初中数学中实数的知识教案

合集下载

人教版初中数学七年级下册第六章《实数》复习课教案

人教版初中数学七年级下册第六章《实数》复习课教案

人教版初中数学七年级下册第六章实数复习课教案课题 实数复习 课型 复习 备课人教学目标 1.体会特殊到一般、化零为整的认识过程,运用类比思想,强化符号意识,进一步培养估算和运算能力。

2.理解算术平方根、平方根、立方根概念;掌握算术平方根和平方根的区别于联系;了解平方根、立方根的计算器求法;巩固实数的运算。

3.从局部到整体,一点一练,分层过关。

教学过程设计教学环节教学学活动设计 一、知识网络专题一:平方根与立方根【1】算术平方根: 1.如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”。

特别规定:0的算术平方根仍然为0。

2.算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

总体复习这一章的概况先复习平方根和立方根这一专题,熟悉概念,性质,以及这两个概念,性质之间的区别与联系3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

【2】平方根: 1.概念:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即)0(2≥=a a x ,当时,我们称x 是a 的平方根,记做)0(≥±=a a x :。

2.性质:(1)正数有两个平方根,他们互为相反数 (2)0的平方根是0; (3)负数没有平方根 3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

【3】立方根 1.概念:如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。

记做:3a (注意:这里的3是根指数,不能省略) 2.立方根的性质: (1)正数的立方根是正数, 负数的立方根是负数; 0的立方根是0. (2) 2.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。

人教版数学七年级下册6.3《实数》说课稿

人教版数学七年级下册6.3《实数》说课稿
这些互动方式旨在激发学生的参与热情,培养他们的合作精神和批判性思维,同时也能够帮助教师及时了解学生的学习情况,调整教学进度和策略。
四、教学过程设计
(一)导入新课
新课导入是激发学生兴趣和注意力的重要环节。我将采用以下方式导入新课:
1.利用生活实例:我会从学生熟悉的生活场景出发,例如测量物体长度时遇到的无限不循环小数,引发学生对无理数的思考。
2.提出问题:我会提出一些引发思考的问题,如“什么是无理数?”“无理数与有理数有什么不同?”等,激发学生的好奇心。
3.展示悬念:通过展示一些有趣的数学现象,如圆周率的无限不循环性,引发学生的探索欲。
(二)新知讲授
在新知讲授阶段,我将按照以下步骤逐步呈现知识点,引导学生深入理解:
1.引入实数的概念:首先介绍实数的定义,包括有理数和无理数的集合。
2.数形结合:利用数轴模型,展示实数与数轴的关系,帮助学生形象地理解实数的稠密性和连续性。
3.性质探讨:通过具体的例子,探讨实数的性质,如实数的运算规律、稠密性等。
4.运算演示:使用计算机软件动态演示实数的四则运算,帮助学生直观地理解运算过程。
5.应用案例分析:通过实际案例,展示实数在实际问题中的应用,加深学生对知识的理解。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我将设计以下巩固练习或实践活动:
1.基础练习:设计一些填空题和选择题,帮助学生巩固实数的概念和性质。
2.运算练习:提供一些实数运算的题目,让学生独立完成,以检验他们的运算能力。
3.实际应用题:布置一些与生活相关的实际问题,让学生运用所学知识解决问题。
4.定期进行学习反馈,及时表扬学生的进步,增强他们的自信心和成就感。
5.结合现代信息技术,使用多媒体教学手段,如动画、视频等,增强教学的直观性和生动性。

