意可得:60006000405x x=++,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程.10、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案.【详解】解:分式2x yx y+-中的x和y都扩大10倍可得:1021010(2)2101010()x y x y x yx y x y x y+⨯++==---,∴分式的值不变,故选B.【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.二、填空题1【分析】作圆O 的直径CD ,连接BD ,根据圆周角定理求出60D ∠=︒,根据锐角三角函数的定义得出sin BC D CD∠=,代入求出CD 即可. 【详解】解:作圆O 的直径CD ,连接BD ,∵圆周角∠A、∠D 所对弧都是BC ,∴∠D=∠A=60°.∵CD 是直径,∴∠DBC=90°. ∴sin∠D=BC CD. 又∵BC=3cm,∴sin60°=3CD ,解得:CD= ∴Ocm ).∴△ABC的圆形纸片所覆盖.【点睛】 本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径. 2、240·线【分析】根据弧长=圆锥底面周长=4π,弧长=180n r π计算. 【详解】由题意知:弧长=圆锥底面周长=4πcm ,3180n π⨯=4π,解得:n =240. 故答案为240.【点睛】本题考查了的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系.3、①【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案.【详解】①两点确定一条直线,正确;②两点之间直线最短,错误,应为两点之间线段最短;③若||a a =-,则0a ≤,故③错误;④若a ,b 互为相反数,则a ,b 的商等于1-(a ,b 不等于0),故④错误. 故答案为:①.【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键.4、<【分析】连接AE ,先证明△≌△ADB AEC 得出AD AE =,根据三角形三边关系可得结果.【详解】如图,连接AE ,在ADB △和AEC 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADB AEC ≌,∴AD AE =,在AEF 中,AE EF AF -<,∴AD EF AF -<,∵F 是AC 边上的中点, ∴112AF AC ==, ∴1AD EF -<,故答案为:<.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键.5、2【详解】 解:扇形的弧长=0208161π⨯=2πr, ∴圆锥的底面半径为r=2.故答案为2.三、解答题1、(1)5,6-(2)点R行驶的总路程为25.5;R停留的最后位置在数轴上所对应的有理数为17(3)13t=或113或7或11【分析】(1)根据非负数的意义分析即可;(2)根据题意,,,P Q R三点重合,则只需计算P点的位置以及运动时间即可;(3)根据题意分情况讨论,根据情况建立一元一次方程解决问题.(1)()2560a b++-=5,6a b∴=-=故答案为:5,6-(2)当点P到达原点O时,动点R从原点O出发,则P到达O点需要:52 2.5÷=秒则此时Q点的位置为2.568.5+=设t秒后停止运动,则28.5t t=+解得8.5t=·线○封○密○外此时P 点的位置在28.517⨯=,即R 点也在P 点位置,其对应的有理数为:17R 点的运动时间为8.5,速度为3个单位长度每秒,则总路程为8.5325.5⨯=(3)存在,t 的值为:111,7,1133, 理由如下:()6511--=,111÷11=∴11秒后,M N 点停止运动①当,O M 分别位于O 的两侧时,如图,此时,OM ON =M 表示的有理数为5t -+,N 表示的有理数为62t -5620t t ∴-++-= 解得13t = ②当,M N 重合时,即第一次相遇时,如图,则562t t -+=- 解得113t = ③当N 点从A 点返回时,则点N 