信号频率的测量方法与误差

信号频率的测量方法与误差
信号频率的测量方法与误差

信号频率的测量方法与误差

【摘要】本文介绍了几种信号频率的测量方法,并对实现电路的构成和特点进行比较,探讨了误差引起的原因。

【关键词】电桥;谐振;差拍;时标信号

信号频率的测量在电子测量技术领域中具有重要的地位,深入了解信号频率的测量方法可以帮助我们掌握其它物理量的测量。

1.直接法

直接法是利用电路频率响应特性的可调无源网络测量频率值。如果电路的频率特性为:(式中为己知参数),根据函数关系式可以求出频率。这种测频方法的优点是简单、价廉,但精确度不高。无源测频法常用的有电桥测频法和谐振测频法,主要用于频率粗测。

1.1 电桥测频法

电桥法测频是利用交流电桥平衡条件和电桥电源频率有关这一特性来测量频率的,原理电路如图1.1所示,调节电桥平衡的可变电阻和电容的调节旋钮,电桥指示平衡时,被测频率值为。在高频时,由于电阻或电容带来的寄生参数影响比较严重,会大幅降低测量精度,所以电桥法测频一般只适用于低频段10kHz以下的音频范围的测量。

1.2 谐振测频法

谐振法测量频率的原理和测量方法都比较简单,可作为频率粗测,误差来源主要有:

(1)实际中电感、电容损耗越大,品质因数越低,不容易找出真正的谐振点。

(2)面板上的频率刻度是在规定的标定条件下刻度的,当环境温度和湿度等因数变化时,将使电感、电容的实际值发生变化,从而使回路的固有频率变化。

(3)由于频率刻度不能分得无限细,人眼读数常常有一定误差。

2.比较法

利用标准频率与被测频率比较测量,测量是要求标准频率连续可调,并能保持其准确度。比较法可以为差拍法、差频法、示波器法。

形位误差测量方法

形位误差测量方法

摘要:跳动测量是生产实践中应用较广泛的一种测量方法,检测方式简单实用,又具有一定的综合控制功能。 形位误差测量 径向圆跳动、全跳动、端面圆跳动实验 一、实验目的: 跳动测量是生产实践中应用较广泛的一种测量方法,检测方式简单实用,又具有一定的综合控制功能。本实验的目的是: 1、掌握形位公差检测原则中的跳动原则。 2、形状误差不大时,用以代替同轴度测量。 3、分析圆度误差与径向跳动的各自特点。 二、实验内容: 1、模拟建立理想检测基准。 2、径向圆跳动、全跳动、端面圆跳动的测量。 3、根据指示表读数值,确定各种跳动量。 三、实验仪器: 偏摆仪、测量表架、指示表。 四、实验方法: 调整偏摆仪两端顶尖同轴,以两顶尖的轴线模拟公共基准,被测工件对顶无轴向移动且转动自如,采用跳动原则,看指示表读数,确定跳动量。 具体检测方法见下表。

五、实验步骤: 1、径向圆跳动测量: (1)将指示表安装在表架上,指示表头接触被测圆柱表现,指针指示不得超过指示表量程的1/3,测头与轴线垂直,指示表调零。 (2)轻轻使被测工件回转一周,指示表读数的最大差值即为单个测量截面上的径向跳动。 (3)按上述方法在若干个正截面上测量,分别记录,取各截面上测的跳动量中的最大值作为该零件的径向圆跳动。 (4)将测量记录填表2-2。

2、径向全跳动测量 (1)按上述方法在被测工件连续转动过程中,同时让指示表沿基准轴线方向作直线移动。(2)在整个测量过程中,指示表读数最大差值即为该零件的全跳动。(3)所测数据填表2-2。 3、端面圆跳动测量 (1)将指示表测头与被测的台阶表面接触,注意指示表指针指示不得超过指示表量程的1/3,指示表读数调零。 (2)轻轻转动工件一周,指示表读数最大差值即为单个测量圆柱面上的端面圆跳动。(3)按上述方法,在任意半径处测量若干个圆柱面,取各测量圆柱面上测得的跳动中最大值作为该零件的端面圆跳动。(4)所测数据填表2-2。 六、实验记录表 表2-2 径向圆跳动、全跳动、端面圆跳动实验记录