初中数学初一数学上册《实数的运算》教案、教学设计

初中数学初一数学上册《实数的运算》教案、教学设计
1.讲解实数运算的基本概念,如加减乘除,以及实数的优先级和运算顺序。
2.示范实数运算的过程,通过具体的例题,让学生直观地了解实数运算的步骤和技巧。
3.举例讲解实数运算在生活中的应用,使学生认识到实数运算的重要性。
在此过程中,教师注意引导学生积极参与,鼓励他们提出问题,及时解答学生的疑惑,确保学生能够掌握实数运算的基本知识。
初中数学初一数学上册《实数的运算》教案、教学设计
一、教学目标
(一)知识与技能
1.理解实数的概念,掌握实数的分类,包括有理数和无理数,并能准确区分。
2.学会实数的四则运算,包括加减乘除,熟练掌握运算规则,能够正确进行混合运算。
3.能够运用实数运算解决实际问题,提高数学应用能力。
4.理解实数运算的优先级,掌握运算顺序,避免运算错误。
-定期进行小测验,及时了解学生的学习进度和掌握情况,为教学调整提供依据。
-鼓励学生自我评价和同伴评价,培养学生的自我反思能力和批判性思维。
4.教学反馈设想:
-建立良好的师生沟通渠道,及时收集学生的反馈信息,了解他们的学习需求。
-根据学生的反馈调整教学方法和策略,确保教学活动能够满足学生的个性化学习需求。
-注意:此题旨在培养学生的合作能力和团队精神,要求各小组成员积极参与讨论,共同解决问题。
5.反思总结题:要求学生课后对实数运算的学习进行反思总结,撰写学习心得,内容包括学习收获、存在的不足以及改进措施。
-注意:此题旨在帮助学生养成自我反思和总结的好习惯,要求学生认真对待,真实反映自己的学习情况。
教师将根据学生的作业完成情况进行评价和反馈,关注学生的个体差异,鼓励他们在完成作业的过程中积极思考、勇于探索,不断提高实数运算能力。同时,教师要及时发现学生的进步和问题,为下一节课的教学提供参考。

(初一数学教案)人教版初中七年级数学下册第6章实数6.1 平方根第2课时教学设计

(初一数学教案)人教版初中七年级数学下册第6章实数6.1 平方根第2课时教学设计

6.1 平方根第2课时一、教学目标【知识与技能】1.能估计一个数的算术平方根的大致范围,并初步体验“无限不循环小数”的含义.2.会用计算器求一个非负数的算术平方根,能用夹值法求一个数的算术平方根的近似值.3.理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.【过程与方法】通过探索开平方运算和乘方运算之间的互逆关系,能利用平方与开平方互为逆运算的关系,求某些非负数的平方根。

