配气可变正时系统

合集下载

引擎常识

引擎常识

引擎常识简单上讲发动机就是一个能量转换机构,即将汽油(柴油)的热能,通过在密封汽缸内燃烧气体,气体膨胀时推动活塞作功,转变为机械能,这是发动机最基本原理。

发动机所有结构都是为能量转换服务的,虽然发动机伴随着汽车走过了100多年的历史,无论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,其基本原理仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完善的程度。

发动机的分类现代高科技在发动机上得到完美的体现,一些新技术、新结构广泛应用在发动机上。

如V12、V8、V 6发动机:它们均指气缸排列成V型,这种发动机充分利用动力学原理,具有良好的平稳性,增大发动机排量,降低发动机高度。

如:Audi A8 6.0使用W12-12缸V型排列发动机,BENZS600使用V12-1 2缸IV型排列发动机等。

一般情况下,按照排量大小的不同发动机分为3缸、4缸、6缸、8缸几种类型。

目前1.3L-2.3L排量的车大多采用直列四缸发动机,其特点是体积小、结构简单、维修方便;2.5L以上的排量一般采用多缸设计,其中有直列6缸,如宝马;也有呈一定角度分两边排列的V型6缸发动机,可有效果降低震动和噪音,如别克车系;一般来说排量越大,发动机的功率就越高。

但现在也有些小排量的车通过涡轮增压、多气门、可变正时器等技术来提高功率。

发动机的性能发动机性能参数也就是最能体现发动机工作能力的参数,主要包括:排量、最大功率、最大扭矩。

排量往往与发动机功率联系在一起,排量的大小影响着发动机功率的高低,通常也把它作为划分高、中、低档车的标准。

活塞在气缸内作往复上下运动,这样往复运动必然有一个最高点和最低点,活塞从最低点到最高点所扫过的气缸容积,称为单缸排量,所有气缸排量总和称为发动机排量。

最大功率与最大扭矩最容易混淆的两个概念,有人认为车的功率越大,力就越大,其实不然。

电子教案与课件:《汽车发动机构造与维修第二版》 第三章配气系统

电子教案与课件:《汽车发动机构造与维修第二版》 第三章配气系统

20
正时标记 实例——丰田威驰轿车的正时标记记号
齿形带传动
曲轴正时齿轮 的正时标记
齿形带轮上的正时 标记
21
七、气门间隙 1、什么是气门间隙?发动机在冷态下,气门处于关闭状态 下,气门与传动件之间的间隙称为气门间隙。
22
七、气门间隙 2、为什么要有气门间隙?
防止发动机在工作时由于热膨胀 而顶开气门,破坏气门与气门座 之间的密封,造成漏气。
64
※气门座的绞削
75°座面绞刀用来绞削气门座上的平面角,以使气门头部的下沉量符 合要求(0.5~1.0mm),并使气门座工作斜面下移;
30°或45°绞刀为气门座工作面绞刀; 15°绞刀用来扩大气门座孔内径,使气门座工作斜面上移。
65
绞削的作业方法
①根据气门导管内径选择绞刀导杆,导杆插入气门导管内 不能过紧,无松动为宜。
1.2~2.5
48
4.气门座与气门接触环带 一般为1.2~2.5 mm。排气门大于进气门的宽度,柴油机 大于汽油机的宽度。
1.2~2.5
49
气门
50
气门
51
气 门座圈
52
四、气门弹簧 1.作用 保证气门回位、保证气门与座紧密贴合。 2.类型 单个不等距圆柱管簧、两个旋向相反的圆柱簧。
(b) 不等螺距的圆柱簧;(c) 双气门弹簧
72
6.气门导管的修配
(1)用外径略小于气门导管内孔的阶梯轴 冲出气门导管。
(2)选择外径尺寸符合要求的新气门导管。 (3)安装气门导管。 (4)气门导管的绞削。采用成型专用气门
导管绞刀绞削,进刀量不宜过大,绞刀保 持垂直,边绞边试,直至间隙合适。
73
气门导管的经验检查法 将气门杆和气门导管擦净,

