人教版菱形的性质
菱形的性质课件人教版八年级数学下册

2
2
在RtOAB中,AO 1 AB 1 20 10m,
2
2
BO AB2 AO2 202 102 10 3 m,
AC 2AO 20m,
BD 2BO 20 3 34.64m.
B
A
O
D
C
3cm
13
40°
140°
B
A D
C
4cm 30°
10cm
B
O
A
C
D
C
等
A
B
D
E
F
B
C
44cm 8厘米
同理可得,AC平分∠BCD, BD平分∠ABC和∠ADC.
性质1: A
应用格式:∵四边形ABCD是菱形 ∴AB=BC=CD=DA B
菱形的性质2:
应用格式: ∵四边形ABCD是菱形
∴AC⊥BD, AC平分∠DAB和∠DCB BD平分∠ADC和∠ABC
D C
A
菱形
B
O
E
C
思考:
D S菱形ABCD=BC×AE
前面我们学习了平行四边形,通过平行四边形角的特殊化(把一个角变成直角),变成了特殊的平行四边形——矩形。
又∵四边形ABCD是菱形,
对角线互相垂直
D.
性质2:菱形对角线互相垂直,且平分每一组对角
菱形
两邻边相等
邻边相等 平行四边形
.
D
A
C
O
B
AB=BC=CD=AD AC⊥BD
直线AC和直线BD
矩形
边特殊化
如S菱果形改=变底了×高边=的对长角度线,乘使积两的邻一边邻半相等边,那么这个等平长行四边形成为怎样的四边形特? 殊的平行四边形
人教版八年级数学下册18.2.2菱形的定义与性质说课稿

1.教学重点:
(1)菱形的定义和性质。
(2)菱形的判定方法。
(3)菱形的周长和面积计算。
2.教学难点:
(1)菱形性质的证明过程,特别是对角线互相垂直平分、平分角的证明。
(2)菱形判定方法的灵活运用,如何根据已知条件判断一个四边形是否为菱形。
(3)2.过程与方法:
(1)通过观察、猜想、证明等数学活动,培养学生的几何直观和推理能力。
(2)运用数学方法解决实际问题,提高学生的应用能力。
3.情感态度与价值观:
(1)激发学生对几何图形的兴趣,培养学生对数学美的认识。
(2)培养学生独立思考、合作交流的优良品质。
(3)提高学生的空间想象能力和逻辑思维能力。
-使用实物模型和多媒体课件增强直观感受。
-通过例题和练习帮助学生深化理解。
-提供个性化指导,关注学生的个别差异。
课后,我将通过学生的课堂表现、作业完成情况和学生的反馈来评估教学效果。具体的反思和改进措施包括:
-分析学生的作业和测试结果,了解他们的掌握程度。
-收集学生的反馈,了解他们的学习需求和困惑。
四、教学过程设计
(一)导入新课
新课导入是激发学生兴趣和注意力的重要环节。我将采用以下方式导入新课:
1.利用生活中的实例,如展示一些含有菱形图案的物品或图片,引导学生观察并提问:“你们在哪里见过这样的形状?它有什么特点?”