【情感态度与价值观】通过对平方根的学习,培养学生从多方面,多角度分析问题,解决问题的思想意识,养成全面分析问题的习惯.二、课型新授课三、课时第2课时共3课时四、教学重难点【教学重点】平方根的概念和求一个数的平方根.【教学难点】平方根和开平方之间的联系五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)请大家四个人为一组,拿出自己准备好的两个边长为1的正方形纸片和剪刀,按虚线剪开拼成一个大的正方形.因为两个小正方形面积之和等于大正方形的面积,所以根据正方形面积公式可知a2=2,那么a是多少?这个数是多大呢?(二)探索新知1.出示课件4-7,探究算术平方根的估算与比较教师问:同学们,你能将手中两个相同的小正方形,剪一剪,拼一拼,拼成一个大正方形吗?学生答:可以,把两个小正方形沿对角线剪开,就可以拼成一大的正方形,如图所示.教师问:如果小正方形的边长是1dm,那大正方形的边长是多少呢?学生答:解:设大正方形的边长为xdm,则x2=2教师问:上边方程的解是多少呢?学生答:由算术平方根的意义可知 x=√2.教师问:由此得到大正方形的边长是多少呢?学生答:答:大正方形的边长为√2dm.教师问:小正方形的对角线的长是多少呢?学生答:由勾股定理得:√12+12=√2(dm),所以小正方形的对角线的长是√2dm.教师问:√2有多大呢?学生讨论后回答:√2大于1而小于2.教师问:你是怎样判断出√2大于1而小于2的?师生一起解答:因为 12=1 ,22=4,而1<2<4 ,所以1<√2<2.教师问:你能不能得到√2的更精确的范围?学生答:应该可以.教师问:√2有多大呢?师生一起解答:因为1.42=1.96,1.52=2.25,而1.96<2<2.25,所,1.4<√2<1.5.教师问:还能继续精确吗?学生答:因为1.412=1.9881,1.422=2.0614,而1.9881<2<2.0614,所以1.41<√2<1.42.教师问:能进一步精确吗?学生答:因为1.4142=1.999396,1.4152=2.002225,而1.999396<2<2.002225,所以 1.414<√2<1.415.教师问:你认为√2有多大呢?师生一起看图示:(出示课件7)教师问:你以前见过这种数吗?学生答:有无限个数.教师讲:这样的数叫做无限不循环小数.总结点拨:(出示课件8)无限不循环小数的概念事实上,继续重复上述的过程,可以得√2=1.414213562373……,小数位数无限,且小数部分不循环的小数称为无限不循环小数.√2是一个无限不循环的小数.考点1:算术平方根估算数值估算√19-3的值 ( )(出示课件9)A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间师生共同讨论解答如下:解析:因为42<19<52,所以4<√19<5,所以1<√19-3<2. 故选A. 答案:A.总结点拨:估计一个有理数的算术平方根的近似值,必须先判断这个有理数位于哪两个数的平方之间.出示课件10,学生自主练习后口答,教师订正.考点2:利用算术平方根比较大小试比较 √5−12与0.5 的大小. (出示课件11)学生独立思考后,师生共同解答.解:∵0.5=12 =2−12,(√5)2>22,∴√5>2,∴√5−12>2−12, ∴√5−12>0.5. 总结点拨:(出示课件11)比较数的大小,先估计其算术平方根的近似值.出示课件13,学生自主练习后口答,教师订正.考点3:算术平方根的实际应用小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.你能帮小丽用这块纸片裁出符合要求的纸片吗?(出示课件12)学生独立思考后,师生共同解答.解:由题意知正方形纸片的边长为20cm.设长方形的长为3x cm,则宽为2x cm.则有3x·2x=300,x2=50,x=√50.∴长方形的长为3x=3√50.因为50>49,∴√50>7, ∴3√50>21.∴小丽不能裁出符合要求的纸片.2.出示课件14,探究利用计算器求算术平方根教师问:在估计有理数的算术平方根的过程中,为方便计算,可借助计算器求一个正有理数a的算术平方根(或其近似数).如何按键呢?学生答:按键顺序:考点4:利用方程和正弦求直角三角形中线段的长度用计算器求下列各式的值:(1)√3136; (2)√2(精确到0.001 ).(出示课件15)学生独立思考后,师生共同分析后解答.教师依次展示学生解答过程:学生1解:(1)显示:56.∴√3136 =56 .学生2解:(2) 依次按键显示:1.414213562.∴ √2≈1.414 .出示课件16,学生自主练习,教师给出答案.3.出示课件17,探究利用计算器探索规律教师出示问题:请用计算器完成下表:师生一起计算如下:教师问:观察上表,你发现了什么规律?你能说出其中的道理吗?师生一起解答:规律:被开方数的小数点向右每移动2位,它的算术平方根的小数点就向右移动1位;被开方数的小数点向左每移动2 位,它的算术平方根的小数点就向左移动1位.出示课件18,学生自主练习,教师给出答案。

初中实数思维建构教案

初中实数思维建构教案

初中实数思维建构教案教学目标:1. 理解实数的定义和性质;2. 掌握实数的运算规则;3. 能够运用实数解决实际问题;4. 培养学生的逻辑思维能力和创新思维能力。

教学重点:1. 实数的定义和性质;2. 实数的运算规则。

教学难点:1. 理解实数的抽象概念;2. 掌握实数的运算规则。

教学准备:1. 教学课件;2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾已学的有理数知识,复习加、减、乘、除运算规则;2. 提问:有理数能否表示所有实数?有什么限制?二、新课导入(15分钟)1. 介绍实数的定义:实数是包括有理数和无理数的所有数;2. 讲解实数的性质:实数具有 additive property(加法性质)、multiplicative property (乘法性质)和 order property(大小比较性质);3. 举例说明实数的运算规则:加法、减法、乘法、除法;4. 引导学生通过实际例子理解实数的抽象概念。

