《食品化学》重点与难点

合集下载

食品化学重点

食品化学重点

P2第一章绪论1.食品化学:是从化学的角度研究食品的本质和变化的科学,它涉及食品化学组成的含量分析和结构测定,及其在食品加工、贮运、营销和鉴定等过程中表现出的性质和变化;主要研究方向包括:食品生物化学、食品营养化学、食品工艺化学和食品风味化学;简言之,食品化学即是研究食品的组成、结构、功能及其变化规律,从分子水平认识食品的一门科学;2.食品化学的研究内容1研究食品中营养成分,呈色、香、味成分和有害成分的化学组成、性质、结构和功能;2阐明食品成分之间在生产、加工、储存、运输中的各类化学变化,即化学反应历程、中间产物和最终产物的结构及其对食品的品质和卫生安全性的影响;3研究食品储藏和加工的新技术,开发新的产品和新的食品资源以及新的食品添加剂等;4研究食品中化学反应的动力学行为及其环境因素的影响;3.食品化学的研究领域1根据研究内容分类,食品化学主要包括:食品营养成分化学、食品色香味化学、食品工艺化学、食品物理化学和食品有害成分化学;2根据研究内容的物质分类,食品化学主要包括:食品碳水化合物化学、食品油脂化学、食品蛋白质化学、食品酶学、食品添加剂化学、维生素化学、食品矿物质元素化学、调味品化学、食品风味化学、食品色素化学、食品毒物化学、食品保健成分化学;P11第二章水分第二章水第一节引言生物体系的基本成分包括:蛋白质、碳水化合物、脂质、核酸、维生素、矿物质和水;水是最普遍存在的组分,占50%~90%是其它食品组分的溶剂水在食品中的重要作用a.水是食品的重要组成成分,是形成食品加工工艺考虑的重要因素;b.水分含量、分布和状态对于食品的结构、外观、质地、风味、新鲜程度会产生极大的影响;c.是引起食品化学变化及微生物作用的重要原因,直接关系到食品的贮藏特性;水与食品加工了解水在食品中的存在形式是掌握食品加工和保藏技术原理的基础;决定食品的市场品质,是食品的法定标准;大多数食品加工的单元操作都与水有关;干燥、浓缩、冷冻、水的固定;复水、解冻没有完全成功第二节水、冰的结构和性质二、水分子的缔合与水的三态由于水分子的极性及两种组成原子的电负性差别,导致水分子之间可以通过形成氢键而呈现缔合状态:由于每个水分子上有四个形成氢键的位点,因此每个水分子的可以通过氢键结合4个水分子;由于水分子之间可以以不同数目和不同形式结合,因此缔合态的水在空间有不同的存在形式,如:由于水分子之间除了通过氢键结合外,还有极性的作用力,因此水分子之间的缔合数可能大于4;在通常情况下,水有三种存在状态,即气态、液态和固态;水分子之间的缔合程度与水的存在状态有关;在气态下,水分子之间的缔合程度很小,可看作以自由的形式存在;在液态,水分子之间有一定程度的缔合,几乎没有游离的水分子,由此可理解为什么水具有高的沸点;而在固态也就是结冰的状态下,水分子之间的缔合数是4,每个水分子都固定在相应的晶格里,这也是水的熔点高的原因;水具有一定的黏度是因为水分子在大多数情况下是缔合的,而水具有流动性是因为水分子之间的缔合是动态的;当水分子在很短的时间内改变它们与临近水分子之间的氢键键合关系时,会改变水的流动性;水分子不仅相互之间可以通过氢键缔合,而且可以和其它带有极性基团的有机分子通过氢键相互结合,所以糖类、氨基酸类、蛋白质类、黄酮类、多酚类化合物在水中均有一定的溶解度;另外,水还可以作为两亲分子的分散介质,通过这种途径使得疏水物质也可在水中均匀分散;三、冰的结构和性质冰是水分子通过氢键相互结合、有序排列形成的低密度、具有一定刚性的六方形晶体结构;普通冰的晶胞和基础平面可如下图所示:在冰的晶体结构中,每个水和另外4个水分子相互缔合,O-O之间的最小距离为,O-O-O之间的夹角为109°;当水溶液结冰时,其所含溶质的种类和数量可以影响冰晶的数量、大小、结构、位置和取向;一般有4种类型,即六方形、不规则树状、粗糙球状、易消失的球晶;六方形是多见的、在大多数冷冻食品中重要的结晶形式;这种晶形形成的条件是在最适的低温冷却剂中缓慢冷冻,并且溶质的性质及浓度不严重干扰水分子的迁移;纯水结晶时有下列行为:即尽管冰点是0℃,但常并不在0℃结冻,而是出现过冷状态,只有当温度降低到零下某一温度时才可能出现结晶加入固体颗粒或振动可促使此现象提前出现;出现冰晶时温度迅速回升到0℃;把开始出现稳定晶核时的温度叫过冷温度;如果外加晶核,不必达到过冷温度就能结冰,但此时生产的冰晶粗大,因为冰晶主要围绕有限数量的晶核成长;一般食品中的水均是溶解了其它可溶性成分所形成的溶液,因此其结冰温度均低于0℃;把食品中水完全结晶的温度叫低共熔点,大多数食品的低共熔点在-55~-65℃之间;但冷藏食品一般不需要如此低的温度,如我国冷藏食品的温度一般定为-18℃,这个温度离低共熔点相差甚多,但已使大部分水结冰,且最大程度的降低了其中的化学反应;现代食品冷藏技术中提倡速冻,这是因为速冻形成的冰晶细小,呈针状,冻结时间短且微生物活动受到更大限制,从而保证了食品品质;四、水、冰的物理特性与食品质量关系水是一种特殊的溶剂,其物理性质和热行为有与其它溶剂显着不同的方面:a.