进气控制系统

进气控制系统

5)涡轮增压系统-内循环工作原理
机械式空气内循环阀安装在增压器前,它是由真 空打开,用来卸掉节气门前多余的空气,避免发 动机产生喘震。因此当功率不足或由于负荷变化 产生的发动机抖动时,需要检查内循环系统。 发动机控制单元在超速切断,怠速和部分负荷时 打开。防止进气管进气过量。
涡轮增压系统-内循环演示
进气控制系统
一、进气控制系统
目的:提高进气量,改善发动机动力性能。 类型:动力阀控制系统、谐波进气增压系统(ACIS)、可变配气 相位控制系统(VTEC)、可变气门正时(VVT)等多种。 动力阀控制系统:是控制发动机进气道的空气流通截面大小,以 适应发动机不同转速和负荷时的进气量需求,从而改善发动机的 动力性。 谐波进气增压系统:利用了进气管内的压力波与进气门的开启配 合,当进气门开启时,使反射回来的压力波正好传到该气门附近, 从而形成进气增压的效果,提高发动机的充气效率和功率。 可变配气相位控制系统:根据发动机转速、负荷等参数变化来控 制VTEC机构工作,改变驱动同一气缸两进气门工作的凸轮,以调 整进气门的配气相位及升程,并实现单进气门工作和双进气门工 作的切换。
3)可变配气相位控制系统VTEC (1)对配气相位的要求 要求配气相位随着发动机转速的变化, 适当的改变进、排气门的提前或推迟开启角 和迟后关闭角。
(2)结构
如图,同一缸有主进气门和次进气门,主摇臂驱动主进气门, 次摇臂驱动次进气门,中间摇臂在主次之间,不与任何气门直接 接触。 进气摇臂总成如图 与不同配气机构相比较, 主要区别是:凸轮轴上的凸轮 较多,且升程不等,结构复杂。
3、涡轮增压系统-特点 1)增压发动机对高海拔地区有很强的适应力,由 于增压器在高工况下增压力有富余,因此可以用 放气阀晚关的方法来提高空气密度,从而减缓发 动机功率的下降。增压发动机控制单元都有海拔 高低传感器,一般安装在其内部。

发动机可变气门技术研究与探讨

发动机可变气门技术研究与探讨

发动机可变气门技术研究与探讨作者:金艳秋来源:《山东工业技术》2017年第03期摘要:现在汽车发动机普遍应用可变气门技术,本文首先阐述了发动机可变气门技术的作用,然后对现在主流车型上的发动机可变气门正时技术和发动机可变气门升程技术进行了总结分析,最后对发动机可变气门技术提出了展望。

关键词:发动机;可变气门正时;可变气门升程DOI:10.16640/ki.37-1222/t.2017.03.2520 引言发动机可变气门技术能在一定范围内调整凸轮轴的转角和升程,即可变气门正时技术和可变气门升程技术。

1 发动机可变气门正时技术的作用固定不变的气门正时很难同时满足发动机高转速、低转速等多种工况的需求。

可变气门正时技术的功能是改变发动机气门开启时间、闭合时间和气门开启持续时间,以满足发动机不同工况下的需求。

多数发动机可变气门正时系统可以实现进气门可变正时,即单可变气门正时技术;而少数发动机还在排气门配备了可变气门正时系统,即双可变气门正时技术。

2 发动机可变气门升程技术的作用发动机的动力性大小取决于喷油量的多少,而喷油量的多少与单位时间内进入气缸内的空气量多少有关。

发动机可变气门正时技术只能改变气门开启、闭合时间和气门开启持续时间,却不能显著改变单位时间内的进气量,而可变气门升程技术就能满足这个需求。

可变气门升程技术的功能主要是改变发动机气门开启的深度即气门升程,以达到根据发动机转速的需求提供空气量,从而使燃烧更充分效率更高。

3 发动机可变气门正时系统不同类型发动机的可变气门正时系统在名称上略有不同,但是其基本工作原理是非常类似的。

下面以丰田汽车可变气门正时系统为例阐述其工作原理,该系统ECU采集发动机各传感器(如发动机转速传感器、节气门位置传感器、水温传感器、车速信号、档位信号等)信号,根据其内部存储的正时参数进行控制凸轮轴正时控制阀,从而将油压施加给凸轮轴正时带轮以提前或推迟配气正时。