频率响应测量的方法

频率响应测量的方法 频率响应测量的方法很多,一般同使用的测试信号有关。 可分为:i. 点测法:完全按定义设计的测量方法,逐个频率输入振幅恒定的正弦信号,逐个点测量相应频率扬声器输出声压级,在频率响应坐标纸上绘出相应的点,把这些不连续的点的平滑连线即为频率响应曲线。测量耗时、测量有限的非连续频率点,过渡点是推测的。 ii. 扫频自动记录法:使用机械传动的方法改变振荡电路中的电容,使信号的频率连续改变,输出电压恒定,这叫扫频信号,记录仪上记录纸的频率刻度与信号源同步,记录扬声器的输出声压级随频率的变化,即为频率响应曲线,这方法叫扫频自动记录法。后来,机械扫频信号改成电压控制频率的压控振荡器,改进了机械传动的麻烦。这是60~80年代丹麦B&K 公司为代表的测量技术。扫频自动测量原理大约已有40年的历史,其测量原理没有变化,改变的只是使用的技术,譬如扫频信号的产生方法,测量传声器测得的数据的采集、处理、运算和输出数据和曲线都可以由计算机完成。其中需要特别一提的是:对扫频信号的理解和生成技术,连续扫频信号过去理解为点频信号随时间变化,但点频信号是一个连续周期信号,从示波器看到的是一个按周期重复的正弦波形,而扫频信号没有一个频率是经历时间周期的,随扫频时间变化的是它的瞬时频率。瞬时频率数学上是相位对时间的微分。可以这样理解:譬如f=100Hz正弦信号的周期是T=0.01秒,其走过的相位φ= 2π弧度(360°),而f=200Hz时,T=0.005秒,其走过的相位仍然是φ= 2π弧度,这样,一个微小时间内的相位变化(等效于相位对时间的微分)同周期成反比,相当于稳态频率。同稳态信号不同的是它引入扫频速率(S:Hz/s)的概念,瞬时频率fi =S t +f0;t为扫频时间;f0为扫频初始频率。t和f0确定扫频频率范围。稳态单频信号的公式是u(t)=Acos(2πft);f为稳态单频信号的频率。而扫频信号的公式是u(t)=ACos(πSt2),B&K公司的2012音频分析仪的TSR(时选响应)技术中使用的测试信号,就是采用该数学模型生成的信号。 iii. 阶步步进的猝发声测量。猝发声是若干个周期的正弦信号脉冲,或称正弦波列。它由连续周期信号加一时间控制电路组成,当测量声压级的时间窗正好在猝发声的稳定部分时,它更接近点频测量。由一个个不同频率的猝发声组成一个阶步步进的猝发声,用对应的跟踪滤波器跟踪每一个猝发声,类似点频测量得到扬声器的频率响应。美国ATI公司的扬声器测量系统LMS使用的正是这种信号源,它最多可以在一个十进制频率范围内设置200个猝发声频率点,即频率阶步的间隔是1/60倍频程。 iv. 多频音(Muiti-tone Burst也叫多频猝发声)它是数字生成的M个纯音信号的叠加的一个短时间间隔的信号,该时间间隔对M个频率来说正好都是整周期的,并且这由低到高M个频率之间没有谐波关系,即2个频率相除(大数除小数)的商不会是整数。例如:14.5,31.9,37.7,49.3,55.1……Hz;可以排列成一个数列,选择适当的频率间隔,组成M个频率的多频音。其M个频率的同步FFT即为基频即幅频响应,由其谐波可以实现其谐波失真测量。该技术使用在AP公司的“系统1”和“系统2”的仪器上。 v. 脉冲数字测量技术上面所有的方法都离不开正弦信号,只是频率的连续变化、频率的阶步变化和有限频率成分的合成信号,脉冲信号和MLS信号需要进行时域(时间波形)和频域(频率响应和频率分析)之间的变换,从中可以得到更多信息,它作用于被测系统后的输出响应,经过变换和运算可以得到被测系统的许多信息,这需要对测试信号有充分了解,涉及信号与系统的基本理论,又要借助数字信号处理技术进行变换运算。单脉冲信号的性质,

测量气缸圆度圆柱度的方法及步骤

测量气缸圆度、圆柱度的方法及步骤 ①准备清洗干净的持修气缸体一台,与其内径相适应的外径千分尺、量缸表及清洁工具等。 ②将气缸孔内表面擦试洁净。 ③安装、校对量缸表。 ④用量缸表测量气缸孔第一道活塞环上止点处于平行于曲轴轴线方向的直径,记入检测记录。 ⑤在同一剖面内测量垂直于曲轴轴线方向的直径,记入检测记录。 ⑥上述两次测量值之差的一半即为该剖面的圆度误差。 ⑦用上述方法测量气缸孔第一道活塞环上止点至最后一道活塞环下止点行程的中部,将这一横剖面的圆度误差,记入检测记录。 ⑧用同样方法测量距气缸孔下端以上30mm左右处横剖面的圆度误差,记入检测记录。 ⑨三个圆度误差值中,最大值即为该气缸孔的圆度误差。 ⑩上述3个测量横剖面,6个测量值,其中最大值与最小值之差的一半,即为该气缸孔的圆柱度误差。 11上述方法只适用于待修或在用气缸套筒的一般检测。如要取精确测值,则应选多个横剖面、纵剖面测量,而且在对同一横剖面、纵剖面上进行多点测量,方能检测出圆度、圆柱度误差的值。 12气缸磨损圆柱度达到0.174~0.250mm或圆度己达到0.050~0.063mm(以其中磨损量最大一个气缸为准)送大修。