2.通过一个简短的故事或谜语,如关于菱形的历史背景或特性谜语,吸引学生的注意力。
1.设计一些与菱形相关的练习题,包括基础题和提升题,以巩固学生对菱形知识的掌握。
2.布置一道实际应用题,要求学生运用菱形的性质解决实际问题,提高他们的应用能力。
3.要求学生撰写一篇关于菱形的短文,介绍菱形的特性及其在生活中的应用。
人教版八年级下册教案:18.2.2菱形的定义与性质

对于菱形面积的计算,难点在于如何将理论公式应用于实际计算。可以采用以下方法:
a.通过图形示例,让学生理解菱形面积公式是如何推导出来的。
b.提供不同类型的题目,训练学生灵活运用面积公式计算菱形面积。
c.强调在解决综合问题时,如何将菱形面积与其他图形面积的计算相结合。
五、教学反思
在今天的课堂中,我们探讨了菱形的定义与性质。回顾整个教学过程,我觉得有几个地方值得反思。
首先,关于导入新课的部分,通过提问同学们在日常生活中遇到的菱形图形,我发现大部分同学能够迅速联想到一些具体的例子,这说明他们对菱形有一定的直观认识。但在接下来的理论介绍环节,我发现有些同学对菱形定义的理解还不够深入,需要在今后的教学中加强概念的解释和巩固。
其次,在新课讲授过程中,我注意到同学们对菱形性质的掌握程度参差不齐。特别是在证明菱形对角线垂直平分这个难点时,部分同学显得有些吃力。我想在今后的教学中,可以尝试更多图形演示和实际操作,以帮助学生更好地理解和掌握这个性质。
实践活动环节,同学们分组讨论和实验操作的表现让我感到欣慰。他们能够积极参与,主动思考,将理论知识运用到实际问题中。但我也发现,在讨论过程中,有些小组的思路不够开阔,可能会陷入某种固定的思维模式。针对这一点,我打算在今后的教学中多提供一些开放性的问题,激发学生的创新思维。
人教版八年级下册教案:18.2.2菱形的定义与性质
一、教学内容
人教版八年级下册教案:18.2.2菱形的定义与性质
1.菱的性质:
(1)对角线互相垂直平分;
(2)对角线将菱形分成的四个三角形面积相等;
(3)对角线长度相等,且每一条对角线平分一组对角;
(4)菱形的对角线是它的对称轴;
人教版菱形的性质

A
D
已知四边形ABCD是菱形 2、相等的角:
12
7 8Leabharlann 5B6O
4 3
C
∠DAB=∠BCD ∠ABC =∠CDA
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠1=∠2=∠3=∠4 ∠5=∠6=∠7=∠8
已知四边形ABCD是菱形
3、等腰三角形有: B
A
D
12
7 8
O
5
4
6
3
C
△ABC △ DBC △ACD △ABD
A
D
2.菱形ABCD中∠ABC=60度,
O
则∠BAC=__6_0_度___.
C
B
3.菱形ABCD中,O是两条对角线的
交点,已知AB=5cm,AO=4cm,求
两对角线AC、BD的长。
有关菱形问题可转化为直角三角形 或等腰三角形的问题来解决
1.定义:
2.性质:
矩形和菱形常利用图中 的RT△进行计算和证明
A
菱形
B
O
E
C
菱形是特殊的平行四边形,
那么能否利用平行四边形 面积公式计算菱形的面积吗?
D
S菱形=BC. AE
思考:计算菱形的面积除了上式方法外,利用对
为
角线能 计算菱形的面积公式吗?
1 S S S 菱形ABCD = △ABD+ △BCD = 2 AC×BD
?
什 么
菱形的面积=底×高=对角线乘积的一半
7 8
O
1、图中有哪些相等的线段? 5
4
2、图中有哪些相等的角? B
6
3
C
3、图中有哪些等腰三角形?
4、图中有哪些直角三角形?
菱形的性质人教版说课稿

菱形的性质人教版说课稿尊敬的各位评委、老师,大家好!今天我说课的题目是《菱形的性质》,这是人教版初中数学教材中的一节重要内容。
菱形作为特殊的四边形,其性质和定理在几何学习中占有重要地位。
接下来,我将从教材分析、学情分析、教学目标、教学重难点、教学过程及板书设计六个方面进行详细阐述。
教材分析:《菱形的性质》这一节位于人教版初中数学教材的几何部分,是在学生学习了平行四边形、矩形、正方形等特殊四边形的基础上进行的。
本节课主要介绍了菱形的定义、性质和判定方法,为后续学习更高级的几何图形打下基础。
教材通过直观的图形和严谨的证明,引导学生理解和掌握菱形的性质。
学情分析:学生在学习本节课之前,已经具备了一定的几何基础知识,对四边形的性质有了初步的了解。
但是,菱形的性质和定理相对抽象,学生可能在理解和应用上存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,采用适当的教学方法,帮助学生建立正确的几何概念。
教学目标:1. 知识与技能:使学生理解菱形的定义,掌握菱形的基本性质和判定方法。
2. 过程与方法:通过观察、比较、推理等活动,培养学生的逻辑思维能力和空间想象能力。
3. 情感态度与价值观:激发学生对几何学习的兴趣,培养学生的合作精神和探究精神。
教学重难点:重点:菱形的性质和判定方法。
难点:菱形对角线性质的理解和应用。
教学过程:1. 导入新课:- 通过回顾已学的四边形知识,引出菱形的概念。
- 展示菱形的图形,让学生观察其特点。
2. 讲解新知:- 定义菱形,并介绍其性质,如四边相等、对角线互相垂直平分等。
- 通过例题演示,讲解菱形的判定方法。