4 发动机可变气门升程技术系统(1)本田汽车可变气门升程系统。

汽车可变配气相位机构VVT

汽车可变配气相位机构VVT

• 其实以目前的以上的可变气门引擎来讲,已经都 作的越来越像了,原本各车厂都保有各自在VVT-i ,VANOS上的优点,之后各家或多或少地解决自 己不足的地方。除了商业上的竞争外,不就是对 我们生存的空间-地球,许下科技与环保共存的允 诺,所以,我们才需要一具既符合我们的动力期 待,又能低油耗与低排污的引擎,而今天介绍的 这进气引擎VVTL-i,Valvetronic正是我们刚进入 21世纪时,献给大自然与全人类的代表作!
• 可变配气相位调节机构工作原理
气门的配气正时则是由凸轮决定
VVT-i调节机构 调节机构
电磁控制阀结构
VVT-i调节机构位置(提前状态) 调节机构位置(提前状态) 调节机构位置
在中等负荷工况,根据来自发动机ECU的提前信号,凸轮轴正时机油电磁控 制阀的电流值最大,使滑阀处在下图所示位置,总油压作用到正时提前转子油腔, 使凸轮轴向正时提前方向转动,改善缸内废气排出性能,提高功率。

亚洲
谢!
---李
VVT-i调节机构位置(滞后状态) 调节机构位置(滞后状态) 调节机构位置
在怠速和大负荷工况,根据来自发动机ECU的滞后信号,电磁控制阀断电, 使滑阀处在下图位置,总油压作用到正时滞后转子油腔,使凸轮轴向正时 滞后方向转动,防止回火,提高充气效率和转矩。
VVT-i调节机构位置(保持状态) 调节机构位置(保持状态) 调节机构位置
• 可变气门正时技术 • 发动机可变气门正时技术的英文缩写就是 “VVT”(Variable Valve Timing),其实这种称谓 是“可变气门正时”的通称,而在汽车领域被普 遍应用的可变气门正时技术又因为各个厂商的自 行创新或者叫法不同而多种多样。简单来说,可 变气门正时的原理就是根据发动机的运行情况, 调整进排气的量,控制气门开合的时间和角度, 使进入的空气量达到最佳,从而提高燃烧效率。

第六节 气门间隙和配气正时的调整

第六节 气门间隙和配气正时的调整

第六节气门间隙和配气正时的调整为保证柴油机工作过程的正常进行,在制造、检修和使用柴油机时必须对配气机构进行调整或校核。

配气机构的调整通常包括冷态气门间隙调整和配气正时调整,本节仅叙述调整的原理和基本方法。

原理和基本方法。

一、气门间隙调整在冷态下的柴油机,当气门处于关闭状态时,气门驱动机构与气门之间必须有一定的间隙,这个间隙通常称为气门间隙。

所谓柴油机的冷机状态,通常是指其机内的油、水温度不高于40℃而言。

气门间隙是在组装调整配气机构时预先留定的,柴油机的结构不同,气门间隙的数值也不相同。

柴油机为什么要预留一定的气门间隙呢?因为柴油机运转时工作条件有较大的变化,气门和气门驱动机构都会因受热膨胀而伸长;气门机构会出现下陷现象;配气机构各机件会因振动而脱离原定位置。

如果不留气门间隙或气门间隙留得太小,则必将导致气门关闭不严而漏气,影响气缸中工质的作功能量,造成柴油机动力性和经济性下降;还可能由于高温燃气的漏泄而出现气门杆卡住及气门烧损等事故。

如果气门间隙留的太大,虽然不会出现上述弊端,但配气机构各个零件之间的冲击和噪声加大,加速机件间的磨损,并将造成气门的晚开和早关,使实际开启时间缩短,影响充量系数。