JT3101-81中规定:磨缸后,干式气缸套的气缸圆度误差应不大于0.005mm,圆柱度误差不大于0.0075mm湿式气缸套的气缸的圆柱度误差应不大于 0.0125mm. 13确定修理尺寸:气缸磨损超过允许限度或缸壁上有严重的刮伤、沟槽和麻点,均应采取修理尺寸法将气缸按修理尺寸搪削加大。 气缸修理尺寸的确定方法:先测量磨损最大的气缸最大磨损直径,加上加工余量(以直径计算一般为0.1~0.2mm),然后选取与此数值相适应的一级修理尺寸。 当策动机气缸圆度,圆柱度误差超过规定的标准时,如汽油机的圆度误差超过0.05mm 或者圆柱度误差超过 0.20mm 时,联合最大磨耗尺寸视情进行修理尺寸法镗缸或者更换缸套修理用量缸表测量气缸圆度误差,在同一横向截面内,在平行于曲轴轴线方向和垂直于曲轴轴线方向的两个方位进行测量,测得直径差之半即为该截面的圆度误差沿气缸轴线方向测上、中、下三个截面,如图3-40所示上面至关于活塞上止点第一道活塞环相对应的气缸处;中间取气缸中部;下面取活塞下止点时最下一道活塞环对应的气缸位置 测得的最大圆度误差即为该气缸的圆度误差测量气缸圆柱度误差凡是用量缸表在活塞行程内一股取上中下三处(如图3-41所示)气缸的各个方向测量,找出该缸磨耗的最大处气缸磨耗最大直径与活塞在下止点时活塞环运动地区范围以外,即距气缸套下部平面10MM范围内的气缸最小内径的差值的半壁,就是该气缸的圆柱度误差 图:测量气缸磨耗量 图:在活塞行程上、中、下三处测量气缸图:测量气缸磨耗量图:在活塞行程上、中、下三处测量气缸气缸磨耗的测量要领凡是用量缸表对气缸磨耗进行测量具体测量要领如下: 1 .把内径百分表装在表杆的上端,并使表盘朝向测量杆的勾当点,以便于观察,使表盘的短针有 1-2mm 的压缩量

形位公差检测方法

一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度

固有频率测定方式

实验三振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: 方程式的解由21X X +这两部分组成: ) sin cos (211t w C t w C e X D D t +=-ε 21D w w D -= 式中1C 、2C 常数由初始条件决定: t w A t w A X e e sin cos 212+= 其中 ,, 1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。 自由振动周期: D D T ωπ 2= 强迫振动项周期: e e T ωπ 2= 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: 通过变换可写成

)sin(?-=t w A X e 式中 4 2 22222 2 2214)1(/ωωεωωωe e q A A A +- = += 设频率比 ω ωμe = ,Dw =ε 代入公式 则振幅 2 2 2 22 4)1(/D q A μμω+-= 滞后相位角: 2 12μμ ?-=D arctg 因为 xst K F m K m F q === 02 //ω为弹簧受干扰力峰值作用引起的静位移, 所以振幅A 可写成:st st x x D A .4)1(1 2 2 2 2βμμ=+-= 其中β称为动力放大系数: 2 2 2 2411 D μμβ+-= )( 动力放大系数β是强迫振动时的动力系数即动幅值与静幅值之比。这个数值对拾振器和单自由度体系的振动的研究都是很重要的。 当1=μ,即强迫振动频率和系统固有频率相等时,动力系数迅速增加,引起系统共振,由式: )sin(?-=t w A X e 可知,共振时振幅和相位都有明显变化,通过对这两个参数进行测量,我们可以判别系统是否达到共振动点,从而确定出系统的各阶振动频率。 (一)幅值判别法 在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过示波器,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有频率。这种方法简单易行,但在阻尼较大的情况下,不同的测量方法的出的共振动频率稍有差别,不同类型的振动量对振幅变化敏感程度不一样,这样对于一种类型的传感器在某阶频率时不够敏感。 (二)相位判别法 相位判别是根据共振时特殊的相位值以及共振前后相位变化规律所提出来的一种共振判别法。在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法,而且共振是