3. 合作探究:- 分组讨论菱形的性质在实际生活中的应用。
- 学生代表汇报探究结果。
4. 巩固练习:- 布置练习题,让学生独立完成,巩固所学知识。
- 教师点评,强调易错点。
5. 总结归纳:- 总结本节课的主要内容,强调菱形的性质和应用。
- 提醒学生注意性质定理的准确运用。
18.2.2.1 菱形的性质-八年级数学下学期同步训练(人教版)(解析版)

§18.2.2.1菱形的性质一、知识导航1.菱形的定义:有一组邻边相等的四边形叫做菱形注意:(1)矩形的定义有两个要素:①是平行四边形;②有一组邻边相等,二者缺一不可;(2)菱形的定义既是它的性质,也是它的判定方法;(3)一组邻边相等的四边形不一定是菱形.2.菱形的性质类别性质符号语言图形边菱形的四条边都相等 四边形ABCD是菱形AB BC CD DA ∴===对角线菱形的两条对角线互相垂直平分,并且每条对角线平分一组对角四边形ABCD是菱形,,,AC BD OA OC OB OD∴⊥==,ABD CBD ADB CDB∠=∠=∠=∠BAC DAC BCA DCA∠=∠=∠=∠对称性矩形是轴对称图形,具有两条对称轴(即对角线所在的直线)3.菱形面积计算(1)平行四边形的面积公式:底×高(2)两条对角线长的积的一半二、重难点突破重点1利用菱形的性质求线段长度例1.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24【答案】C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【详解】解:由于菱形的两条对角线的长为6和8,,∴菱形的周长为:4×5=20,故选:C.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.变式1-1如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE 的长等于()A .2B .3.5C .7D .14【答案】B 【分析】由菱形的周长可求得AB 的长,再利用三角形中位线定理可求得答案0【详解】∵四边形ABCD 为菱形,∴AB 14=⨯28=7,且O 为BD 的中点.∵E 为AD 的中点,∴OE 为△ABD 的中位线,∴OE 12=AB =3.5.故选B .【点睛】本题考查了菱形的性质,由条件确定出OE 为△ABD 的中位线是解题的关键.变式1-2如图,在菱形ABCD 中,AB =5,AC =6,过点D 作DE ⊥BA ,交BA 的延长线于点E ,则线段DE 的长为()A .125B .185C .4D .245【答案】D【分析】利用菱形的面积等于两对角线之积的一半,求解菱形的面积,再利用等面积法求菱形的高DE 即可.【详解】记AC 与BD 的交点为O ,菱形ABCD ,6,AC =,3,,AC BD OA OC OB OD ∴⊥===5,AB = 22534,8,OB BD ∴=-==∴菱形的面积16824,2=⨯⨯=,DE AB ⊥ ∴菱形的面积,AB DE =∙524,DE ∴=24.5DE ∴=故选D .【点睛】本题考查的是菱形的性质,菱形的面积公式,勾股定理.理解菱形的对角线互相垂直平分和学会用等面积法是解题关键.变式1-3如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为20,面积为24,则PE PF +的值为()A .4B .245C .6D .485【答案】B 【分析】连接BP ,通过菱形ABCD 的周长为20,求出边长,菱形面积为24,求出SABC 的面积,然后利用面积法,SABP +SCBP =SABC ,即可求出PE PF +的值.【详解】连接BP ,∵菱形ABCD 的周长为20,∴AB =BC =20÷4=5,又∵菱形ABCD 的面积为24,∴SABC =24÷2=12,又SABC =SABP +SCBP∴SABP +SCBP =12,∴111222AB PF BC PE += ,重点点拨:当菱形的一个内角为120°或60°时,菱形被其对角线分为4个含30°角的直角三角形;菱形较短的一条对角线将其分成两个等边三角形,因此可利用其性质进行计算.∵AB =BC ,∴()1122AB PE PF += ∵AB =5,∴PE +PF =12×25=245.故选:B.【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系,求出PF +PE 的值.重点2利用菱形的性质求角度例2.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为()A .65︒B .55︒C .45︒D .25︒【答案】A 【分析】由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.变式2-1如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是()A .35°B .30°C .25°D .20°【答案】C 【分析】根据直角三角形的斜边中线性质可得OE BE OD ==,根据菱形性质可得1652DBE ABC ∠︒=∠=,从而得到OEB ∠度数,再依据90OED OEB -∠︒∠=即可.