三、案例分析(20分钟)1. 给出案例:某商店进行打折活动,原价为100元,打8折后的价格是多少?2. 引导学生运用实数解决案例:将原价100元表示为实数100,打8折后的价格表示为实数0.8;3. 引导学生运用实数运算规则计算打折后的价格:100 × 0.8 = 80;4. 总结:实数可以用来表示实际问题中的数量,并运用实数运算规则解决问题。

四、练习与巩固(15分钟)1. 给出练习题:计算下列实数的运算结果;2. 引导学生独立完成练习题,并及时给予解答和指导;3. 强调实数运算规则的重要性,并提醒学生注意运算符号的运用。

五、拓展与创新(15分钟)1. 引导学生思考:实数是否可以表示为分数的形式?为什么?2. 引导学生探讨:实数是否可以进行乘方运算?为什么?3. 引导学生创新:尝试将实数与其他数学概念结合,如几何图形、概率等;4. 分享学生的创新成果,并给予鼓励和评价。

六、总结与反思(5分钟)1. 回顾本节课所学的实数定义、性质和运算规则;2. 引导学生反思自己在学习过程中的困惑和问题,并及时给予解答;3. 强调实数在实际问题中的应用价值,鼓励学生在日常生活中多运用实数解决问题。

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1一. 教材分析人教版数学七年级下册《无理数、实数概念》这部分内容,主要让学生了解无理数和实数的概念,理解无理数和实数在数轴上的位置关系,以及它们在数学中的应用。

这部分内容是初中的重要知识,也是高中数学的基础。

二. 学情分析初中的学生已经有了一定的数学基础,但是对于无理数和实数这样的抽象概念,可能还比较难以理解。

因此,在教学过程中,需要引导学生从实际问题中抽象出无理数和实数的概念,并通过具体的例子,让学生感受无理数和实数在生活中的应用。

三. 教学目标1.让学生了解无理数和实数的概念,理解它们在数轴上的位置关系。

2.让学生能够运用无理数和实数的知识,解决实际问题。

3.培养学生抽象思维的能力,提高学生解决问题的能力。

四. 教学重难点1.重难点:无理数和实数的概念,无理数和实数在数轴上的位置关系。

2.难点:无理数和实数在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出无理数和实数的概念。

2.使用多媒体教学,通过动画、图片等形式,让学生更直观地理解无理数和实数。

3.采用小组合作学习的方式,让学生在讨论中巩固无理数和实数的知识。

六. 教学准备1.多媒体教学设备。

2.无理数和实数的教学素材。

3.小组合作学习的指导手册。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出无理数和实数的概念。

问题:如果一个正方形的边长是2,那么它的对角线的长度是多少?2.呈现(10分钟)通过多媒体教学,呈现无理数和实数的定义,以及它们在数轴上的位置关系。

3.操练(10分钟)让学生通过小组合作学习的方式,解决一些与无理数和实数有关的问题。

4.巩固(10分钟)让学生回答一些关于无理数和实数的问题,以巩固他们刚刚学到的知识。

5.拓展(10分钟)让学生通过一些实际的例子,了解无理数和实数在生活中的应用。

6.小结(5分钟)对本节课的内容进行小结,让学生了解他们今天学到了什么。

初中数学_实数(第一课时)教学设计学情分析教材分析课后反思

6.3.1实数教学设计第一课时【教学目标】知识与技能:①了解无理数和实数的概念以及实数的分类;②知道实数与数轴上的点具有一一对应的关系。

过程与方法:在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。

情感态度与价值观:①通过了解数系扩充体会数系扩充对人类发展的作用;②敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。