水的熔点、沸点比质量和组成相近的分子高得多;如甲烷的:-162℃,:-183℃,而水在下:100℃,:0℃;这些特性将对食品加工中的冷冻和干燥过程产生很大的影响;b.水的密度较低,水在冻结时体积增加,表现出异常的膨胀行为,这会使得含水的食品在冻结的过程中其组织结构遭到破坏;c.水的热导率较大,然而冰的热导率却是水同温度下的4倍;这说明冰的热传导速度比非流动水如动、植物组织内的水快得多;因此水的冻结速度比熔化速度要快得多;d.冰的热扩散速度是水的9倍,因此在一定的环境条件下,冰的温度变化速度比水大得多;正是由于水的以上物理特性,导致含水食品在加工贮藏过程中的许多方法及工艺条件必须以水为重点进行考虑和设计;特别是在利用食品低温加工技术时要充分重视水的热传导和热扩散的特点;1 与离子或离子基团的相互作用当食品中存在离子或可解离成离子或离子基团的盐类物质时,这些物质由于在水中可以溶解而且解离出带电荷的离子,因而可以固定相当数量的水;例如食品中的食盐和水之间的作用:第三节食品中水与非水组分之间的相互作用由于离子带有完整的电荷,因此它们和水分子之间的极性作用比水分子之间的氢键连接还要强,如Na+与水分子之间的结合能力大约是水分子间氢键连接力的4倍;正是由于自由离子和水分子之间的强的相互作用,导致破坏原先水分子之间的缔合关系,使一部分水固定在了离子的表面;随着离子种类的变化及所带电荷的不同,与水之间的相互作用也有所差别;大致可以分作两类:能阻碍水分子之间网状结构的形成,溶液的流动性比水大,此类离子如:K+、Rb+、Cs+、NH+4、Cl-、Br-、I-、NO-3、BrO-3等;有助于水分子网状结构的形成,水溶液的流动性小于水,此类离子一般为离子半径小、电场强度大或多价离子,如:Li+、Na+、H3O+、Ca2+、Ba2+、Mg2+、Al3+、OH-等;2与具有氢键键合能力的中性分子或基团的相互作用许多食品成分,如蛋白质、多糖淀粉或纤维素、果胶等,其结构中含有大量的极性基团,如羟基、羧基、氨基、羰基等,这些极性基团均可与水分子通过氢键相互结合;因此通常在这些物质的表面总有一定数量的被结合、被相对固定的水;不同的极性基团与水的结合能力有所差别;一般情况下,氨基、羧基等在生理条件下可以呈解离状态的极性基团均与水有较强的结合,而羟基、酰胺基等非解离基团与水之间的结合较弱;带有极性基团的有机物质由于和水能够通过氢键相互结合,因此对纯水的正常结构都有一定程度的破坏,而且也可降低冰点;带极性基团的食品分子不但可以通过氢键结合并固定水分子在自己的表面,而且通过静电引力还可吸引一些水分子处于结合水的外围,这些水称为临近水:尽管结合或附着在分子上的水分子数量并不多,但其作用和性质常常非常重要;它们常是一些酶保持活性结构并能发挥作用的重要因素;也常是食品保持正常结构的重要因素;3 与非极性物质的相互作用非极性的分子通常包括烃类、脂类、甾萜类等,通过化学的手段也可在一些含极性基团的分子如蛋白质等中引入非极性部分基团;当水中存在非极性物质,即疏水性物质时,由于它们与水分子产生斥力,可以导致疏水分子附近的水分子之间的氢键键合增强;由于在这些不相容的非极性实体邻近的水形成了特殊的结构,使得熵下降,此过程称为疏水水合作用;由于疏水水合在热力学上是不利的,因此水倾向于尽可能地减少与存在的非极性实体靠近;如果存在两个分离的非极性实体,那么不相容的水环境将促使它们相互靠近并缔合,从而减少水-非极性实体界面面积,此过程是疏水水合的部分逆转,被称为“疏水相互作用”;第四节食品中水的存在状态理解食品中水的存在状态是掌握水在食品中的作用及各种与水相关的加工技术的关键;而水在食品中的存在状态说到底是水在食品中和各类食品物质之间的关系及水的存在量;二、食品中水的存在状态根据食品中水与非水物质之间的相互关系,可以把食品中的水分作体相水和结合水如下页图结合水也称束缚水、固定水;结合水又分为化合水、临近水、多层水;结合水与自由水主要的区别在于:a.结合水的量与食品中所含极性物质的量有比较固定的关系;结合水对食品品质和风味有较大的影响,当结合水被强行与食品分离时,食品质量、风味就会改变b.结合水的蒸气压比体相水低得多,所以在一定温度100℃下结合水不能从食品中分离出来;c.结合水不易结冰,由于这种性质使得植物的种子和微生物的孢子得以在很低的温度下保持其生命力;而多汁的组织在冰冻后细胞结构往往被体相水的冰晶所破坏,解冻后组织不同程度的崩溃;d.结合水不能作为可溶性成分的溶剂,也就是说丧失了溶剂能力;e.体相水可被微生物所利用,结合水则不能;第五节水分活度与吸湿等温曲线一、引言食品的水分含量~食品的腐败性存在相关性;但发现水分含量相同,腐败性显着不同;水分含量不是一个腐败性的可靠指标水分活度Aw水与非水成分缔合强度上的差别;比水分含量更可靠;与微生物生长和许多降解反应具有相关性二、水分活度的定义和测定方法f ——溶剂水的逸度;f0——纯溶剂水的逸度;逸度:溶剂从溶液逃脱的趋势严格差别1% 仅适合理想溶液RVP,相对蒸汽压Aw =P/P0=ERH/100ERH 食品上空已经恒定了的水蒸气的分压与同温下水的饱和蒸汽压的比值用乘以100后的整数表示Aw 是食品内在的品质,与食品的组成结构有关,而ERH则与食品平衡时大气的性质有关;ERH与周围大气的平衡需要一个过程;应用aw =ERH/100时必须注意:①aw 是样品的内在品质,而ERH是与样品中的水蒸气平衡是的大气性质. ②仅当食品与其环境达到平衡时才能应用;Aw 测定方法:冰点测定法;相对湿度传感器测定法;恒定相对湿度平衡法;水分活度测定仪测定冰点以上与冰点以下的Aw的比较:1.