【详解】∵四边形ABCD 是菱形,∠BCD =50°,∴O 为BD 中点,∠DBE =12∠ABC =65°.∵DE ⊥BC ,∴在Rt △BDE 中,OE =OB =OD ,∴∠OEB =∠OBE =65°.∴∠OED =90°-65°=25°.故选:C .【点睛】本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.变式2-2如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF∠的度数是()A .90°B .60°C .45°D .30°【答案】B 【分析】根据垂直平分线的性质可得出△ABC 、△ACD 是等边三角形,从而先求得∠B =60°,∠C =120°,在四边形AECF 中,利用四边形的内角和为360°可求出∠EAF 的度数.【详解】解:连接AC ,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°-180°-120°=60°.故选B.【点睛】本题考查了菱形的性质及线段垂直平分线的性质,关键是掌握线段垂直平分线上的点到线段两端点的距离相等,及菱形四边形等的性质.变式2-3如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当100BAD∠=︒时,则CDF∠=()A.15︒B.30°C.40︒D.50︒【答案】B【分析】连接BF,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,根据等边对等角可得∠FBA=∠FAB,再根据菱形的邻角互补求出∠ABC,然后求出∠CBF,最后根据菱形的对称性可得∠CDF=∠CBF.【详解】如图,连接BF,在菱形ABCD中,∠BAC=12∠BAD=12×100°=50°,∵EF是AB的垂直平分线,∴∠FBA=∠FAB=50°,∵菱形ABCD的对边AD∥BC,∴∠ABC=180°-∠BAD=180°-100°=80°,∴∠CBF=∠ABC-∠ABF=80°-50°=30°,由菱形的对称性,∠CDF=∠CBF=30°.故选:B.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记各性质是解题的关键.重点3利用菱形的性质计算面积及其应用例3.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【答案】B【分析】设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.【详解】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=12×8×6=24cm2,重点点拨:在菱形中已知边要求角的度数时需要利用矩形的性质和特殊三角形的性质找到角的关系,这些所求角度一般为45°,60°等特殊角度【点睛】本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.变式3-1已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.B.8C.D.【答案】D【分析】根据菱形的性质和菱形面积公式即可求出结果.【详解】解:如图,∵两邻角度数之比为1:2,两邻角和为180°,∴∠ABC=60°,∠BAD=120°,∵菱形的周长为8,∴边长AB=2,∴菱形的对角线AC=2,BD=2×2sin60°=∴菱形的面积=12 AC•BD=12故选:D.【点睛】本题考查菱形的性质,解题关键是掌握菱形的性质.变式3-2如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96B.48C.24D.6【答案】C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.重点4利用菱形的性质证明线段相等例4.如图,在菱形ABCD 中,BE ⊥CD 于点E .DF ⊥BC 于点F .求证:BF =DE;【分析】根据菱形的性质得到CB =CD ,根据全等三角形的判定和性质即可得到结论;【详解】证明:∵四边形ABCD 是菱形,∴CB =CD ,∵BE ⊥CD 于点E ,DF ⊥BC 于点F ,∴∠BEC =∠DFC =90°,∵∠C =∠C ,∴△BEC ≌△DFC (AAS ),∴EC =FC ,∴CD -CE =CB -CF∴BF =DE ;【点睛】本题考查了菱形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.变式4如图,菱形ABCD 的边长为1,=60ABC ∠︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .求证:AF EF =;重点点拨:菱形的对角线容易作为一个直角三角形的斜边,这样两条对角线的交点也是斜边的中点;菱形的面积等于对角线乘积的一半重点点拨:利用菱形的性质证明边的相等关系时,常常会与全等三角形的性质和判定、等腰(边)三角形的性质和判定相结合【分析】连接CF ,根据垂直平分线的性质和菱形的对称性得到CF=EF 和CF=AF 即可得证;【详解】连接CF ,∵FG 垂直平分CE ,∴CF=EF ,∵四边形ABCD 为菱形,∴A 和C 关于对角线BD 对称,∴CF=AF ,∴AF=EF;【点睛】本题考查了菱形的性质,最短路径,等边三角形的判定和性质,中位线定理,难度一般,题中线段较多,需要理清线段之间的关系.