小学奥数计算公式及数字

合集下载

四年级奥数知识点:速算与巧算(一)

四年级奥数知识点:速算与巧算(一)

四年级奥数知识点:速算与巧算(一)例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10001去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算201999+20199+2019+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)201999+20199+2019+199+19=(20199+1)+(20199+1)+(2019+1)+(199+1)+(19+1)-5=201900+20190+2019+200+20-5=222220-5=22225.例3 计算(1+3+5++1989)-(2+4+6++1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990497+9951990497=995.例4 计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数. 389+387+383+385+384+386+388=3907137564=273028=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=3807+9+7+3+5+4+6+8=2660+42=2702.例5 计算(4942+4943+4938+4939+4941+4943)6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)6=(49406+2+321+1+3)6=(49406+6)6(这里没有把49406先算出来,而是运=494066+66运用了除法中的巧算方法)=4940+1=4941.副标题#e#例6 计算54+9999+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+9999+45=(54+45)+9999=99+9999=99(1+99)=99100=9900.例7 计算 99992222+33333334解:此题如果直接乘,数字较大,容易出错.如果将9999变为33333,规律就出现了.99992222+33333334=333332222+33333334=33336666+33333334=3333(6666+3334)=333310000=33330000.例8 2019+999999解法1:2019+999999=1000+999+999999=1000+999(1+999)=1000+9991000=1000(999+1)=10001000=1000000.解法2:2019+999999=2019+999(1000-1)=2019+999000-999=(2019-999)+999000=1000+999000=1000000.观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

小学奥数34个必掌握知识点

小学奥数34个必掌握知识点

小学奥数知识点汇总2020年3月1、和差倍问题2、年龄问题基本特征①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

【关键问题】根据题目中的条件确定并求出单一量;4、植树问题【基本类型】在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树【基本公式】棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长【关键问题】确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题【基本概念】鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;【基本思路】①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

【基本公式】①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)【关键问题】找出总量的差与单位量的差。

6、盈亏问题【基本概念】一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

【基本思路】先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

【基本题型】①一次有余数,另一次不足;【基本公式】总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;【基本公式】总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;【基本公式】总份数=(较大不足数一较小不足数)÷两次每份数的差【基本特点】对象总量和总的组数是不变的。

小学奥数数论专题知识总结

小学奥数数论专题知识总结

数论基础知识小学数论问题,起因于除法算式:被除数÷除数=商……余数1.能整除:整除,因数与倍数,奇数与偶数,质数与合数,公因数与公倍数,分解质因数等;2.不能整除:余数,余数的性质与计算(余数),同余问题(除数),物不知数问题(被除数)。

一、因数与倍数1、因数与倍数(1)定义:定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。

定义2:如果非零自然数a、b、c之间存在a×b=c,或者c÷a=b,那么称a、b是c的因数,c是a、b 的倍数。

注意:倍数与因数是相互依存关系,缺一不可。

(a、b是因数,c是倍数)一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。

(2)一个数的因数的特点:①最小的因数是1,第二小的因数一定是质数;②最大的因数是它本身,第二大的因数是:原数÷第二小的因数(3)完全平方数的因数特征:①完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。

②完全平方数的质因数出现次数都是偶数次;③1000以内的完全平方数的个数是31个,2000以内的完全平方数的个数是44个,3000以内的完全平方数的个数是54个。

(312=961,442=1936,542=2916)2、数的整除(数的倍数)(1)定义:定义1:一般地,三个整数a、b、c,且b≠0,如有a÷b=c,则我们就说,a能被b整除,或b能整除a,或a能整除以b。

定义2:如果一个整数a,除以一个整数b(b≠0),得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

(a≥b)(2)整除的性质:如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

如果a能被b整除,c是整数,那么a×c也能被b整除。

如果a能被b整除,b又能被c整除,那么a也能被c整除。

如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

(完整版)小学奥数-整数计算综合(教师版)

(完整版)小学奥数-整数计算综合(教师版)