实验四 圆度误差的测量

实验四圆度误差的测量 一.实验目的 1.了解光学分度头、电感测微仪的工作原理和使用方法; 2.学会用光学分度头、电感测微仪测量圆柱体的圆度; 3.学会用最小二乘法、最小区域法处理测量的实验数据。 二.测量对象 φ22、公差等级8级、圆度误差9um的圆柱体工件 三、测量仪器 仪器名称:光学分度头、电感测微仪刻度值:6′′,1um 仪器测量范围:360°,±30um 四、测量原理 1、最小包容区法 最小包容区法是以最小区域圆为评定基准圆来评定圆度误差,最小区域圆是包容被测圆的轮廓且半径差Δr为最小的两同心圆。它符合最小条件,所评定的圆度误差值(两同心最小区域的半径差)最小。此方法的特征是用两同心圆包容被测实际圆时,至少应有内外交替的四点接触。 当被测圆的实际轮廓曲线已绘出,则可用以下方法来确定最小区域圆和圆度误差值。 (1)模板比较法 将绘好的被测实际圆轮廓的图形放在有光学放大装置的仪器的投影屏上看,再将刻有一组等间距同心圆的透明模板紧贴在图形上面。调整仪器投影的放大倍率,是其中两同心圆恰好包容被测实际圆图形,并且至少有四个内外相间的接触点a,c与b,d则模板上此两包容圆即为最小区域圆。其半径差Δr除以图形的放大倍率M,即为符合最小包容区的圆度误差值。 f=Δr/M (2)作图法 用作图法可逐步寻找最小区域圆心,其方法如下: ①在实际圆轮廓图形的中心附近任意找一点O1,以O1为圆心,找图形上的最远 点A并以O1 A为半径作圆Ⅰ,将实际圆的图形全部包容在内。 ②在O1 A的连线或延长线上找第二个圆心O2,要使以O2为圆心,以O1 A为半 径所做的圆Ⅱ,能通过实际圆图形上的另一点,即O1 A=O2B,并仍将实际圆的图形全部包容在内,O2点为AB连线的垂直平分线与O1 A的交点。 ③在被直线AB分成两部分ACB和ADC的图形上,各找一至圆Ⅱ的距离为最大的 点。 ④作CD连线的垂直平分线与AB连线的垂直平分线相交于O点,O点即为所搜 寻的最小区域圆的圆心。 ⑤以O为圆心,以OA和OC为半径作两同心圆,即为最小区域圆,全部实际圆 轮廓都应包容子啊此两同心圆内,此两同心圆的半径差Δr为圆度误差值。 (3)计算法

形位误差测量与实验

形位误差测量与实验 实验3-1直线度误差的测量 (一)实验目的 1.掌握用水平仪测量直线度误差的方法及数据处理。 2.加深对直线度误差含义的理解。 3.掌握直线度误差的评定方法。 (二)实验内容 用合象或框式水平仪按节距法测量导轨在给定平面内的直线度误差,并判断其合格性。(三)实验器具: 1.合象水平仪或框式水平仪 2.桥板 (四)测量原理及器具介绍 为了控制机床、仪器导轨及长轴的直线度误差,常在给定平面(垂直平面或水平平面)内进行检测,常用的测量器具有框式水平仪、合象水平仪、电子水平仪和自准直仪等测定微小角度变化的精密量仪。 由于被测表面存在直线度误差,测量器具置于不同的被测部位上时,其倾斜角将发生变化,若节距(相邻两点的距离)一经确定,这个微小倾角与被测两点的高度差就有明确的函数关系,通过逐个节距的测量,得出每一变化的倾斜度,经过作图或计算,即可求出被测表面的直线度误差值。合象水平仪因具有测量准确、效率高、价格便宜、携带方便等特点,在直线度误差的检测工作中得到广泛采用。 合象水平仪的结构,主要由微动螺杆、螺母、底盘水准仪、棱镜、放大镜、杠杆以及具有平面和V形工作面和底座等组成。 合象水平仪是利用棱镜将水准器中的气泡像复合放大,以提高读数时的对准精度,利用杠杆和微动螺杆传动机构来提高读的精度和灵敏度,其工作原理见本指导书第二篇。合象水平仪置于被测工件表面上,若被测两点相对自然水平线不等高时,将引起两端的气泡像不重合,转动度盘使气泡像重合,此时合象水平仪的读数值即为该两点相对自然水平面的高度差,刻度盘读数与桥板跨距L之间的关系为: h=i·L·a 框式水平仪是一种测量偏离水平面的微小角度变化量的常用量仪,它的主要工作部分是水准器。水准器是一个封闭的玻璃管,内表面的纵剖面具有一定的曲率半径,管内装乙醚或酒精,并留有一定长度的气泡。由于地心引力作用,玻璃管内的液面总是保持水平,即气泡总是在圆弧玻璃管的最上方。当水准器的下平面处于水平时,气泡处于玻璃管外壁刻度的正中间,若水准器倾斜一个角度α,则气泡就要偏离最高点,移动的格数与倾斜的角度α成正比。由此,可根据气泡偏离中间位置的大小来确定水准器下平面偏离水平的角度。 框式水平仪的分度值有0.1mm/m,0.05mm/m,0.02mm/m三种。如果水平仪分度值为0.02mm/m,则气泡每移动一格,表示导轨面在1m长度上两测量点高度差为0.02mm(或倾斜角为4〞)。