重点5利用菱形的性质证明角相等例5.已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E .求证:∠AFD =∠CBE.【分析】根据菱形的性质得出∠BCE =∠DCE ,BC =CD ,AB ∥CD ,推出∠AFD =∠CDE ,证△BCE ≌△DCE ,推出∠CBE =∠CDE 即可.【详解】证明:∵四边形ABCD 是菱形,∴∠BCE =∠DCE ,BC =CD ,AB ∥CD ,∴∠AFD =∠CDE ,在△BCE 和△DCE 中BC CD BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCE ,∴∠CBE =∠CDE ,∵∠AFD =∠CDE ,∴∠AFD =∠CBE .【点睛】考查了菱形的判定与性质以及全等三角形的判定与性质等知识,得出△BCE ≌△DCE 是解题关键.变式5如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH ,求证:∠DHO =∠DCO.【分析】根据菱形的对角线互相平分可得OD =OB ,再根据直角三角形斜边上的中线等于斜边的一半可得OH =OB ,然后根据等边对等角求出∠OHB =∠OBH ,根据两直线平行,内错角相等求出∠OBH =∠ODC ,然后根据等角的余角相等证明即可.【详解】证明:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∵DH ⊥AB ,∴OH =12BD =OB ,∴∠OHB =∠OBH ,又∵AB ∥CD ,∴∠OBH =∠ODC ,在Rt △COD 中,∠ODC +∠DCO =90°,在Rt △DHB 中,∠DHO +∠OHB =90°,∴∠DHO =∠DCO .【点睛】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.难点6菱形中的图形变换问题例6.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是()A 3B .2C .23D .4【答案】B 【分析】根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论.【详解】解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====重点点拨:利用菱形的性质证明角的相等关系时,常常会与全等三角形的性质和判定、等腰(边)三角形的性质和判定相结合∴∠111206022ABD ABC ︒=∠=⨯=︒∵AB AD =∴△ABD 是等边三角形,∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线,∴122EF BD ==故选:B .【点睛】本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力.变式6-1如图,在菱形纸片ABCD 中,对角线AC 、BD 长分别为16、12,折叠纸片使点A 落在DB 上,折痕交AC 于点P ,则DP 的长为()A .BC .D .【答案】A 【分析】首先设O 点的对应点为E ,连接PE ,由菱形的性质,可求得OD ,OA 与AD 的长,由折叠的性质,根据勾股定理可得方程:即(8-x )2=42+x 2,可求x 的值,由勾股定理可求DP 的长.【详解】解:设O 点的对应点为E ,连接PE ,由折叠的性质可得:PE=OP ,DE=OD ,∵四边形ABCD 是菱形,1111,168,1262222AC BD OA AC OB BD ∴⊥==⨯===⨯=10AD ∴==设OP=x,则PE=x,AE=AD-DE=10-6=4,AP=OA-OP=8-x,在Rt△APE中,AP2=AE2+PE2,即(8-x)2=42+x2,解得:x=3,即OP=3,DP∴===故选A.【点睛】本题考查了折叠的性质、菱形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合与方程思想的应用.变式6-2如图,在菱形纸片ABCD中,∠A=60°,P为AB中点.折叠该纸片使点C落在点C′处且点P在DC′上,折痕为DE,则∠CDE的大小为()A.30°B.40°C.45°D.60°【答案】C【分析】连接BD,首先根据∠A=60°,AB=AD,得到△ABD是等边三角形,然后根据等边三角形三线合一的性质得到DP⊥AB,然后根据平行线的性质得到∠CDP=∠APD=90°,最后根据折叠的性质求解即可.【详解】如图,连接BD,∵菱形ABCD中,∠A=60°,AB=AD,∴△ABD是等边三角形,∠ADC=120°,∵点P是AB的中点,∴DP⊥AB,∵CD AB,∴∠CDP=∠APD=90°,∴由折叠的性质可得:∠CDE=12∠CDP=45°.故选:C.