整数计算综合1. 加法交换律:两个数相加,交换加数的位置,它们的和不变.2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个 数相加,再与第一个数相加,它们的和不变.3. 乘法交换律:两个数相乘,交换两个数的位置,其积不变,即a b b a ⨯=⨯,其中a ,b 为任意数.4. 乘法结合律:三个数相乘,可以先把前两个数相乘后,再与后一个数相乘,或先把后两个数相乘后,再与前一个数相乘,积不变,即()()a b c a b c a b c ⨯⨯=⨯⨯=⨯⨯ .解题时需要注意的几点:1. 要认真观察算式中数的特点,算式中运算符号的特点。

2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。

3. 掌握速算与巧算的方法:如等差数列求知、凑整、拆数等等。

【例1】★19199199919999199999++++【解析】原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205=222215--【小试牛刀】898998999899998999998+++++=【解析】1111098【例2】★10099989796321+-+-++-+L【解析】暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若干个1,再与其余部分进行计算。

原式100(9998)(9796)(32)1=+-+-++-+L100491=++150=【小试牛刀】989796959493929190894321+--++--++---++L【解析】99【例3】★1111111111⨯【解析】1111111111123454321⨯=⨯【小试牛刀】2222222222【解析】493817284+++【例4】★1234314243212413【解析】原式1111222233334444=+++=⨯+++1111(1234)111110=⨯=11110++++【小试牛刀】5678967895789568956795678【解析】388885++++++【例5】★339340341342343344345【解析】这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.平均数10.抽屉原理 411.定义新运算12.数列求和13.二进制及其应用 514.加法乘法原理和几何计数15.质数与合数 616.约数与倍数17.数的整除718.余数及其应用19.余数、同余与周期20.分数与百分数的应用821.分数大小的比较922.分数拆分23.完全平方数24.比和比例1025.综合行程26.工程问题27.逻辑推理1128.几何面积29.立体图形30.时钟问题—快慢表问题1231.时钟问题—钟面追及32.浓度与配比33.经济问题1333.经济问题34.简单方程35.不定方程36.循环小数141.和差倍问题2①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

34个小学奥数核心知识点

34个小学奥数核心知识点

34个小学奥数必掌握知识点1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数棵数=段数-1棵距×段棵数=段数棵距×段数=总长=总长数=总长关键确定所属类型,从而确定棵数与段数的关系问题5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学数学奥数中常用的数据及规律

小学数学奥数中常用的数据及规律常用数学数据和规律圆周率常用数据:圆周率是一个重要的数学常数,通常用符号π表示。

在小学奥数中,常用的圆周率数据是3.14.我们可以通过简单的乘法来计算圆的周长或面积。

例如,半径为1cm的圆的周长是3.14×1=3.14cm,直径为2cm的圆的周长是3.14×2=6.28cm。

常用特殊数的乘积:在小学奥数中,有一些特殊的数字乘积是经常用到的。

例如,25×3=75,25×4=100,25×8=200,125×3=375,125×4=500,125×8=1000,625×16=,37×3=111.常用平方数:平方数是一个整数与自己相乘的结果。

在小学奥数中,常用的平方数有1²=1,2²=4,3²=9,4²=16,5²=25,6²=36,7²=49,8²=64,9²=81,10²=100,20²=400,30²=900,40²=1600,50²=2500,60²=3600,70²=4900,80²=6400,90²=8100,100²=.常用分数与小数的互化:在小学奥数中,我们需要学会将分数和小数互相转换。

例如,1/2可以转换为0.5,3/4可以转换为0.75,1/5可以转换为0.2,2/5可以转换为0.4,3/5可以转换为0.6,4/5可以转换为0.8,1/8可以转换为0.125,3/8可以转换为0.375,5/8可以转换为0.625,7/8可以转换为0.875,1/20可以转换为0.05,3/20可以转换为0.15,5/20可以转换为0.25,9/20可以转换为0.45,11/20可以转换为0.55,1/25可以转换为0.04,2/25可以转换为0.08,3/25可以转换为0.12,4/25可以转换为0.16,6/25可以转换为0.24.常用立方数:立方数是一个整数与自己相乘再与自己相乘的结果。