冰点以上温度时,水分活度与食品组成和温度有关;冰点以下温度时,水分活度仅与温度有关;2. Aw的意义不同;3.冰点以下的Aw不能预测相同食品冰点以上的Aw;1.食品中非水物质可以分为哪几种类型2.食品中水的存在形式有哪几种主要区别在哪里3.水分活度的定义三、水分吸着等温线在恒定温度下,食品水分含量每克干物质中水的质量与Aw的关系曲线;一定义MSI的实际意义:1、由于水的转移程度与Aw有关,从MSI图可以看出食品脱水的难易程度,也可以看出如何组合食品才能避免水分在不同物料间的转移;2、据MSI可预测含水量对食品稳定性的影响;3、从MSI还可看出食品中非水组分与水结合能力的强弱;MSI上不同区水分特性区Ⅰ的水的性质:最强烈地吸附;最少流动;水-离子或水-偶极相互作用;在-40℃不结冰;不能作为溶剂;看作固体的一部分;构成水和邻近水;占总水量极小部分BET单层:区Ⅰ和Ⅱ接界;H2O/ g干物质;Aw =;相当于一个干制品能呈现最高的稳定性时含有的最大水分含量区Ⅱ的水的性质:通过氢键与相邻的水分子和溶质分子缔合;流动性比体相水稍差;大部分在-40℃不结冰;导致固体基质的初步肿胀;多层水;区Ⅰ和区Ⅱ的水占总水分的5%以下真实单层:区Ⅱ和Ⅲ接界;H2O/ g干物质;Aw =;完全水合所需的水分含量,即占据所有的第一层部位所需的水分含量;区Ⅲ的水的性质:体相水;被物理截留或自由的;宏观运动受阻;性质与稀盐溶液中的水类似;占总水分的95%以上MSI与温度的关系:水分含量一定T↑,Aw↑;Aw一定T↑,水分含量↓二滞后现象1、定义:采用回吸resorption的方法绘制的MSI和按解吸desorption的方法绘制的MSI并不互相重叠的现象称为滞后现象;在一指定的Aw时,解吸过程中试样的水分含量大于回吸过程中的水分含量高糖-高果胶食品空气干燥苹果:总的滞后现象明显;滞后出现在真实单层水区域;Aw>时,不存在滞后高蛋白食品冷冻干燥熟猪肉:Aw<开始出现滞后;滞后不严重;回吸和解吸等温线均保持S形淀粉质食品冷冻干燥大米:存在大的滞后环;Aw=时最严重2、滞后现象产生的原因1解吸过程中一些水分与非水溶液成分作用而无法放出水分;2不规则形状产生毛细管现象的部位,欲填满或抽空水分需不同的蒸汽压要抽出需P内>P外, 要填满则需P外>P内;3解吸作用时,因组织改变,当再吸水时无法紧密结合水,由此可导致回吸相同水分含量时处于较高的aw;第六节水与食品的稳定性一、水分活度与食品的稳定性1 水分活度与微生物生命活动的关系食品质量及食品加工工艺的确定与微生物有密切的关系;而食品中微生物的存活及繁殖生长与食品中水分的活度有密切的关系;下表列出了不同微生物生长与食品水分活度的关系;2水分活度与食品劣变化学反应的关系几类重要的反应速度与Aw的关系除非酶氧化在Aw<时有较高反应速度外,其它反应均是逾小反应速度愈小;也就是说愈小有利于食品的稳定性;在Aw=范围内,随Aw↑,反应速度↓的原因:1、水与脂类氧化生成的氢过氧化物以氢键结合,保护氢过氧化物的分解,阻止氧化进行;2、这部分水能与金属离子形成水合物,降低了其催化性;在Aw=范围内,随Aw↑,反应速度↑的原因:1、水中溶解氧增加2、大分子物质肿胀,活性位点暴露,加速脂类氧化3、催化剂和氧的流动性增加当Aw>时,随Aw↑,反应速度增加很缓慢的原因:催化剂和反应物被稀释二、冷冻与食品稳定性冷冻后食品中非水分组分的浓度将比冷冻前变大水结冰后体积比结冰前增大9%;冷冻使溶质的浓度上升即浓缩效应;浓缩效应的结果是增大了反应速度;三、含水食品的水分转移1 水分的位转移影响因素水分的位转移的主要因素有温度和水分活度,其中水分活度对水分的位转移的影响更大;2 水分的相转移水分的蒸发:食品中的水分由液相变成气相而散失的现象称为食品的水分蒸发;水分蒸发主要和空气湿度和饱和湿度差有关系;水蒸气的凝结:空气中的水蒸汽在食品表面凝结成液体水的现象称为水蒸汽的凝结;第七节分子移动性与食品的稳定性一几个概念1 、玻璃态glass stste:是聚合物的一种状态,它既象固体一样有一定的形状,又象液体一样分子间排列只是近似有序,是非晶态或无定形态;处于此状态的聚合物只允许小尺寸的运动,其形变很小,类似于玻璃,因此称~;2 玻璃化温度glass transition temperature, Tg:非晶态食品从玻璃态到橡胶态的转变称玻璃化转变,此时的温度称~;3 无定形Amorphous:是物质的一种非平衡,非结晶的状态;4 分子流动性Mm:是分子的旋转移动和平动移动性的总度量;决定食品Mm值的主要因素是水和食品中占支配地位的非水分;二状态图State diagrams二元体系的状态图分子流动性与食品性质的相关性1大多数物理和部分化学变化由分子流动性控制决定化学反应速度:A:扩散因子D; B:碰撞频率因子A; C:活化能因子Ea2 