【点睛】此题考查了等边三角形的性质和判定,菱形的性质以及折叠的性质等知识,解题的关键是在含有60°内角的菱形中,连接较短的对角线,把菱形分成的两个三角形是等边三角形.难点7菱形中的最值问题例7.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是()A .12B .1C 2D .2【答案】B 【分析】先作点M 关于AC 的对称点M ′,连接M ′N 交AC 于P ,此时MP +NP 有最小值.然后证明四边形ABNM ′为平行四边形,即可求出MP +NP =M ′N =AB =1.【详解】如图难点点拨:解决菱形问题的思考方向:①边;②对角线.有60°的特殊角,就可以由菱形的性质构造等边三角形解决问题;有等边三角形,有中点,会出现“三线合一”作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N 的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选B.【点睛】本题主要考查了菱形的性质,以及最小值问题,解题关键在于熟练掌握菱形性质以及求最值的作图方式.变式7如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1B.2C.3D.4【答案】C【分析】作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.【详解】∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.【点睛】本题主要考查了菱形的性质;轴对称-最短路线问题三、提升训练1.下列结论中,不正确的是()A .对角线互相垂直的平行四边形是菱形B .对角线相等的平行四边形是矩形C .一组对边平行,一组对边相等的四边形是平行四边形D .菱形的面积等于对角线乘积的一半难点点拨:解决线段之和最小问题,一般转化为解决“两点之间,线段最短”问题.“两点一线”型:()minPA PB +“一点两线”型:()min ''''''ABC C AB AC BC A B A C BC A A ∆=++=++=【答案】C【分析】由菱形和矩形的判定得出A 、B 正确,由等腰梯形的判定得出C 不正确,由对角线互相垂直的四边形面积等于对角线乘积的一半,得出D 正确,即可得出结论.【详解】解:A.∵对角线互相垂直的平行四边形是菱形,∴A 正确;B.∵对角线相等的平行四边形是矩形,∴B 正确;C.∵一组对边平行,一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,∴C 不正确;D.∵对角线互相垂直的四边形面积等于对角线乘积的一半,∴D 正确;故选:C【点睛】本题考查了菱形的判定、矩形的判定、平行四边形的判定、等腰梯形的判定以及四边形面积;熟记菱形,矩形和等腰梯形的判定方法是解题的关键.2.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是()A .90︒B .100︒C .120︒D .150︒【答案】C 【分析】如图(见解析),先根据菱形的性质可得,//AB BC AD BC =,再根据全等的性质可得1203AC AE cm ==,然后根据等边三角形的判定与性质可得60B ∠=︒,最后根据平行线的性质即可得.【详解】如图,连接AC四边形ABCD 是菱形20,//AB BC cm AD BC∴== 如图所示的木制活动衣帽架是由三个全等的菱形构成,60AE cm =1203AC AE cm ∴==AB BC AC∴==ABC ∴ 是等边三角形60B ∴∠=︒//AD BC180********DAB B ∴∠=︒=∠=︒-︒-︒故选:C .【点睛】本题考查了菱形的性质、等边三角形的判定与性质、平行线的性质等知识点,理解题意,熟练掌握菱形的性质是解题关键.3.如图,在△ABC 中,AD 平分BAC ∠,DE AC ∥交AB 于点E ,DF AB ∥交AC 于点F ,若8AF =,则四边形AEDF 的周长是()A .24B .28C .32D .36【答案】C 【分析】由题意知四边形AEDF 是平行四边形,有BAD ADF ∠=∠,AE DF AF DE ==,,AD 平分BAC ∠,可得BAD CAD ADF ∠=∠=∠,AF DF =,平行四边形AEDF 是菱形,进而计算周长即可.【详解】∵DE AC DF AB∥,∥∴四边形AEDF 是平行四边形∴BAD ADF ∠=∠,AE DF AF DE==,∵AD 平分BAC∠∴BAD CAD ADF∠=∠=∠∴AF DF=∴平行四边形AEDF 是菱形∴432AE DE DF AF AF +++==故选C .【点睛】本题考查了角平分线的性质,平行四边形的判定与性质,菱形的判定.解题的关键在于对知识的灵活运用.4.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是()A .20B .24C .40D .48【答案】A 【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.【详解】由菱形对角线性质知,AO =12AC =3,BO =12BD =4,且AO ⊥BO ,则AB =5,故这个菱形的周长L=4AB =20.