表示的有理数为()5211216t t -+-=-若此时点M 未经过点O ,则5t <则2165t t -=-+解得11t =,则此种情况不存在则此时点M 已经过点O ,5t >,如图,则()21650t t -+-+= 解得7t = ④当,M N 在O 点右侧重合时,如图,则2165t t -=-+ 解得11t=此时点,M N 都已经到达点B ,此时即,,M N B 三点重合,,M N 停止运动故t 的值为:111,7,1133, 【点睛】 本题考查了绝对值的非负性,用数轴上的点表示有理数,两点之间的距离,动点问题,一元一次方程的应用,数形结合是解题的关键. 2、·线○封○密○外(1)33.6元(2)15立方米(3)12立方米,17立方米【分析】(1)用水8立方米,未超过12.5立方米,按照每立方米4.2元求解即可;(2)由12.5×4.2=52.5<67说明该居民用水超过12.5立方米,设用水为x 立方米,根据水费为67元列出方程:12.5×4.2+(x -12.5)×5.8=67,求解即可;(3)分29立方米全部用在5月份、全部用在6月份、一部分用水在5月份一部分用水在6月份3种情况分类讨论求解.(1)解:∵每月用水量小于或等于12.5时每立方米按4.2元收费,一户居民用水为8立方米, ∴需要交纳的水费为:8×4.2=33.6元.(2)解:∵12.5×4.2=52.5<67元,∴三月份该居民用水超过12.5立方米,设该居民用水为x 立方米,由题意可知:12.5×4.2+(x -12.5)×5.8=67,解出:x =15(立方米),故该居民三月份用水为15立方米.(3)解:①假设五、六月份都在第一阶梯时:12.5225⨯=(立方米),∵25<29(不符合舍去);②假设五、六月份都在第二阶梯时:()12.52 4.22912.52 5.8128.2⨯⨯+-⨯⨯=(元),∵128.2<129(不符合舍去);③假设五月份在第一阶梯、六月份在第二阶梯时:设五月份用水量为x 立方米,六月份为()29x -立方米,由题意得:()4.212.5 4.22912.5 5.8129x x +⨯+--⨯=, 解得:12x =; 此时五月份用水量为12立方米,六月份用水量为291217-=立方米,符合题意, ∴五月份用水量为12立方米,六月份用水量为291217-=立方米. 【点睛】 本题考查一元一次方程的应用,解决本题的关键是读懂题意,得出每月用水量在三个不同阶梯时的水费进而求解. 3、(1)214-433y x x =++,16(2,)3;(2)44,3⎛⎫ ⎪⎝⎭;(3)存在,m 的值为4或8 【分析】(1)分别求出,B C 两点坐标代入抛物线243y ax x c =++即可求得a 、c 的值,将抛物线化为顶点式,即可得顶点D 的坐标; (2)作MG x ⊥轴于点G ,可证ΔMGF ∽DEF ∆,从而可得FM MG FD DE =,代入:1:4FM FD =,163DE =,可求得43MG =,代入243y x =-+可得4x =,从而可得点M 的坐标; (3)由90PAB BCO ∠+∠=︒,90CBO BCO ∠+∠=︒可得∠=∠PAB CBO ,由,B C 两点坐标可得42tan 63∠==CBO ,所以2tan 3∠=PAB ,过点P 作PQ ⊥AB ,分点P 在x 轴上方和下方两种情况即可求解. 【详解】(1)当0x =时,得4y =,∴点C 的坐标为(0,4),当0y =时,得2403x -+=,解得:6x =, ·线○封○密○外∴点B 的坐标为(6,0),将,B C 两点坐标代入,得43660,3 4.a c c ⎧+⨯+=⎪⎨⎪=⎩ 解,得1,34.a c ⎧=-⎪⎨⎪=⎩ ∴抛物线线的表达式为214- 4.33y x x =++ ∵()()222141116444442.33333y x x x x x =-++=--+-+=--+ ∴顶点D 坐标为16(2,)3. (2)作MG x ⊥轴于点G ,∵MFG DFE ∠=∠,90MGF DEF ∠=∠=︒, ∴ΔMGF ∽DEF ∆. ∴FM MG FD DE=. ∴11643MG =. ∴43MG = 当43y =时,42-433x =+ ∴4x =.∴点M 的坐标为44,3⎛⎫ ⎪⎝⎭.