小学奥数计算要点知识点整理汇总及典型例题讲解

奥数计算要点知识点整理汇总及典型例题讲解速算与巧算一、加减法中的巧算:1、加补数法两个自然数相加,如果它们的和恰好是整十、整百、整千……那么就称其中的一个数为另一个数的“补数”,这两个数称为互补。

在加减法的运算中,如果有两个加数互为补数,那么可以先求出它们的和,使计算迅速简便;如果题中没有互补的加数,那么可以设法分出互补的加数,以便凑成整十、整百、整千……的数。

2、去括号和添括号的法则在只有加减的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+c+d)=a-b-c-da-(b-c)=a-b+c如:100+(10+20+30)=100+10+20+30=160100-(10+20+30)=100-10-20-30=40100-(30-10)=100-30+10=803、找“基准数”法在算式中的加减运算中,当所有数都接近某个数时,可以将这个数作为基数,然后把每个数都看作是基数,计算,并且算出每个数与基数的差值,最后从结果中减去或加上这些差值。

4、分组凑整法先把能凑成整十或整百(包括0)的数结合在一起,再把它们各自的结果数相加。

5、位值原理法当遇到复杂的加减运算时,可以将每个数按位值分解,使具有相同位值的优先加减,最后将各个位值运算的结果合并起来,使运算简化。

6、带“符号”搬家如325+46-125+54=325-125+46+54=(325-125)+(46+54)=200+100=300。

二、乘法中的巧算:1、两数的乘积是整十、整百、整千,要先乘。

为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=10002、拆并法在乘除法的计算问题中,观察题目,将其中的部分数拆分,从而能够使用相应的乘除法分配率、结合率等等。

小学奥数必背定义定理公式

必背定义定理公式【和差问题公式】(和 + 差)÷2=较大数;(和 - 差)÷2=较小数。

【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和 - 一倍数=另一数。

【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。

【平均数问题公式】总数量÷总份数=平均数。

【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。

【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。

这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。

【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。

【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。

【行船问题公式】(1)一般公式:静水速度(船速)+ 水流速度(水速)= 顺水速度;船速 - 水速=逆水速度;(顺水速度 + 逆水速度)÷ 2 = 船速;(顺水速度 - 逆水速度)÷ 2 = 水速。

(2)两船相向航行的公式:甲船顺水速度 + 乙船逆水速度 = 甲船静水速度 + 乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。

整数裂项,小学奥数整数裂项公式方法讲解

整数裂项,小学奥数整数裂项公式方法讲解在小学奥数中有一些非常长的整数算式,仅仅用一般的运算法则满足不了计算要求,这时候我们要找式子中各乘式之间的规律,把各乘式裂项,前后抵消,从而简化计算。

规律和之前G老师讲过的分数裂项法十分类似。

先看一道整数裂项的经典例题:【例1】1x2+2x3+3x4+4x5+……98x99+99x100分析:题中计算式共有99个乘法式子相加,如果一个一个计算下来,恐怕一个下午就过去了,G老师告诉同学们,遇见这种复杂的计算式,一定是有规律的,数学重点考查的是思维。

能不能想办法把乘法式子换成两个数的差,再让其中一些项抵消掉,就像分数裂项的形式,最后只剩下头和尾呢?1x2=(1x2x3-0x1x2)÷3;2x3=(2x3x4-1x2x3)÷3;3x4=(3x4x5-2x3x4)÷3;……99x100=(99x100x101-98x99x100)÷3;规律是不是找着了?原式=(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+……+99x100x101-98x99x100)÷3=99x100x101÷3=333300整数裂项法就是将整数乘积化成两个乘积差的形式,这个差也不是随便乘一个数,而是要根据题目中各项数字公差来确定的。

比如在例1中,1x2和2x3这两项,1与2,2与3的的差都是1,我们就在1x2这一项乘以(2+1),再减去(1-1)x1x2;2x3这一项,也化成[2x3x(3+1)-(2-1)x2x3]……这样就刚好可以前后项互相抵消,然后再除以后延与前伸的差[(3+1)-(2-1)]。