故选A .【点睛】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB 的长是解题的关键,难度一般.5.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,∠CAD =20°,则∠DHO 的度数是()A .20°B .25°C .30°D .40°【答案】A 【分析】先根据菱形的性质得OD =OB ,AB ∥CD ,BD ⊥AC ,则利用DH ⊥AB 得到DH ⊥CD ,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数.【详解】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选A.【点睛】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.245B.125C.5D.4【答案】A【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB5,∵S菱形ABCD=12AC BD AB DE ⨯⨯=⨯,∴18652DH ⨯⨯=⨯,∴DH=24 5,故选:A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=12×AC×BD=AB×DH是解此题的关键.7.如图,菱形ABCD中,∠ABC=135°,DH⊥AB于H,交对角线AC于E,过E作EF⊥AD 于F.若△DEF的周长为2,则菱形ABCD的面积为()A.B C.2D.2【答案】A【分析】根据题意利用菱形的性质,可得AH=DH,再根据等腰直角三角形的判定与性质得出DE EF,再求出DH=DE+EH AB=2.【详解】∵四边形ABCD是菱形,∠ABC=135°,∴∠DAB=45°,∠DAC=∠BAC,且EH⊥AB,EF⊥AD∴EF =EH ,∠ADH =∠DAB =45°∴AH =DH∵∠DAB =45°,DH ⊥AB∴∠ADH =45°,且EF ⊥AD∴∠ADH =∠DEF =45°∴DF =EF ,∴DE EF∵△DEF 的周长为2,∴DE +EF +DF =2∴2EF =2∴EF =2∴EH =2,DE =2,∴DH =DE +EH ∵∠DAB =∠ADH =45°∴AH =DH ,∴AD AH =2∴AB =2∴菱形ABCD 的面积=AB ×DH =故选A .【点睛】此题考查菱形的性质,等腰直角三角形的判定与性质,解题关键在于掌握判定定理.8.如图,菱形ABCD 的边,8AB =,60B ∠= ,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为()A .5B .7C .8D .132【答案】B【分析】作CH AB ⊥于H ,如图,根据菱形的性质可判断ABC ∆为等边三角形,则2CH AB ==4AH BH ==,再利用7CP =勾股定理计算出,再根据折叠的性质得点'A 在以点P 为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点'A 在PC 上时,'CA 的值最小,然后证明CQ CP =即可.【详解】解:作CH AB ⊥于H ,如图,菱形ABCD 的边8AB =,60B ∠= ,ABC ∆∴为等边三角形,CH AB ∴==,4AH BH ==,3PB = ,1HP ∴=,在Rt CHP ∆中,7CP ==,梯形APQD 沿直线PQ 折叠,A 的对应点'A ,∴点'A 在以点P 为圆心,PA 为半径的弧上,∴当点'A 在PC 上时,'CA 的值最小,APQ CPQ ∴∠=∠,而//CD AB ,APQ CQP ∴∠=∠,CQP CPQ ∴∠=∠,7CQ CP ∴==.故选B .【点睛】考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC 上时CA′的长度最小.9.如图,平行四边形ABCD 中,2AB BC =.AE 平分BAD ∠,交CD 于点E ,点F 为AB 边的中点,AE 与DF 交于点M ,BD 与EP 交于点N ,连接MN .则下列结论:①四边形ADEF 是菱形;②与BFN ∆全等的三角形有5个;③7FMN BCEN S S ∆=四边形;④当FM FN =时,60BAD ∠=︒.其中正确的是()A .①③B .①④C .②③D .②④【答案】B 【分析】①根据四边形ABCD 是平行四边形,可得:AD =BC ,AB =CD ,AB ∥CD ,再由AE 平分∠BAD ,可得出∠AED =∠DAE ,进而推出AF =DE ,即可运用菱形的判定方法证得结论;②根据题目条件可证明△BFN ≌DEN ,其它三角形均不能证明;③根据题目条件可得出12FMN DMN BFNS S S ==,S 菱形BCEF =4S △BFN ,S 四边形BCEN =3S △BFN ,即可判断结论③错误;④由FM =FN 可得出DF =AF =AD ,即△ADF 是等边三角形,可判定结论④正确.