(3)∵90PAB BCO ∠+∠=︒,90CBO BCO ∠+∠=︒, ∴∠=∠PAB CBO , ∵点B 的坐标为(6,0),点C 的坐标为(0,4), ∴42tan 63∠==CBO , ∴2tan 3∠=PAB ,过点P 作PQ ⊥AB ,当点P 在x 轴上方时,214122323-++=+m m m解得m =4符合题意,当点P 在x 轴下方时,214122323--=+m m m解得m =8符合题意,∴存在,m 的值为4或8.【点睛】·线○封○密○外本题考查了抛物线解析式的求法,抛物线的性质,三角形相似的判定及性质,三角函数的应用,解题的关键是准确作出辅助线,利用数形结合的思想列出相应关系式.4、(1)223y x x =--,点C 的坐标为(0,-3)(2)13(3)(-3,0)或(-13,0)【分析】(1)把A 、B 两点坐标代入函数求出b ,c 的值即可求函数表达式;再令x =0,求出y 从而求出C 点坐标;(2)先求B 、C 、D 三点坐标,再求证△BCD 为直角三角形,再根据正切的定义即可求出;(3)分两种情况分别进行讨论即可.(1)解:(1)将A (-1,0)、B (3,0)代入2++=y x bx c ,得10930.b c b c -+=⎧⎨++=⎩, 解得:23.b c =-⎧⎨=-⎩, 所以,223y x x =--.当x =0时,3y =-.∴点C 的坐标为(0,-3).(2)解:连接CD ,过点D 作DE ⊥y 轴于点E ,∵()2223=14=----y x x x ,∴点D 的坐标为(1,-4).∵B (3,0)、C (0,-3)、D (1,-4),E (0,-4),∴OB =OC =3,CE =DE =1, ∴BC=BD= ∴222+18220=+==BC DC DB . ∴∠BCD =90°. ∴tan ∠CBD=13DC BC ==.(3) 解:∵tan ∠ACO=13AO OC =, ∴∠ACO =∠CBD . ∵OC =OB ,∴∠OCB =∠OBC =45°.∴∠ACO+∠OCB =∠CBD+∠OBC . 即:∠ACB =∠DBO . ∴当△BDP 与△ABC 相似时,点P 在点B 左侧. (i )当=AC DB CB BP 时, ·线○封○密○外= ∴BP =6.∴P (-3,0).(ii )当=AC BP CB DB时,= ∴BP =103. ∴P (-13,0).综上,点P 的坐标为(-3,0)或(-13,0).【点睛】本题是二次函数的综合题,掌握相关知识是解题的关键.5、(1)14单位长度;(2)0.75秒或2.75秒;(3)正确,这个时间是0.5秒,定值是6单位长度.【分析】(1)根据非负数的性质求出a =﹣6,b =8,求差即可求解;(2)根据时间=路程和÷速度和,设行驶t 秒钟两列火车行驶到车头A 和C 相距8个单位长度,列方程即可求解;(3)由于PA +PB =AB =2,只需要PC +PD 是定值,从快车AB 上乘客P 与慢车CD 相遇到完全离开之间都满足PC +PD 是定值,依此分析即可求解.(1)解:(1)∵|a +6|与(b ﹣8)2互为相反数,∴|a +6|+(b ﹣8)2=0,∴a +6=0,b ﹣8=0,解得a =﹣6,b =8.∴此时刻快车头A 与慢车头C 之间相距8﹣(﹣6)=14(单位长度); 答:此时快车头A 与慢车头C 之间相距14单位长度; (2) 解:设行驶t 秒钟两列火车行驶到车头A 和C 相距8个单位长度,两车相遇前可列方程为 62148t t +=-, 解得,0.75t =. 两车相遇后可列方程为 62148t t +=+, 解得, 2.75t =. 答:再行驶0.75秒或2.75秒两列火车行驶到车头AC 相距8个单位长度; (3) 正确, ∵PA +PB =AB =2, 当P 在CD 之间时,PC +PD 是定值4,即路程为4,所以,行驶时间t =4÷(6+2) =4÷8 =0.5(秒), 此时PA +PC +PB +PD =(PA +PB )+(PC +PD )=2+4=6(单位长度). ·线○封○密○外故这个时间是0.5秒,定值是6单位长度.【点睛】本题考查了一元一次方程的应用,数轴、绝对值和偶次方的非负性,熟练掌握行程问题的等量关系:时间=路程÷速度,根据数形结合的思想理解和解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年福建省三明市初中毕业生学业考试 数学试卷 (梅列、永安、沙县课改实验区)