教学重点:①了解无理数和实数的概念;②对实数进行分类。

教学难点:对无理数的认识。

【课前准备】电脑、课件、直尺、每组两个两个边长为1 dm的小正方形、裁剪刀【教学过程】一、拼图游戏:1、学生小组活动请同学们试着将两个边长为1 dm的小正方形裁剪拼接,拼成一个大的正方形2、探究:大正方形的边长是小正方形的什么?大正方形的边长是多少?设计意图:组织学生动手操作,让学生在动手动脑中体会学习的快乐,并体会无理数产生的实际背景和引入的必要性二、形成概念1.说一说大约有多大?它是一个什么样的数呢?2. 大小=1.414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 94…,是无限不循环小数.是什么样的数,为无理数概念打基础。

通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促进学生对数学学习的兴趣,培养学生初步的发现能力.3.33,5,2 ,π教师给出无理数的定义:无限不循环小数叫做无理数强调无理数的两个要点:小数位数无限小数部分不循环4.常见的三类无理数教师在学生回答的基础上让学生总结出无理数常见的三种形式: ①开方开不尽的数都是无理数(如2、3、39),②圆周率π类③ 有规律但不循环的无限小数.(如2.020020002…(两个2之间依次多个0)等).是不同于有理数的数,.在此过程中,尽可能地让学生思考和交流,以发展学生的辨析和判断能力.通过让学生举例, 让学生体会无理数存在的普遍性,和无理数的三种常见形式4.教师给学生介绍"无理数"的由来公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。

人教初中数学七下《实数》教案 (公开课获奖)1

实数第一课时 【教学目标】 知识与技能:了解无理数和实数的概念以及实数的分类; 知道实数与数轴上的点具有一一对应的关系。

过程与方法:在数的开方的根底上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。

情感态度与价值观:通过了解数系扩充体会数系扩充对人类开展的作用;敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。

教学重点:了解无理数和实数的概念; 对实数进行分类。

教学难点:对无理数的认识。

【教学过程】一、复习引入无理数: 利用计算器把以下有理数95,119,847,53,3-写成小数的形式,它们有什么特征? 发现上面的有理数都可以写成有限小数或无限循环小数的形式 即:5.095,18.0119,875.5847,6.053,0.33 ===-=-= 归纳:任何一个有理数〔整数或分数〕都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。

通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数, 把无限不循环小数叫做无理数。

比方33,5,2-等都是无理数。

14159265.3=π…也是无理数。

二、实数及其分类:1、实数的概念:有理数和无理数统称为实数。

2、实数的分类:按照定义分类如下:实数⎪⎩⎪⎨⎧⎩⎨⎧数)无理数(无限不循环小小数)(有限小数或无限循环分数整数有理数 按照正负分类如下:OACB 实数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零负无理数正有理数正实数3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示。

物理是符合是否也可以用数轴上的点表示出来吗?活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。

《实数》实数教学课件

《实数》实数教学课件一、教学内容本节课的教学内容来自人教版初中数学九年级上册第二章《实数》的第三节“实数的运算”。

本节主要内容有:实数的加减乘除运算,实数的乘方与开方运算,以及实数运算的运算律。

二、教学目标1. 理解实数的加减乘除运算方法,掌握实数运算的运算律。

2. 能够熟练地进行实数的乘方与开方运算。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点重点:实数的加减乘除运算方法和运算律,实数的乘方与开方运算。

难点:实数运算的运算律的应用,实数的乘方与开方运算的技巧。

四、教具与学具准备教具:多媒体课件,黑板,粉笔。

学具:笔记本,尺子,圆规。

五、教学过程1. 实践情景引入:教师通过向学生展示一个实际问题,如“某商店进行打折活动,原价为100元的商品,先打8折,再打9折,出售,问最终售价是多少?”引导学生思考实数运算的问题。