玻璃化温度对食品的扩散限制性的稳定性有着密切的关系在食品保藏温度低于玻璃化温度时,所有的扩散限制的变化都会收到很好的限制;3 在溶解或融化温度范围内Mm和扩散限制性食品性质和温度的关系Tm-Tg范围内,T下降,Mm减少;在此范围内食品的稳定性也依赖温度,并与T-Tg成反比;4 水含量强烈影响Tg水含量越高,玻璃化温度越低;纯水的Tg最低,为-135摄氏度;若Tg高于环境温度时,则该食品体现在常温下也是稳定的;溶质的种类强烈影响Tg和Tg’:Tg’是最大冷冻浓缩液的玻璃化温度,是Tg的一个特定值;注意:Tg强烈依赖水分含量和溶质的种类,但Tg’只依赖溶质的种类;Aw和Mm方法研究食品稳定性的比较:二者相互补充,非相互竞争;Aw法主要注重食品中水的有效性,如水作为溶剂的能力;Mm法主要注重食品的微观黏度Microviscosity和化学组分的扩散能力;1.简述水的缔合程度与其状态之间的关系;2.将食品中的非水物质可以分作几种类型水与非水物质之间如何发生作用3.水分含量和水分活度之间的关系如何P59 第三章蛋白质一.蛋白质的变性:由于外界因素的作用,使天然蛋白质分子的构象发生了异常变化,从而导致生物活性的丧失以及物理、化学性质的异常变化,不包括一级结构上肽键的断裂;二.蛋白质变性对功能和结构的影响:1疏水基团暴露于外——溶解度下降;2高级结构解散——失去生物活性,杀菌,除去某些有害蛋白质或抗营养物质,提高安全性;3肽键暴露——容易受到蛋白酶的攻击;4与水结合能力下降——溶解度和持水性下降;5分子散开——粘度增大;6酶类失活——提高食品的品质和储藏性;7发生沉淀——固定食品形状、产生良好口感、搅打时稳定气泡等;食品蛋白质变性后通常引起溶解度降低或失去溶解性,从而影响蛋白质的功能特性或加工特性;在某种情况下,变性又是需宜的;例如,①豆类中胰蛋白酶抑制剂的热变性,可能显着高动物食用豆类时的消化率和生物有效性;②部分变性蛋白比天然状态更易消化,或具有更好的乳化性、起泡性和胶凝性;在某些情况下,变性过程是可逆的,例如,有的蛋白质在加热时发生变性,冷却后,又可复原;可逆变性~三级和四级结构变化;不可逆变性~二级结构也发生变化;二硫键的断裂→不可逆变性三、蛋白质的物理变性1加热变性2冷冻变性3机械处理4静高压5辐照6界面作用1.加热变性在加热条件下,肽键产生强烈的热振荡,导致维持蛋白质空间结构的次级键破坏,天然构象解体;变性速率取决于温度;对许多反应来说,温度每升高1℃,转化速率约增加2倍;可是,对于蛋白质变性反应,当温度上升1℃,速率可增加600倍左右,因为维持二级、三级和四级结构稳定性的各种相互作用的能量都很低;蛋白质对热变性的敏感性取决于多种因素,如氨基酸组成、水活性、蛋白质浓度、pH、离子强度等;疏水氨基酸↑,变性↑;水的含量↑,变性↑;变性温度Td:蛋白质溶液在逐渐加热到临界温度以上时,蛋白质的构象从天然状态到变性状态有一个显着地转变,这个转变的中点温度称为熔化温度Tm,或变性温度Td;此时天然状态与变性状态浓度比为1;2.冷冻变性蛋白质可以发生冻结变性,其原因:①是由于蛋白质周围的水与其结合状态发生变化,这种变化破坏了一些维持蛋白原构象的力,同时由于水保护层的破坏,蛋白质的一些基团就可以发生直接的接触和相互作用,导致蛋白质发生聚集或原来的亚基发生重排;②由于大量水形成冰后,剩余的水中无机盐浓度大大提高,这种局部的高浓度盐也会使蛋白质发生变性;3.机械处理机械处理,如揉捏、振动、均质或搅打等高速机械剪切,都能引起蛋白质变性;在加工面包或其他食品的面团时,产生的剪切力使蛋白质变性,主要是因为β—螺旋的破坏导致了蛋白质的网络结构的改变;剪切速率愈高,蛋白质变性程度则愈大;同时受到高温和高剪切力处理的蛋白质,则发生不可逆变性;4.静高压压力诱导蛋白质变性的原因主要是蛋白质的柔性和可压缩性;尽管氨基酸残基是被紧密地包裹在球状蛋白质分子的内部,但是仍然存在一些恒定的空隙空间,这就使蛋白质具有可压缩性;压力引起的蛋白质变性是高度可逆的高压导致的蛋白质变性不会损害蛋白质中的必须氨基酸的风味,也不会导致有毒化合物的形成;高静压在食品加工过程中作为一种工具已经引起食品科学家的广泛关注,例如灭菌和胶凝化;在200--1000 MPa高压下灭菌,使细胞膜遭到不可逆破坏,同时引起微生物中细胞器的解离,从而达到灭菌的目的;关于压力胶凝化作用已有不少报道和应用,如将蛋清、16%大豆球蛋白或3%肌动球蛋白在1OO—700MPa静液压下,于25℃加压30min,则可形成凝胶,其质地比热凝胶柔软;静液压也常用于牛肉的嫩化加工,一般处理压力为100—300 MPa;压力加工,目前是一种较热加工理想的方法,加工过程中不仅必需氨基酸、天然色泽和风味不会损失,特别是一些热敏感的营养或功能成分能得到较好的保持,而且不会产生有害和有毒化合物;但是因为成本关系,尚未得到广泛应用5.辐照芳香族氨基酸残基吸收紫外线;若能量高,能打断二硫键,导致构象变化;食品进行一般的辐射保鲜时,对食品蛋白质的影响极小;原因:1.辐射剂量低;2.食品中水的裂解减少了其他物质的裂解;。