考生注意: 本卷中凡涉及实数运算,若无特别要求,结果应该为准确数。

一、填空题:本大题共10小题,1~6题,每小题3分,7~10题,每小题4分,计34分。把答案填在题中横线上。

1.化简:)3(_________。 2.“今年十月七日会下雨”是_________事件。(填“确定”或“不确定”) 3.如图,在梯形ABCD中,AD//BC,E、F分别为AB、DC的中点,AD=3,BC=7,则EF的长为_________。

4.计算:22mnnm_________。 5.如图,CD是圆O的直径,弦AB⊥CD,E为垂足,AB=8,则AE=_________。 6.下列图形①等腰三角形、②矩形、③正五边形、④正六边形中,只有三个是可以通过切正方体(如图)而得到的切口平面图形,这三个图形的序号是__________________。

7.若关于x的方程062mxx有一个根是2,则m的值为_________。 8.文娱委员随机调查班级里7天内,每天收听综艺或音乐节目的人数,制成折线统计图。如图,判断收听人数比较稳定的是_________节目。

9.一家商店计划出售60件衬衫,要使销售总额不低于5100元,则每件衬衫的售价至少应为_________元。

10.已知0242xx,那么20001232xx的值为_________。

二、选择题:本大题共6小题,每小题4分,计24分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 11.下列计算错误的为( )

A.224)2(aa B.523)(aa C.120 D.8123 12.下列用科学记数法表示2006(保留两个有效数字),正确的是( ) A. 0.20×104 B. 1.01×103 C. 2.0×104 D. 2.0×103 13.圆柱体茶叶筒的照片如图所示,这个茶叶筒的正视图是( )

14.三明市“小交警”为了调查执勤路口小轿车的通过量,在星期日上午从7:00—12:00按每小时统计一次,记录经过的小轿车数量,数据如下:96,168,165,123,93。则这组数据的中位数和平均数依次是( )

A. 123,123 B. 165,129 C. 123,129 D. 129,123 15.直角坐标系中,点(-2,3)关于原点对称的点的坐标是( ) A. (2,3) B. (2,-3) C. (3,-2) D. (-2,-3)

16.直线y=-2x+b和双曲线xky在直角坐标系中的位置如图所示,下列结论:①k>0;②b>0;③k<0;④b<0。其中正确的是( ) A. ①② B. ②③ C. ③④ D. ①④

三、解答题:本大题共10小题,计92分。解答应写出说理、证明过程或演算步骤。 17.(本小题满分6分)

先化简,再求值:)()2)(2(babbaba,其中12ba,。

18.(本小题满分6分)

第13题图 解不等式组②①31225)1(4xxxx 19.(本小题满分8分) 已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C。 求证:AF=DE。

20.(本小题满分8分) 已知:如图,AD是△ABC的外接圆直径,∠C=60°,BD=4,求AD的长(精确到0.01)

21.(本小题满分8分) 小明家里的阳台地面,水平铺设着仅黑白颜色不同的18块方砖(如图),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上。

(1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(6分)

(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖颜色?怎样改变?(2分)

22.(本小题满分10分) 已知△ABC中,AB=AC,∠A=36°,点D在AC上,将△BDC绕点D按顺时针方向旋转角α(0°合(如图所示)。

(1)求角α;(5分) (2)说明四边形EBCD是等腰梯形。(5分)

23.(本小题满分10分) 鸿伟机械厂青年志愿者到离工厂6千米的市中心广场宣传北京奥运,一部分人步行先走1小时沿途宣传,其余的人骑自行车,速度是步行的3倍,恰好他们同时到达。求步行与骑自行车速度各是多少。 24.(本小题满分12分) 已知二次函数)0(2acbxaxy的图象与y轴相交于点(0,-3),并经过点(-2,5),它的对称轴是x=1,如图为函数图象的一部分。

(1)求函数解析式,写出函数图象的顶点坐标;(7分) (2)在原题图上,画出函数图象的其余部分;(2分) (3)如果点P(n,-2n)在上述抛物线上,求n的值。(3分)

25.(本小题满分12分) 如图①、②,在平行四边形ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD两侧的延长线(或线段CD)相交于点F、G,AF与BG相交于点E。