整数裂项法应用:式中各项数字成等差数列,将各项后延一位,减去前伸一位,再除以后延与前伸的差。

【例2】1x3+3x5+5x7+……+95x97+97x99分析:算式中各个项中数字之差都是2,满足整数裂项条件,后延一位,减去前伸一位,再除以后延与前伸的差6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数计算公式及数字
1、必背数字
(1)10.2525%4 30.7575%4
(2)π= 2π= 3π= 4π= 5π=
6π= 7π= 8π= 9π= 10π= 25π=
(3)0是坏数,1是废数,2是最小的质数,也是唯一的偶质数,4是最小的合数,跟100
最接近的质数是101,跟1000最接近的质数是997或者1003
1001是黄金合数=71113
(4)有趣数字
尖顶爬坡数:
平顶爬坡数:
重码数
1001abcabcabc

10101abababab

轮回数
··10.1428577,··20.2857147,··
3
0.4285717

··40.5714287,··50.7142857,··
6
0.8571427

无8数
9111111111
, 1234567918222222222。。。。。。

循环小数化分数

a. 纯循环9.0.aa、99.0..abba、999.0..abccba、……

b. 混循环 90.0.aabba、990.0..aabccba、9900.0..ababcddcba、……
(5)A. 熟记100以内质数:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
B. 熟记1-30的平方
1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,
484,529,576,625,676,729,784,841,900
C. 1-10的立方1,8,27,64,125,216,343,512,729,1000
2的1次方到10次方2,4,8,16,32,64,128,256,512,1024;
3的1次方到8次方3,9,27,81,243,729,2187,6561;
2. 必背公式
等差数列的和 = (首项+末项)×项数 ÷2
等差数量的项数=(末项—首项)÷公差 + 1
等差数列的末项 = 首项 + (项数—1)×公差

平方差公式:22()()ababab
勾股定理:222abc
立方和公式:
33332
123......(123.......n)n

平方和公式:22221123......(n1)(2n1)6nn
爬坡数列:2123.....n11.....321nnn
奇数和公式:212531nn;(项数的平方)
偶数和公式:nnn22642;
(3) 乘除法中的凑整
乘法运算中的一些基本的凑整算术:
5×2=10、25×4=100、25×8=200、25×16=400、125×4=500、125×8=1000、125×16=2000、
625×4=2500、625×8=5000、625×16=10000
公式类计算

一、基本公式
①加法交换律:abba
②加法结合律:)(cbacba

③减法的性质:)(cbacba
④乘法交换律:abba
⑤乘法结合律:cbacba

⑥乘法分配律:cabacba、cabacba
⑦除法的性质:cbacba
1、平方类公式
①完全平方公式:2222bababa、2222bababa
②平方差公式:bababa22
二、等差数列、等比数列
(1)等差数列:
在等差数列中,一般1a代表首项,na代表末项,d代表公差,n代表项

数,nS代表前n项的和,所以有
通项公式:dnaan11
求项数公式:11daann
求公差公式:11naadn
求和公式:21naaSnn
(2)等比数列:
在等比数列中,一般1a代表首项,na代表末项,q代表公比,n代表项

数,nS代表前n项的和,所以有
通项公式:11nnqaa

求和公式:)1(111qqqaSnn
(1)借来还去法(只适合公比为2或者12)
(2)等比数列的错位相减法:
将原数列按照数列的倍数关系扩倍,然后两式相减,最

后求出数列的和,此方法适用于所有的等比数列,可推导出求和公式,建议直接用此方法计
算等比数列的和,不需要死记求和公式!

(3)公式法

三、特殊数列求和公式
(1)爬坡数列:2123)1()1(321nnnn;
(2)奇数和公式:212531nn;
(3)偶数和公式:nnn22642;
(4)立方和公式: 33332123......(123.......n)n
(5)平方和公式:22221123......(n1)(2n1)6nn
几个特殊数的运算技巧
(1)121112、123211112
(2)111111221、 1111111123321
例17、(1)计算99999977777711234565432

(2)1234565432166666666666
②重码数:ababab101、abababab10101
这一类的数我们不妨称之为“重码数”,根据位值原理我们可以得到以下结论:
循环重复的次数与“1”的个数相等;两个“1”之间所夹的“0”的个数比循环的位数少1。

相关文档
最新文档