食品化学复习重难点(1)

食品化学复习重难点(1)

食品化学复习重点内容第二章1. 水的存在状态;2. 自由水和结合水的特性;3. 水分活度的概念及与温度之间的关系;4. 吸附等温线的概念及等温线上不同区水分特性;5. 水分活度与食品稳定性的关系第三章1. 蛋白质的分类及来源;2. 蛋白质变性的概念;3. 影响蛋白质水合性质的因素;4. 蛋白质的溶解度曲线;5. 蛋白质的胶凝作用;蛋白质组织化方法;6. 影响蛋白质的乳化性质的因素;影响蛋白质泡沫稳定性的因素;7. 热处理对蛋白质的影响;8. 肉类中的蛋白质;第四章1. 美拉德反应及其影响因素;2. 焦糖化反应及特性;3. 食品中重要的低聚糖;4. 膳食纤维的概念及特性;5. 支链淀粉和直链淀粉的概念及差异;淀粉的糊化和老化及影响因素;6. 果胶的分类及胶凝机理;第五章1. 脂肪酸的命名;2. 脂肪的结晶特性;3. 油脂的塑性及影响条件;4. 油脂的乳化及乳化剂的选择;5. 油脂自动氧化的机理;影响油脂氧化速率的因素;油脂自动氧化及光敏氧化的比较;抗氧化剂的抗氧化抑制机理;6. 油脂的质量评价;7. 油脂的精练;油脂氢化的优缺点;第六、七章1. 脂溶性维生素的种类;2. 维生素A的结构特性和D、E的生理功能;3. 维生素C和B1、B2的特性及中文全称;4. 各种维生素的缺乏症;5. 维生素在食品加工中的变化;6. 重要的常量元素和微量元素的来源、缺乏症;7. 成酸性食品和成碱性食品的概念及范围;第八章1. 固定化酶及其特点、常用的固定化方法;2. 酶促褐变的机理及控制方法;3. 淀粉酶的特性及应用;4. 蛋白酶及其应用;第九章1. 叶绿素的结构特征及护绿技术;2. 血红素的特性及肉色在加工贮藏中的变化;3. 天然色素和合成色素的优缺点;第十章1. 四种基本味感及各国的味感分类;舌头对基本味的敏感程度;2. 几种基本味感及其常见代表物质;3. 阈值、发香值的概念;4. 呈味物质的相互作用;5. 食品香气形成的途径;第十一章1.食品添加剂的概念、对食品添加剂的要求;2.食品添加剂的分类;第十二章食品中天然的有害成分。

食品化学复习重点教学文稿

食品化学复习重点教学文稿

食品化学复习重点一、水1、吸附等温线(1)定义:在恒定温度下,以食品的水分含量(用每单位干物质质量中水的质量)对它的水分活度绘图形成的曲线,简称MSI(2)意义:①脱水的难易程度与相对蒸气压的关系②如何防止水分在组合食品的各配料之间的转移③测定包装材料的阻湿性④可以预测多大的水分含量时才能抑制微生物的生长⑤预测食品的化学和物理稳定性与水分含量的生长⑥可以看出不同中非水组分与水结合能力的强弱大多数食物的MSI为S形,而水果、糖制品含有大量糖和其他可溶性小分子的咖啡提取物以及多聚物含量不高的食品的等温线为J形。

水分活度依赖于温度,因此MSI也与温度有关。

区Ⅰ区Ⅱ区Ⅲ区Aw 0-0.25 0.25-0.85 >0.85 含水量\% 0-7 7-27.5 >27.5冻结能力不能冻结不能冻结正常溶剂能力无轻微-适度正常水分状态单分子水层吸附化学吸附结合水多分子水层凝聚物理吸附毛细管水或自由流动水微生物利用不可利用开始可利用可利用结合方式水-离子或水-偶极相互作用水-水和水-溶质的氢键体相水(3)滞后现象①定义:采用向干燥食品中添加水(回吸作用)的方法绘制的水分吸附等温线按解吸过程绘制的等温线,并不重叠,这种不重叠性称为滞后现象。

一般来说当Aw值一定时,解吸过程中的食品的水分含量大于回吸过程中的水分含量②原因:a食品解吸过程中的一些吸水部位与非水组分作用而无法释放出水分.b.食品不规则形状而产生的毛细管现象,欲填满或抽空水分需不同的蒸汽压c.解吸时将使食品组织发生改变,当再吸水时就无法紧密结合水分2、水分活度与脂肪氧化的关系(1)水分活度的定义是指食品中水的蒸汽压与同温下纯水的饱和蒸气压的比值:Aw=P/物理意义:生物组织和食品中能够参与生理活动中的水分含量和总含量的关系(2)Aw与脂肪氧化的关系从极低的Aw值开始,脂类的氧化速度随着水分的增加而降低,直到Aw值接近等温线Ⅰ与Ⅱ边界时,速度最低。

食品化学教学中的主要问题及对策分析

食品化学教学中的主要问题及对策分析

食品化学教学中的主要问题及对策分析食品化学是与食品相关的生物化学问题研究的具体分支,可以运用到食品加工、食品安全和食品营养等多个领域。

它通过研究食品中功能性成分,涉及食品危害性成分,以及食品营养调控等诸多方面。

它不仅涉及食品中毒特性,还可用于调节食品营养成分,提高食品安全性,控制食品制品的性状等方面的研究。

因此,食品化学的教学对学生认识食品的性质、食品安全和食品营养等有着重要意义。

但是,由于食品化学教学涉及到许多不同的学科,以及关联连贯性强的整体文本内容,因此在实际教学过程中存在许多困难和问题,影响了食品化学的教学效果,严重地影响了学生的学习质量。