(1)在图①中,求证:AF⊥BG,DF=CG;(6分) (2)在图②中,仍有(1)中的AF⊥BG,DF=CG。 若AB=10,AD=6,BG=4,求FG和AF的长。(6分)

26.(本小题满分12分) 如图①、②、③是两个半径都等于2的圆O1和圆O2,由重合状态沿水平方向运动到相互外切过程中的三个位置,圆O1和圆O2相交于A、B两点,分别连结O1A、O1B、O2A、O2B和AB。

(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;(4分) (2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;(4分)

(3)由(2),若y=2π,则线段O2A所在的直线与圆O1有何位置关系?为什么?除此之外,它们还有其它的位置关系,写出其它位置关系时x的取值范围。(4分) 奖励提示:如果你还能解决下列问题,将酌情另加1~5分,并计入总分。 在原题的条件下,设∠AO1B的度数为2n,可以发现有些图形的面积S也随∠AO1B的变化而变化,试求出其中一个S与n的关系式,并写出n的取值范围。

附加题。(本题满分10分) 友情提示:你已完成上面全部试题,请再认真核查一遍,并自我评价得分情况。如果你估计自己整卷得分低于90分(及格线),请再完成本大题,将补加1~10分,并计入你的全卷总分;如果你的上面整卷得分已经达到或超出90分,本大题将不再进行批阅。

1.列代数式:a与2的和。(4分) 2.已知等边三角形ABC的一边AB=3,求它的周长。(3分) 3.求:3,2,6,1,3这组数的众数。(3分) 2006年福建省三明市初中毕业生学业考试 数学参考答案及评分说明 (梅列、永安、沙县课改实验区)

说明:以下各题除本卷提供的解法外,还有其他解法,特别是考查创新意识、实验能力、开放性试题和“另加分”试题,答案多样化,本标准不一一例举,评卷时间可参考评分标准,按相应给分段评分。用计算器的计算部分,列式后可直接得到结果。全卷得分≤150分。

一、填空题:本大题共10小题,1~6题,每小题3分,7~10题,每小题4分,计34分。

1. 3 2. 不确定 3. 5 4. m21 5. 4 6. ①②④ 7. 1 8. 音乐 9. 85 10. 2006-7-3 二、选择题:本大题共6小题,每小题4分,计24分。 11. B 12. D 13. A 14. C 15. B 16. C

三、解答题:本大题共10小题,计92分。 17. 解:原式abababba222244 4分 当a=-2,b=1时,原式141)2()2(42 6分 18. 解:解不等式①,得x≥3 2分 解不等式②,得x>-2 4分 在数轴上表示不等式①、②的解集, 5分 ∴所求不等式组的解集是x≥3。 6分 19. 证:∵BE=CF ∴BE+EF=CF+EF,即BF=CE 2分 又∵AB=DC,∠B=∠C DCEABF 6分 ∴AF=DE 8分 20. 解:∵AD是△ABC的外接圆直径,BD=4 ∴∠ABD=90° 2分 ABAB,∠C=62°,∴∠D=∠C=62° 4分

在Rt△ABD中,ADBDDcos 6分 52.862cos4AD 8分

21. 解:(1)小皮球停留在黑色方砖上的概率是95 3分 小皮球停留在白色方砖上的概率是94 6分 (2)因为9495,所以小皮球停留在黑色方砖上的概率大于停留在白色方砖上的概率。 7分 要使这两个概率相等,应改变第二行第4列中的方砖颜色,黑色方砖改为白色方砖。 8分

注:回答第二行第3列;第二行第5列也正确。 解:(1)∵AB=AC,∠A=36° ∴∠ABC=∠C=72° 1WV ∵△BDC与△ADE重合, ∴∠DBC=∠A=36°,∠AED=∠C=72° ∴∠ADE=∠BDC=180°-(72°+36°)=72° ∴α=180°-∠BDC=180°-7°=108° 5分 (2)由(1)∠ADE=∠C=72° ∴DE//BC,又BE与CD不平行 ∴四边形EBCD是梯形 8分 ∵∠ABC=∠C=72° ∴四边形EBCD是等腰梯形 10分 23. 解:设步行的速度是x千米/时,则骑自行车的速度是3x千米/时 1分

相关文档
最新文档