实验一 圆度与圆柱度误差测量

实验一圆度与圆柱度误差测量 一、实验目的 1.掌握圆度误差及圆柱度误差的测量方法; 2.学会对测量数据的处理,加深对基本概念的理解; 3.了解测量工具结构并熟悉它的使用方法。 二、圆度与圆柱度误差测量原理 1.圆度误差及测量、评定方法 圆度误差为包容同一横截面实际轮廓,且半径差为最小的两同心圆间的距离f,如图1.1所示。 圆度误差最小包容区域的判别方法是:由两同心圆包容 被测实际轮廓时,至少有4个实测点内、外相间地在两个圆 周上(即同心圆的内、外接点至少两次交替发生),如图1.1 所示。圆度误差最小区域的同心圆圆心,通常是和零件的测 量回转中心不一致。图中,O点是测量时的回转中心,O’ 测量点是圆度误差的评定中心。 测量圆度误差的方法,主要有:圆度仪测量,两点法测量圆 度误差,三点法测量圆度误差。这里只介绍两点法测量圆度 误差。 两点法测量圆度误差(检测方案代号:3—3) 用千分尺在垂 直于轴线的固定截面的直径方向进行测量,测量截面一周中直径最大差一半即为单个截面的圆度误差。如此测量若干个截面。取其最大的误差值作为该零件的圆度误差。 2.圆柱度误差 圆柱度误差是指包容实际表面且半径差为最小的两同轴圆柱面间的半径差f。圆柱度误差综合地反映了圆柱面轴线的直线度误差、圆度误差和圆柱面相对素线间的平行度误差。用它来综合评定圆柱面的形状误差是比较全面的,常用在精度要求比较高的圆柱面。 3.圆柱度误差的检测与评定方法 圆柱度误差的评定方法有:(1)用圆度仪测量,(2)用两点法测量。这里只介绍两点 法测量圆度误差。 ‘ 测量时,将被测件放在精确平板上,并紧靠直角座;在被测件回转一周过程中,测量一个横截面上的最大与最小读数差;如此测量若干个横截面,然后取整个测量过程中,所有读数中的最大与最小读数差的一半作为图1.3 两点法测量圆柱度误差

形位公差表示方法及其误差的测量

形位公差表示方法及其误差的测量 零件加工后,不仅有尺寸误差,构成零件几何特征的点、线、面的实际形状或相互位置与理想几何体规定的形状和相互位置还不可避免地存在差异,这种形状上的差异就是形状误差,而相互位置的差异就是位置误差,统称为形位误差。 形位公差的项目与符号 形位公差包括开状公差与位置公差,而位置公差又包括定向公差和定位公差,具体包括的内容及公差表示符号如下图所示: 形状公差 1、直线度符号为一短横线(-),是限制实际直线对理想直线变动量的一项指标。它是针对直线发生不直而提出的要求。 2、平面度符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 3、圆度符号为一圆(○),是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。 4、圆柱度符号为两斜线中间夹一圆(/○/),是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。

5、线轮廓度符号为一上凸的曲线(⌒),是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 定向公差 1、平行度(∥) 用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 2、垂直度(⊥) 用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 3、倾斜度(∠) 用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差 1、同轴度(◎) 用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。 2、对称度符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 3、位置度符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。

圆柱度误差测量方法讲解

圆柱度误差测量方法讲解

圆柱度 指在垂直于回转体轴线截面上,被测实际圆(柱)对其理想圆(柱)的变动量,以形成最小包容区域的两同心圆(柱)面的半径差计算。常用的近似测量方法有两点法、三点法、坐标测量法等。 1、两点法 按图1所示方法测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值,并以所有各被测截面示值中的最大值与最小值的一半作为圆柱度误差值。 图1 2、三点法 按图2所示方法测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值的一半作为圆柱度误差值。 图2

3、三坐标测量法 通常是在三坐标测量机上按要求测量被测零件各横截面轮廓各测点的坐标值, 再利用相应的计算机软件计算圆柱度误差值。 利用圆度仪测量圆柱度时, 将被测圆柱体工件沿垂直轴线分成数个等距截面放在回转台上, 回转台带动工件一起转动; 3个传感器安装在导轨支架上, 并可沿导轨做上下的间歇移动, 逐个测量等距截面, 获取含有混合误差的原始信号(测量原理图如图3所示)。测量传感器拾取的原始信号中不仅包含有被测工件的各个截面的圆度误差母线的直线度误差, 而且还含混入了导轨的直行运动误差及回转台的回转运动误差。将上述误差相分离, 并依据最小二乘圆心进行重构出实际圆柱面轮廓, 然后采用国标规定的误差评定方法得到被测圆柱面的圆柱度误差。 图3 三坐标测量机(Coordinate Measuring Machine, CMM) 是指在一个六面体的空间范围内,能够表现几何形状、长度及圆周分度等测量能力的仪器,又称为三坐标测量仪或三次元。 三坐标测量机能够在用测头所确定的三维空间(xyz空间)坐标系内, 由光学刻尺或激光干涉仪进行测量。通过测头和测量对象的接触, 由测头的坐标来获取对象的形状信息。 三坐标测量机通常由本体、侧头、各轴移动量的测量、显示装置、电子计算机及其外围设备、驱动控制部分以及软件等构成。