二、食品化学教学中的主要问题1、课程内容规划不规范:目前,食品化学教学的课程设置与发展潮流相比,容易掉队,与时俱进不能很好地融入现代思想观念、知识体系和研究方法。

2、教学内容讲解不全面:一些食品化学教学课程缺乏可操作性强的实验,学习内容容易偏理论,使学习内容枯燥乏味,容易出现学习热情缺失,兴趣不足,影响学生学习兴趣。

3、教学方式单一:目前,食品化学教学中缺乏多样化的教学模式,教学活动单一,让学生停留在被动学习的角色上,影响学生的发展和成长。

三、食品化学教学应采取的措施1、课程内容规划要科学合理:应建立一套科学合理的食品化学教学计划,将课程内容的学习任务安排的恰当,课程学习内容按照知识结构、知识梯度安排,促进教学内容的连贯性和系统性;2、教学内容讲解要完善:在食品化学教学课程中,教师应采取多种方式,把课堂教学活动有机结合起来,采取多种教学媒体,将理论性强的文本内容改为形象的、有趣的活动任务,激发学生的学习兴趣;3、教学模式要多样化:尽可能采取多种教学模式,在教学中融入海量信息,因材施教,注重培养学生的创新性思维能力和科学实验技能,让学生形成整体性学习习惯,有效调动学生的学习积极性。

四、结语食品化学教学中存在着许多种问题,但是只要采取合理的措施,恰当地运用多种教学法,加强对学生的引导,就可以提高食品化学教学的效率和质量。

食品化学重点内容

食品化学重点内容

第二章水1.水和冰的结构及物理性质决定的一些现象2.为什么降低Aw可以提高食品的稳定性?①、大多数化学反应都必须在水溶液中才能进行,而结合水不能作为反应物的溶剂。

②、离子反应需要反应物首先进行离子化或水化作用。

③、很多反应中水是反应物。

④、在酶促反应中,水还能作为底物向酶扩散的输送介质,并且通过水化促使酶和底物活化。

3.分子流动性对食品稳定性的影响第三章糖类(主要名词)淀粉的结构1.单糖的物理性质甜度:以蔗糖为基准物(为什么刚溶解的葡萄糖溶液或果糖溶液最甜,达到平衡时甜度下降)溶解性:较好的水溶性,不溶于乙醚等有机试剂吸湿性:指糖在空气湿度较高的情况下吸收水分的性质。

保湿性:指糖在空气湿度较低条件下保持水分的性质。

结晶性:2.美拉德反应的机理,影响因素及其对食品品质的影响(见打印的)3.焦糖化反应概念:无水(或浓溶液)条件下加热糖或糖浆,用酸或铵盐作催化剂,糖发生脱水与降解,生成深色物质的过程,称为焦糖化反应。

过程见打印的4.多糖的概念聚合度大于10的糖类,可分为均多糖和杂多糖,也可分为植物多糖、动物多糖和细菌多糖。

5.淀粉糊化的三个阶段淀粉的糊化定义;淀粉粒在适当温度下,破坏结晶区弱的氢键,在水中溶胀,分裂,胶束则全部崩溃,形成均匀的糊状溶液的过程被称为淀粉糊化。

阶段;a可逆吸水阶段b不可逆吸水阶段c淀粉粒解体阶段6.淀粉的老化影响因素淀粉的老化:α-淀粉溶液经缓慢冷却或淀粉凝胶经长期放置,会变为不透明甚至产生沉淀的现象。

影响因素:①温度:2-4℃,淀粉易老化>60℃或<-20℃,不易发生老化②含水量:含水量30-60%易老化;过低(<10%)或过高,均不易老化;③结构:直链淀粉易老化;聚合度中等的淀粉易老化;淀粉改性后,不均匀性提高,不易老化。

④共存物的影响:脂类和乳化剂可抗老化,多糖(果胶例外)、蛋白质等亲水大分子,可与淀粉竞争水分子及干扰淀粉分子平行靠拢,从而起到抗老化作用。

《食品化学》课程学习指南

《食品化学》课程学习指南

《食品化学》课程学习指南食品化学课程为食品科学与工程专业的专业基础课,其目的是使食品科学与工程、食品质量与安全等专业学生了解食品材料中主要成分的结构与性质,食品组分之间的相互作用和这些组分在食品加工和保藏中的物理变化、化学变化和生物化学变化,以及这些变化和作用对食品色、香、味、质构、营养和保藏稳定性的影响。

因此,本课程要求学生能很好地贯通理论课和实验课的学习,结合自身课余研究和文献研读,深入掌握食品主要组分的结构、性质和在加工保藏过程中的变化,熟悉这些变化对食品品质、营养和保藏稳定性的影响,同时在一定程度上能运用所掌握的概念和知识去控制这些变化。

具体地,就理论课和实验课两部分的学习建议如下:一、食品化学(理论课)(一)绪论1、主要内容(1)食品化学的概念(2)食品化学的发展史(3)在食品科学专业知识体系中的地位(3)食品化学的研究方法(4)食品化学的学习方法2、学习重点食品化学的概念和食品化学在食品科学中的作用和地位,食品化学的主要内容和学习研究方法。

(二)水1、主要内容(1)水分子的结构与水分子缔合(2)水与冰的结构(3)水和溶质的相互作用(4)水分活度与相对蒸汽压(5)水分吸着等温线(6)相对蒸汽压和食品稳定性2、学习重点水与溶质相互作用,水分活度,水分吸着等温线,水分活度与食品稳定性,要在深入研读相关专题的基础上理解基本概念,并能运用相关概念解释后继学习中的问题。