2. 知识点讲解:(1)实数的加减乘除运算:教师通过PPT展示实数的加减乘除运算方法,引导学生理解并掌握。

(2)实数的乘方与开方运算:教师通过PPT展示实数的乘方与开方运算方法,引导学生理解并掌握。

(3)实数运算的运算律:教师通过PPT展示实数运算的运算律,引导学生理解并掌握。

3. 例题讲解:教师通过PPT展示典型例题,如“已知a=3,b=4,求a+b,ab,ab,a/b,a的平方,b的平方,a的立方,b的立方。

”引导学生跟随解题,巩固所学知识。

4. 随堂练习:教师通过PPT展示随堂练习题,让学生独立完成,检测学习效果。

5. 课堂小结:六、板书设计板书设计如下:实数的加减乘除运算:加法:a + b减法:a b乘法:a b除法:a / b实数的乘方与开方运算:乘方:a^n开方:√a实数运算的运算律:交换律:a + b = b + a,a b = b a结合律:(a + b) + c = a + (b + c),(a b) c = a (b c)分配律:a (b + c) = a b + a c七、作业设计1. 完成教材第37页的练习题14。

初中数学七年级《实数》优秀教学设计

6.3实数(1)教学过程设计知识探究1.探究:1.使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 ,35-,,911,119,592.归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式。

反过来,任何有限小数或无限循环小数也都是有理数3.观察:通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数, 3.14159265π=也是无理数结论:有理数和无理数统称为实数4.试一试:把实数分类⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数像有理数一样,无理数也有正负之分。

例如2,33,π是正无理数,2-,33-,π-是负无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:5.探究实数与数轴上的点一一对应关系。

我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢?如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?总结:1.事实上,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。

因为实数包括有理数和无理数,在教学中引导学生自己归纳实数的分类⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数领会按定义和按正负两种分类方法,领会分类思想。

学生通过探究实践,作图得出实数与数轴上的点一一对应通过具体操作让学生掌握实数与数轴上的点一一对应的关系不应忽略学生分组讨论,老师提示知识探究怎样表示无理数2?方法:(教师示范)6.课本思考,归纳相反数.倒数和绝对值的意义。