形位公差之圆度误差测量方法介绍

形位公差之圆度误差测量方法介绍 摘要 在机械制造中,经常会加工轴、套筒等回转体类零件,这些零件需要配合起来使用,这就要求不仅满足尺 寸精度要求,同时还要满足形位精度要求。圆度属于形位公差中的一种,其测量方法主要有回转轴法、三 点法、两点法、投影法和坐标法以及利用数据采集仪连接百分表法等。 圆度 圆度是表示零件上圆的要素实际形状,与其中心保持等距的情况。即通常所说的圆整程度。 圆度公差 圆度是限制实际圆对理想圆变动量的一项指标,其公差带是以公差值t为半径差的两同心圆之间的区域。 圆度公差属于形状公差,圆度误差值不大于相应的公差值,则认为合格,下图为圆度公差标注图: 圆度误差的评定原则 圆度误差评定有4种主要方法。 ①最小区域法:以包容被测圆轮廓的半径差为最小的两同心圆的半径差作为圆度误差。 ②最小二乘圆法:以被测圆轮廓上相应各点至圆周距离的平方和为最小的圆的圆心为圆心,所作包容被测 圆轮廓的两同心圆的半径差即为圆度误差。 ③最小外接圆法:只适用于外圆。以包容被测圆轮廓且半径为最小的外接圆圆心为圆心,所作包容被测圆 轮廓的两同心圆半径差即为圆度误差。 ④最大内接圆法:只适用于内圆。以内接于被测圆轮廓且半径为最大的内接圆圆心为圆心,所作包容被测 圆轮廓两同心圆的半径差即为圆度误差. 圆度误差测量方法 圆度测量方法主要有回转轴法、三点法、两点法、投影法和坐标法、直接利用我们太友科技的数据采集仪 连接百分表法。 1、回转轴法 利用精密轴系中的轴回转一周所形成的圆轨迹(理想圆)与被测圆比较,两圆半径上的差值由电学式长度

传感器转换为电信号,经电路处理和电子计算机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮廓图形。回转轴法有传感器回转和工作台回转两种形式。前者适用于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的圆度测量工具称为圆度仪。 2、三点法 常将被测工件置于V形块中进行测量。测量时,使被测工件在V形块中回转一周,从测微仪(见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。 3、两点法 常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆或内圆。 4、投影法 常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限同心圆比较,从而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小型工件。 5、坐标法 一般在带有电子计算机的三坐标测量机上测量。按预先选择的直角坐标系统测量出被测圆上若干点的坐标值x、y,通过电子计算机按所选择的圆度误差评定方法计算出被测圆的圆度误差。 6、利用数据采集仪连接百分表法

频率测量方法

0引言 随着无线电技术的发展与普及,"频率"已经成为广大群众所熟悉的物理量。而单片机的出现,更是对包括测频在内的各种测量技术带来了许多重大的飞跃,然而,小体积、价廉、功能强等优势也在电子领域占有非常重要的地位。为此.本文给出了一种以单片机为核心的频率测量系统的设计方法。 1 测频系统的硬件结构 测量频率的方法一般分为无源测频法、有源测频法及电子计数法三种。无源测频法(又可分为谐振法和电桥法),常用于频率粗测,精度在1%左右。有源比较法可分为拍频法和差频法,前者是利用两个信号线性叠加以产生拍频现象,再通过检测零拍现象进行测频,常用于低频测量,误差在零点几Hz;后者则利用两个非线性信号叠加来产生差频现象,然后通过检测零差现象进行测频,常用于高频测量,误差在±20 Hz左右。以上方法在测量范围和精度上都有一定的不足,而电子计数法主要通过单片机进行控制。由于单片机的较强控制与运算功能,电子计数法的测量频率范围宽,精度高,易于实现。本设计就是采用单片机电子计数法来测量频率,其系统硬件原理框图如图1所示。 为了提高测量的精度,拓展单片机的测频范围,本设计采取了对信号进行分频的方法。设计中采用两片同步十进制加法计数器74LS160来组成一个100分频器。该100分频器由两个同步十进制加法计数器74LS160和一个与非门74LS00共同设计而成。由于一个74LS160 可以分频十的一次方,而当第一片74LS160工作时,如果有进位,输出端TC便有进位信号送进第二片的CEP端,同时CET也为高电平,这样两个工作状态控制端CET、CEP将同时为高电平,此时第二片74LS160将开始工作。 2 频率测量模块的电路设计 用单片机电子计数法测量频率有测频率法和测周期法两种方法。测量频率主要是在单位定时时间里对被测信号脉冲进行计数;测量周期则是在被测信号一个周期时间里对某一基准时钟脉冲进行计数。 2.1 8051测频法的误差分析 电子计数器测频法主要是将被测频率信号加到计数器的计数输入端,然后让计数器在标准时间Ts1内进行计数,所得的计数值N1。与被测信号的频率fx1的关系如下:

形位公差及其检测方法

形位公差及其检测方法 一、概念: 定义: 形状公差:单一实际要素形状所允许的变动全量。 位置公差:关联实际要素的位置对基准所允许的变动全量。 形位公差:形状公差与位置公差的总称。它控制着零件的实际要素在形状、位置及方向上的变化。 形位公差带:用以限制实际要素形状或位置变动的区域。由形状、大小、方向和位置四个要素所确定。 公差原则:形位公差与尺寸公差之间的相互关系。包括独立原则与相关要求。 独立原则:图样上给出的尺寸公差与形位公差各自独立,彼此无关,分别满足要求的公差原则。 相关要求:图样上给定的尺寸公差和形位公差相互有关的公差要求。具体可分为

形位公差带的形式: 二、形状误差与形状公差:

项目 公差带定义示 例说 明 公差带是距离为公差值t 的两平行直线之间的区域 在给定平面内 圆柱表面上的任一素线必须位于轴向平面内,距离为0.02的两平行线之间 0.02 在给定方向上、当给定一个方向 公差带是距 离为公差值t的两 平行平面之间的区域 棱线必须位于箭头所示方向距离为公差 值0.02的两平行平面内 0.02 、当给定两 个互相垂直的两个 方向 公差带为截面边长t1*t2的四 棱柱内的区域 棱线必须位于水平方向距离为公差值0.02,垂直方向距离为0.01的四棱柱内 0.01 0.02 3、在任意方向 公差带是直径为公差值t的圆柱面的区域 d 圆柱体的轴线必须位于直径为公差值0.02的圆柱面内 直 线 度平面度 公差带是距离为公差值t的两平行平面之间的区域 上表面必须位于距离为公差值0.1的两平行平面内 0.1 圆度 公差带是在同一正截面上半径差为公差值t的两同心圆之间的区域 在垂直于轴线的任一正截面上,该圆必须位于半径差为公差值0.02的两同心圆之间

各种频率测量方法验证-详细

频率测量方法: 1 技巧离散傅立叶方法 设余弦输入信号:)cos()(φω+=t X t x ,其中φ,X 分别为信号的幅值和初相角。对)(t x 以 N 50的采样频率进行采样,则可得采样序列{})(k x : )50cos()(φω +=N k X k x (1) 同时)(t x 可表示为 2 )(*t j t j e x e x t x ωω-+= (2) 由全周傅氏算法,有 ∑-=-+=1 2)(2?N k N k j r e r k x N x π (3) (2)代入(3),考虑到)50(2f ?+=πω,则有 )]1(100)12([5022 * ]100)12([50112 2sin 22sin ?-++-+?-+-+?+=N r N r f N j r N r f N j r e N N x e N N x x ππθθθθ (4) 其中N f 5021?=πθ,N f ) 502(22?+=πθ 令)] 1002(50[ +?=f N j e a π *********************************************************************** α=[y(i) + y(i-2)+sqrt( ((y(i)+y(i-2))^2 – 4y(i-1)^2 ) ]/ (2 * y(i-1)) 1 11 1jb a jd c ++ 其中: )1(21-*=i real a )1(21-*=i imag b a i real i real c +-+=)2()(1 a d i imag i imag d 2)2()(1+ -+= [][][] )1()1(4)2()()2()(222 2 -+-*--+--+=i imag i real i imag i imag i real i real c

圆度测量

圆度测量方法: 回转轴法、三点法、两点法、投影法和坐标法等方法。 (1)回转轴法: 利用精密轴系中的轴回转一周所形成的圆轨迹(理想圆)与被测圆比较,两圆半径上的差值由电学式长度传感器转换为电信号,经电路处理和电子计算机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮廓图形。回转轴法有传感器回转和工作台回转两种形式(图1)。前者适用于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的圆度测量工具称为圆度仪。 (2)三点法:常将被测工件置于V形块中进行测量(图2)。测量时,使被测工件在V形块中回转一周,从测微仪(见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。 (3)两点法:常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆或内圆。 (4)投影法:常在投影仪上测量,常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限同心圆(图3)比较,从而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小型工件。

(5)坐标法:一般在带有电子计算机的三坐标测量机上测量。按预先选择的直角坐标系统测量出被测圆上若干点的坐标值x、y,通过电子计算机按所选择的圆度误差评定方法计算出被测圆的圆度误差。 圆度误差评定就是将双绞线导线横截面的实际轮廓与理想圆比较的过程。 圆度误差评定方法: ①最小区域法:以包容被测圆轮廓的半径差为最小的两同心圆的半径差作为圆度误差。

基于视觉检测的圆度误差测量技术(精)

基于视觉检测的圆度误差测量技术 圆度误差是一项比较科学、先进的评定零件表面质量的指标,它能客观直接的反映圆柱面的旋转精度。由于圆度误差是实际轮廓相对于理想圆而确定的,所以被测量轴径截面的实际轮廓的精确测量,是求圆度误差的重要组成部分。本文测量的对象是直径为120mm、长90mm的超精密回转主轴。在深入研究零件圆度误差的测量理论和测量方法的基础上,采用V形块立式测量法,并利用精密干涉仪结合CMOS图像传感器,进行了图像采集、处理与分析,成功读取了图像信息,并将之转换成有效的实验数据,完成了对回转主轴圆度误差的测量。首先,从理论上说明了圆度误差常用的测量方法及测量中心的评定方法,阐述了最小二乘圆评定方法在V形块测量中的数学实现,并说明了实验数据的处理方法——误差联系法的运用。其次,完成了超精密主轴圆度误差测量系统的设计,对图像采集系统进行了调试。根据本文采集的干涉条纹图像的特性,运用图像灰度值列求和的方法,求出了干涉仪测头的实际位移。提出了适合本课题的图像质量评价方法——运用曲线拟合残差来评价去噪后图像质量,并与传统的评价方法进行了对比。根据不同的图像质量评价方法选择了适合的图像处理方案,使图像采集系统分辨率达到每像素点2.9nm。最后用Matlab编程实现了图像分析,求出了超精密回转主轴的圆度误差。设计实验,证明了测量结果的正确性。分析了测量系统的误差来源和具体影响因素,求出了测量系统的误差。 同主题文章 [1]. 袁懿先,靳春芬. 小孔的图像处理与圆度误差的评定' [J]. 农业机械学报. 1997.(03) [2]. 傅师伟. 圆度误差测量的一种新方法' [J]. 计量与测试技术. 2004.(09) [3]. 王峰,詹小四,陈蕴. 图像处理中光学因素的影响' [J]. 洁净煤技术. 2005.(01) [4]. 樊琳. 圆度误差的评定和计算机处理' [J]. 苏州大学学报(工科版). 1988.(02) [5]. 刘杰锋,王建华,刘桂珍. 圆度误差的计算机检测系统' [J]. 佳木斯大学学报(自然科学版). 1999.(02) [6]. 高国胜. 用最小二乘法计算圆度误差' [J]. 压缩机技术. 1987.(02) [7].