(三)碳水化合物1、主要内容(1)单糖、糖苷的结构与物理性质(2)单糖的氧化、还原、酯化、醚化反应(3)美拉德反应和焦糖化反应(4)低聚糖的结构和性质(5)多糖溶液的溶解度、粘度、稳定性和胶凝机理(6)淀粉的结构和功能性质,淀粉糊化和老化(7)改性纤维素的结构和功能性质(8)果胶的结构和胶凝机理2、学习重点美拉德反应的基本概念、主要过程、影响因素和控制方法;淀粉的结构、淀粉糊化和老化的概念以及控制老化的方法;果胶结构和两类果胶的胶凝机理。

食品化学复习章节重点

第一章水1.疏水相互作用、疏水水合、水分活度、水分吸着等温线的定义。

当两个分离的非极性基团存在时,不相容的水环境会促使它们缔合,从而减小了水-非极性界面,这是一个热力学上有利的过程(ΔG<0)。

此过程是疏水水合的部分逆转,被称为疏水相互作用。

向水中添加疏水物质时,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,使得熵减小,此过程称为疏水水合。

水分活度:a w =f/f 0,f:溶剂(水)的逸度。

逸度:溶剂从溶液逃脱的趋势 f 0 :纯溶剂的逸度。

在低压(例如室温)下,f/f 0 和p/p 0 之间的差别小于1%,a w =p/p 0 此等式成立的前提是溶液是理想溶液和存在热力学平衡。

在恒定温度下,食品水分含量(每单位干物质质量中水的质量表示)对水分活性作图得到的曲线称为水分吸着等温线。

2.水分子的结构特征、液态的水以缔合状态存在的原因。

结构特征:①H2O 分子的四面体结构有对称性。

②H-O 共价键有离子性。

③氧的另外两对孤对电子有静电力。

④H-O 键具有电负性。

水分子缔合的原因:①由于每个水分子具有数目相等的氢键供体和受体,因此可以在三维空间形成多重氢键。

②H-O 键间电荷的非对称分布使H-O 键具有极性,这种极性使分子之间产生引力。

③静电效应。

3.化合水、邻近水、多层水、体相水的概念及其特点。

化合水:与非水组分结合最强的水,已成为非水物质的整体部分。

如存在于蛋白质分子的空隙区域的水和成为化学水合物的一部分的水。

化合水的特征:在-40℃下不结冰;不能用作其他添加溶质的溶剂;与纯水比较分子平均运动为0 ;不能被微生物利用邻近水:与非水组分特定亲水位点通过水-离子和水-偶极作用发生强烈相互作用的那部分水。

邻近水特征:在-40℃下不结冰;无溶解溶质的能力;与纯水比较分子平均运动大大减少;不能被微生物利用;此种水很稳定,不易引起食物的腐败变质多层水:占有非水组分的亲水基团第一层中剩下位置的水以及在邻近水的外层形成的几层水。

食品化学教学中的主要问题及对策分析

食品化学教学中的主要问题及对策分析
食品化学教学在现代教育中发挥着重要作用,然而它仍然存在一些主要问题,如内容落后、教学资源缺乏、教学方法滞后、师生沟通等,本文将深入讨论这些问题,并对相应对策进行分析。

如今,食品化学教学不仅涉及知识、技能的传授,也开始增加新的理念,使学生具备可持续发展的能力。

然而,食品化学教学中仍存在
一系列主要问题,即:
1.教材缺乏。

食品化学的学习需要大量的相关材料支持,但目前缺乏相关的内容和专业教具;
2.知识细面不足。

食品化学的内容相对比较复杂,除了理论知识外,也需要掌握一定的实践技能和技能;
3.实验室设备陈腐。

食品化学需要少量的实验室设施,如实验室设备不适宜或陈腐,将会影响学生的学习;
4.成本高昂。

食品化学的学习需要一定的实验成本,如设备购买、实验材料运输和试剂消耗等,成本很高。

为了解决以上问题,建议采取以下对策:
1.建立专业教材库。

建立食品化学相关的专业教材库,库中应该包含可复制的教材、学习资料、书籍和书籍。

2.增加实验教学比例。

增加实验教学,定期组织实验课程,提高学生的实践技能;
3.提高实验室设备。

定期更新实验室设备,以确保实验的准确度;
4.降低实验成本。

优化流程,尽可能降低试剂和物料的消耗,最大限度地降低实验成本。

总之,通过以上对策可以有效提高食品化学的教学水平,为学生提供更多元化的学习体验,从而更好地满足他们的学习需求。

《食品化学与分析》课程教学大纲

《食品化学与分析》课程教学大纲课程名称:食品化学与分析总学时:讲课学时74 课程英文名称:Food Chemistry and Analysis先修课程:基础化学、生物化学适用专业:食品科学与工程、食品质量与安全一、基本要求通过本课程的学习,要求学生掌握水、碳水化合物、脂质、蛋白质、维生素和矿物质等营养素的基本理化性质及其常见的分析方法,它们在食品加工、贮藏、运输、销售过程中发生的重要化学反应,如:麦拉德反应、脂肪氧化反应等,以及这些变化对食品品质和安全性的影响;掌握食品中常见风味物质在食品加工、贮藏中的变化;了解风味物质的分析方法,以及本学科前沿的某些研究热点问题,使学生既能掌握最基本的教学内容,又能扩大知识面,并能联系实际建立起完整的理论知识体系,为今后从事食品产品的研究和开发奠定基础。