【详解】解:①四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,AB ∥CD ,∵点F 为AB 边的中点,∴AF =12AB ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∵AB ∥CD ,∴∠AED =∠BAE ,∴∠AED =∠DAE ,∴AD =DE ,∴BC =DE ,∵AB =2BC .∴BC =12AB ,∴AF =DE ,∵AF ∥DE ,∴四边形ADEF 是平行四边形,∵AD =DE ,∴四边形ADEF 是菱形,故①正确;∵AB ∥CD ,∴∠FBN =∠EDN ,DE =AF =BF ,∠BNF =∠DNE ,∴△BFN ≌DEN (AAS ),能够确定与△BFN 全等的三角形只有1个,故②错误;③∵△BFN ≌DEN ,∴FN =EN ,BN =DN ,∵四边形ADEF 是菱形,∴DM =FM ,∴12FMN DMN BFNS S S == ,同理可证:四边形BCEF 是菱形,∴S 菱形BCEF =4S △BFN ,∴S 四边形BCEN =3S △BFN ,·S △BFN =2S △FMN ,∴S 四边形BCEN =4S △FMN ,故③错误;④当FM =FN 时,∵FN =EN ,EF =AF ,∴AF =2FM ,∵DF =2FM ,∴DF =AF =AD ,∴△ADF 是等边三角形,∴∠BAD =60°,故④正确;故选:B .【点睛】本题是四边形综合题,考查了平行四边形性质,菱形的判定,全等三角形判定和性质,三角形面积和四边形面积,等边三角形判定等,熟练掌握平行四边形的性质和菱形的判定,证明三角形全等是解题的关键.10.已知某菱形的周长为8cm ,高为1cm ,则该菱形的面积为A .22cmB .24cmC .26cmD .28cm 【分析】先利用菱形的性质求出菱形的边长为2,再利用菱形的面积=底⨯高即可【详解】解:菱形的边长:842÷=.菱形的面积:212⨯=.【点睛】本题主要是考题菱形的性质与面积,易出现求面积时不懂的把菱形当作平行四边的面积来求.11.如图,四边形ABCD 是菱形,对角线AC =8cm ,DB =6cm ,DH ⊥AB 于点H ,则DH 的长为【分析】由菱形对角线和边长组成一个直角三角形,由勾股定理可得菱形的边长,再利用面积相等建立等式,进而可求解高DH 的长.【详解】∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =12AC =4cm ,OB =12BD =3cm ,在Rt △AOB 中,OA =4cm ,OB =3cm ,∴AB ,菱形的面积S =12AC •BD =AB •DH ,即12×8×6=5×DH ,解得DH =245cm ,【点睛】本题考查了菱形的性质和菱形的面积,熟练掌握“菱形的对角线互相垂直平分,菱形的面积等于对角线乘积的一半”是解题的关键.12.如图,在菱形纸片ABCD 中,60A ︒∠=,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 的中点)所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的度数为________.【答案】75°【分析】连接BD ,先证明ABD △为等边三角形,然后根据三线合一定理得到30ADP BDP ∠=∠=o 即可得到90PDC ∠= ,则45CDE PDE ∠=∠=o ,再根据三角形内角和定理求解即可.【详解】连接BD ,∵四边形ABCD 为菱形,∴AD =AB ,60C A ∠==o ∠,AB ∥CD ,∴180A ADC ∠+∠= ,∴120ADC ∠=∵60A ∠= ,∴ABD △为等边三角形,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=o ,∴90PDC ∠= ,由折叠的性质得到45CDE PDE ∠=∠=o ,在DEC 中,()18075DEC CDE C ∠=-∠+∠=o o .故答案为:75°.【点睛】本题主要考查了菱形的性质,等边三角形的性质与判定,折叠的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF.【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A C AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.14.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB//CD,然后证明得到BE=CD,BE//CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证.(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【详解】(1)∵四边形ABCD是菱形,∴AB=CD,AB//CD.又∵BE=AB,∴BE=CD,BE//CD.∴四边形BECD是平行四边形.∴BD=EC.(2)∵四边形BECD是平行四边形,∴BD//CE,∴∠ABO=∠E=50°.又∵四边形ABCD是菱形,∴AC丄BD.∴∠BAO=90°﹣∠ABO=40°.【点睛】本题主要考查了,勾股定理,矩形的性质,菱形的判定和性质,熟练掌握相关知识点是解题的关键.。