领会在实数范围内,相反数、倒数和绝对值的含义不变。

应用迁移1.把下列各数分别填入相应的集合里:332278,3, 3.141,,,,2,0.1010010001,1.414,0.020202,7378π-----正有理数{ }负有理数{ }正无理数{ }负无理数{ }2. 下列实数中是无理数的为()A. 0B. 3.5- C.2 D.9;3.下列各数中,是无理数的是()A. 1.732- B. 1.414 C. 3 D. 3.144.已知四个命题,正确的有()⑴有理数与无理数之和是无理数⑵有理数与无理数之积是无理数⑶无理数与无理数之积是无理数⑷无理数与无理数之积是无理数A. 1个B. 2个C. 3个D.4个5.若实数a满足1aa=-,则()A. 0a> B. 0a< C. 0a≥ D. 0a≤6.下列说法正确的有()⑴不存在绝对值最小的无理数⑵不存在绝对值最小的实数⑶不存在与本身的算术平方根相等的数学生自主探索完成,巩固新知,提高能力.学生完成交流反馈学习情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学中实数的知识教案 • 相关推荐 初中数学中实数的知识教案(精选5篇) 作为一位无私奉献的人民教师,时常需要编写教案,教案是教学活动的依据,有着重要的地位。来参考自己需要的教案吧!下面是小编收集整理的初中数学中实数的知识教案,希望对大家有所帮助。 初中数学中实数的知识教案 篇1 一、教学目标 1、了解二次根式的意义; 2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题; 3、掌握二次根式的性质和,并能灵活应用; 4、通过二次根式的计算培养学生的逻辑思维能力; 5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。 二、教学重点和难点 重点: (1)二次根的意义; (2)二次根式中字母的取值范围。 难点:确定二次根式中字母的取值范围。 三、教学方法 启发式、讲练结合。 四、教学过程 (一)复习提问 1、什么叫平方根、算术平方根? 2、说出下列各式的意义,并计算 (二)引入新课 新课:二次根式 定义:式子叫做二次根式。 对于请同学们讨论论应注意的问题,引导学生总结: (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢? 若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。 (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次 根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。 例1当a为实数时,下列各式中哪些是二次根式? 例2 x是怎样的实数时,式子在实数范围有意义? 解:略。 说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。 例3当字母取何值时,下列各式为二次根式: 分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。 解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。 (2)—3x≥0,x≤0,即x≤0时,是二次根式。 (3),且x≠0,∴x>0,当x>0时,是二次根式。 (4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。 例4下列各式是二次根式,求式子中的字母所满足的条件: 分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。 解:(1)由2a+3≥0,得。 (2)由,得3a—1>0,解得。 (3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。 (4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。 初中数学中实数的知识教案 篇2 一、教材分析 本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。 二、教学目标 1、知识目标:了解多边形内角和公式。 2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。 3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。 4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。 三、教学重、难点 重点:探索多边形内角和。 难点:探索多边形内角和时,如何把多边形转化成三角形。 四、教学方法:引导发现法、讨论法 五、教具、学具 教具:多媒体课件 学具:三角板、量角器 六、教学媒体:大屏幕、实物投影 七、教学过程: (一)创设情境,设疑激思 师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗? 活动一:探究四边形内角和。 在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。 方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。 方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。 接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。 师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的? 活动二:探究五边形、六边形、十边形的内角和。 学生先独立思考每个问题再分组讨论。 关注: (1)学生能否类比四边形的方式解决问题得出正确的结论。 (2)学生能否采用不同的方法。 学生分组讨论后进行交流(五边形的内角和) 方法1:把五边形分成三个三角形,3个180的和是540。 方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。 方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。 方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。 师:你真聪明!做到了学以致用。 交流后,学生运用几何画板演示并验证得到的方法。 得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。 (二)引申思考,培养创新 师:通过前面的讨论,你能知道多边形内角和吗? 活动三:探究任意多边形的内角和公式。 思考: (1)多边形内角和与三角形内角和的关系? (2)多边形的边数与内角和的关系? (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系? 学生结合思考题进行讨论,并把讨论后的结果进行交流。 发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。 发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。 得出结论:多边形内角和公式:(n-2)·180。 (三)实际应用,优势互补 1、口答:(1)七边形内角和() (2)九边形内角和() (3)十边形内角和() 2、抢答:(1)一个多边形的内角和等于1260,它是几边形? (2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。 3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度? (四)概括存储 学生自己归纳总结: 1、多边形内角和公式 2、运用转化思想解决数学问题 3、用数形结合的思想解决问题 (五)作业:练习册第93页1、2、3 八、教学反思: 1、教的转变 本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。 2、学的转变 学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。 3、课堂氛围的转变 整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。 初中数学中实数的知识教案 篇3 一、教学目标 1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题; 2.培养学生观察能力,提高他们分析问题和解决问题的能力; 3.使学生初步养成正确思考问题的良好习惯。 二、教学重点和难点 一元一次方程解简单的应用题的方法和步骤。 三、课堂教学过程设计 (一)从学生原有的认知结构提出问题 在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢? 为了回答上述这几个问题,我们来看下面这个例题。 例1 某数的3倍减2等于某数与4的和,求某数。 (首先,用算术方法解,由学生回答,教师板书) 解法1:(4+2)÷(3-1)=3。 答:某数为3。 (其次,用代数方法来解,教师引导,学生口述完成) 解法2:设某数为x,则有3x-2=x+4。 解之,得x=3。 答:某数为3。 纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。 我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。 本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。 (二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤 例2 某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉? 师生共同分析: 1.本题中给出的已知量和未知量各是什么? 2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量) 3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程? 上述分析过程可列表如下: 解:设原来有x千克面粉,那么运出了15%x千克,由题意,得 x-15%x=42 500, 所以x=50 000。 答:原来有50 000千克面粉。 此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么? (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

相关文档
最新文档