二、课程教学大纲及学时分配第1章绪论(2学时)重点:着重掌握食品化学与分析的研究内容以及该课程在食品科学中的地位和意义。

难点:食品化学与分析的研究方法、食品化学的最新进展和动态1.1食品化学与分析的研究内容(掌握)1.2食品化学发展史(了解)1.3食品化学与分析的研究方法(理解)1.4食品化学的研究现状及展望(了解)第2章水(8学时)重点:着重掌握水和冰的结构及在食品体系中的行为对食品的质地、风味、稳定性和易腐败性的影响,水份活度与食品的稳定性,以及等温线的意义,食品中水分含量及水分活度的测定。

难点:分子淌度与食品稳定性,笼状水合物2.1 概述(0.5学时)(了解)2.2 水的结构与性质(0.5学时)(掌握)2.2.1水的结构2.2.2水的性质2.3 冰的结构与性质(0.5学时)(掌握)2.3.1冰的结构2.3.2冰的性质2.4 食品中水的存在状态(2学时)(掌握)2.4.1食品中水的存在状态2.4.2等温线2.4.3水与溶质间的相互作用2.5 水份活度与食品稳定性(2学时)(掌握)2.5.1水份活度的定义2.5.2水份活度与温度2.5.3水份活度与食品稳定性2.5.4冰与食品稳定性2.6 分子淌度与食品稳定性(1学时)(了解)2.7 食品中水分含量及水分活度的测定(1.5学时)(掌握)2.7.1食品中水分含量的测定2.7.2食品水分活度的测定第3章糖类(13学时)重点:着重掌握食品在贮藏加工条件下糖类化合物的麦拉德褐变反应及其对食品营养,感官性状和安全性的影响;淀粉的糊化和老化及其在食品加工中的应用;功能性低聚糖和食品胶简介;食品中总糖、还原糖、淀粉、果胶含量的测定。

食品化学复习提纲

第一章绪论(1学时)教学目的:了解食品化学的发展史,食品化学的内涵与学要解决的问题以及食品化学的研究方法和最新进展。

教学重点和难点:食品化学的内涵。

教学方法与手段:多媒体课堂讲述。

讲授要点:1、食品化学的发展史:化学、食品、食物、食品有关的化学、食品化学。

2、食品化学的内涵:食品化学的分类及其内涵。

第二章水分(5学时)教学目的:了解水在食品加工贮藏过程中的作用及其行为控制方法。

教学重点和难点:重点:食品中水的组成,以及水分活度的概念和对食品安全性的影响;难点:分子流动性的概念与应用。

教学方法与手段:多媒体课堂讲述。

讲授要点:1、水的功能2、水的状态3、食品中水的组成4、食品中水与非水成分之间的相互作用5、水分活度6、水分活度与食品稳定性7、食品的等温吸湿线8、分子流动性及其对食品稳定性的影响第三章碳水化合物(6学时)教学目的:了解食品种各种碳水化合物的物理化学性质。

教学重点和难点:重点:糖类在食品加工过程中的各类变化;难点:淀粉的糊化与老化机理。

教学方法与手段:多媒体课堂讲述讲授要点:1、糖的定义及其分类2、单糖、双糖在食品应用方面的物理性质3、单糖、双糖在食品应用方面的化学性质4、多糖在食品应用方面的性质第四章蛋白质(6学时)教学目的:了解蛋白质在食品加工贮藏过程中的作用。

教学重点和难点:重点:蛋白质在食品体系中的各类功能性质;难点:蛋白质食品功能性质结构——效应关系。

教学方法与手段:多媒体课堂讲述。

讲授要点:1、蛋白质的功能与分类2、蛋白质的化学反应及与食品成分的相互作用3、蛋白质在加工贮藏过程中的变化4、蛋白质新资源第五章油脂(6学时)教学目的:了解油脂在食品加工贮藏过程中的作用、变化及其控制方法。

教学重点和难点:重点:油脂的物理化学特性以及他们在食品加工中的变化;难点:油脂氧化的机理以及防止油脂氧化的方法。

教学方法与手段:多媒体课堂讲述。

讲授要点:1、油脂的概念及其分类2、油脂的物理性质3、油脂在贮藏加工过程中的变化4、油脂的精炼5、油脂的分析第六章酶(4学时)教学目的:了解酶的概念与基本性质以及镁在食品加工贮藏过程中的作用及应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点与难点
第 1 章绪论
食品化学的概念、内涵与分类
第 2 章水分
1.重点:食品中水的组成,以及水分活度的概念和对食品安全性的影响
2.难点:①、水分活度的概念与应用;
②、滞后现象。

分子流动性的概念与应用
第 3 章碳水化合物
1.重点:糖类在食品加工过程中的各类变化
2.难点:淀粉的糊化与老化机理
第 4 章蛋白质、氨基酸
1.重点:蛋白质在食品体系中的各类功能性质
2.难点:蛋白质食品功能性质结构——效应关系
第 5 章脂质
1.重点:油脂的物理化学特性以及他们在食品加工中的变化
2.难点:油脂氧化的机理以及防止油脂氧化的方法
第 6 章酶
1.重点:酶在食品加工中的应用
2.难点:酶工程
第 7 章维生素
1.重点:掌握各种维生素的一般理化性质;维生素在食品贮存、处理、加工中所发生的物理化学变化,以及对食品品质所产生的影响
2.难点:加工和储藏中维生素损失的主要原因、掌握VA、VD、VE、VB1、VB2、VC
第 8 章矿物质
1.重点:食品加工对矿物质的影响、食品中重要的矿物质
2.难点:矿物质在食品加工、处理中所发生的变化以及对机体利用率产生的影响
第 9 章色素
1.重点:食品中色素的形成及有关变化,掌握食品色素在食品加工、储藏过程中的变化规律
2.难点:血红素、叶绿素在食品贮藏和加工中发生的重要变化及其条件,食品褐变的原理与控制
第 10 章风味
1.重点:食品风味物质的基本性质与化学变化
2.难点:食品味觉的相互作用以及食品香气的形成途径。

相关文档
最新文档