形位公差的测量方法

在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度 用平尺(或刀口尺)测量间隙为0.5μm(0.5~3μm 为有色光,3μm 以上为白光)的直线度,间隙偏大时可用塞尺配合测量;用平板、平尺作测量基维,用百分表或千分表测量直线度误差;用直径0.1~0.2mm 钢丝拉紧,用V 型铁上垂直安装读数显微镜检查直线度;用水准仪、自准直仪、准直望远镜等光学仪器测量直线度误差;用方框水平仪加桥板测直线度;用光学平晶分段指示器检测精度高的直线度误差。

圆度,圆柱度及球度的测量及评价方法讲解

圆度 一. 基本概念 1. 圆要素几何特征 中心:横向截面与回转表面的轴线相交的交点; 半径:圆要素上各点至该中心的距离。 圆要素是一封闭曲线,其向量半径R 与相位角θ具有函数关系,即:()R F θ= 按傅里叶级数展开后,有: () 001 cos m k k R k k a c θθ==++∑ 2. 圆度及圆度误差 圆度:回转表面的横向截面轮廓(圆要素)的形状精度; 圆度误差:表示实际圆要素精度的技术参数,即实际圆要素对理想圆的变动量。 3. 圆度误差评定原则 按形状误差评定原则,评定圆度误差时,应根据实际圆要素确定最小包容区域。圆度误差的最小包容区域与圆度公差带的形状一致,由两同心圆构成,当实际圆要素被两同心圆紧紧包容,即两同心圆的半径差为最小值时,即为最小包容区域。 4. 圆度检测原则 ① 与理想要素比较原则:理想要素由测量器具模拟体现理想圆。在实际圆要素上获 得的信息,通常是实际要素的半径变化量,根据获得的半径变化量再评定圆度误差。 ② 测量坐标值原则:对实际圆要素应用坐标测量系统对其采样点测取坐标值,由测 得的坐标值经过计算,求得圆度误差值。 ③ 测量特征参数原则:根据实际圆要素的具体特征,采用能反映实际要素几何特征 的手段进行测量,从而方便的获得圆度误差值。 二. 圆度测量方法 1. 半径测量法 半径测量法是确定被测圆要素半径变化量的方法,是根据“与理想要素比较原则”拟定的一种检测方案。 ① 仪器类型和工作原理(加备注解释) 下图分别为转轴式圆度仪和转台式圆度仪

圆度仪可运用测得信号的输出特性,将被测轮廓的半径变化量放大后同步自动记录下来,获得轮廓误差的放大图形,可按放大图形评定圆度误差。 ② 用圆度仪测量注意事项(加备注择项解释) 选择适当的侧头类型;静态测量力选择;测量平面和测量方向确定;频率响应选择;选择适当的放大倍率;正确安装被测件,径向偏心和轴向倾斜;主轴误差的影响 2. 坐标测量法 坐标测量法是根据测量坐标值原则提出的一种检测方案。将被测零件放置在设定的坐标系中,用相应的测量器具,测取被测零件横向截面轮廓上各点的坐标值,然后按要求,用相应的方法来评定圆度误差值。 ⑴极坐标测量法 在极坐标系中测量圆度,需要有精密回转轴系的分度装置,分度台或分度头。 测量前,按需要对被测轮廓拟定适量的采样点数。测量时,将被测零件安装到测量装置上,适当地调整安装位置,避免过大的径向偏心,用具有固定位置的指示器,对各采样点逐一进行采样,取得的示值反映了各采样点处的半径变化量R ?。被测横向截面轮廓的极坐标值为 () ,i i i M R θ?。这些极坐标值时评定圆度误差的原始数据,由原始数据, 可以在极坐标系中描述出经放大后的被测轮廓误差曲线。最后可由图解法或计算法求得圆度误差值。 ⑵直角坐标测量法 应用直角坐标测量装置 ( ) ,i i i y x M ,对被测轮廓上的采样点测取直角坐标。 各采样点至理想圆圆心的距离用下式求得 i R 1,2, ,.i n =

相关文档
最新文档