另外,预留一定的气门间隙还可使气门落座时产生的冲击力不会直接传给气门驱动机构。

所以,柴油机预留一定的气门间隙,保证了工作循环的正常进行,对柴油机是十分必要的。

16V2402JB型柴油机进气门间隙为0.40~0.45mm,排气门间隙为0.50-0.55lmm。

正确调整或校核气门间隙的前提是:柴油机必须处于冷机状态;气门处于关闭状态,即气门挺柱滚轮与凸轮基圆相接触之时。

如配气机构有气门横臂,则气门横臂的2个臂必须调整到与两个同名气门尾端同时接触。

在测量调整前,以上条件必须同时满足。

调整和校核气门间隙的基本方法,通常是根据各缸进、排气凸轮基圆位置与曲轴转角的关系,选择某几个特定位置,然后松开被测气门的摇臂锁紧螺母,拧松气门间隙调整螺钉使间隙增大,并用塞尺放在气门横臂顶端与压球座底面之间(无横臂的气门驱动机构在摇臂压球或调节螺钉头与气门尾端面之间),逐渐拧紧气门间隙调整螺钉使间隙减小,拉动塞尺使得到合适的松紧程度时保持螺钉的高度位置,然后拧紧锁紧螺母,最后用塞尺复试松紧程度,此时调整气门间隙即告完成。

五菱汽车配VVT发动机工作原理及维修案例探索

五菱汽车配VVT发动机工作原理及维修案例探索覃涛;李铁龙【摘要】VVT技术是五菱汽车应用的新技术.从VVT工作原理、VVT发动机结构、工作条件、以及维修案例等方面进行剖析,以便于理解和掌握.【期刊名称】《装备制造技术》【年(卷),期】2014(000)010【总页数】4页(P27-30)【关键词】五菱汽车;配VVT发动机;VVT结构;案例【作者】覃涛;李铁龙【作者单位】上汽通用五菱汽车股份有限公司售后服务部,广西柳州 545007;上汽通用五菱汽车股份有限公司售后服务部,广西柳州 545007【正文语种】中文【中图分类】U472目前市场上的大部分乘用车发动机都配置了VVT(Variable Valve Timing)技术,但对于微车来说,还是一项新技术。

在此,对VVT工作原理、应用进行探索。

1 发动机配气基础理论发动机进气多,燃烧就充分,爆发压力大,动力就好;反之进气少,爆发压力就小,动力也就小。

所以对于发动机来说,如何让进入到燃烧室的气体是否充分,这时保证发动机性能的关键。

发动机从低转速运行到高转速,不同的负荷等各工况要求的动力输出不一样,可是传统的发动机因为配气方面的限制只能在其中进行一种选择,而带了VVT的发动机,却可以很好的中和这两种情况。

1.1 传统发动机配气相位的设置(不带VVT为)理论上,四冲程发动机的进气门当曲拐处在上止点时开启,在曲拐转到下止点时关闭;排气门则当曲拐在下止点时开启,在上止点时关闭。

进气时间和排气时间各占180°曲轴转角。

(1)排气门开启的时机如果活塞到达下止点提前某个位置开启排气门,排气过程就会更顺畅,从而在排气冲程减少了能量消耗,所以发动机略微提前打开排气门效果会更好一些。

(2)进气门关闭的时机在活塞越过下止点后一定角度,也就是在压缩冲程一定角度内再关闭进气门,虽然活塞已经开始上升,由于进气门附近的气流速度可以高达每秒两百多米,由于在下止点附近活塞的垂直运动相对很慢,汽缸内体积变化并不大。

发动机进气系统新技术

(2)废气涡轮增压器故障分析 2).增压压力过高( EPC灯亮,发动机加速受限) 可能原因: 增压压力限制电磁阀故障; 增压压力限制电磁阀软管故障; 增压压力旁通阀卡滞。
(3)案例分析
第一章 发动机新技术 第一节 进气系统新技术
(3)阅读本节案例,结合所学知识讨论分析涡轮增压器可能的故障现象及相 关的诊断思路。
发动机进气系统新技术
一、进气增压系统 进气增压系统有两种,废气涡轮增压系统和机械增压系统。两种
系统各有优缺点,但它们的功用却是一致的;都是通过增加单位时间 内发动机的进气量(充气效率),来达到提升功率和扭矩的目的。 1、废气涡轮增压系统
第一章 发动机新技术 第一节 进气系统新技术
(1)废气涡轮增压器工作原理
三、可变进气岐管长度 2、工作原理
(1)高速时可变进气岐管工作状态
高速时进气翻板打开,此时处于短长进气道模式。
第一章 发动机新技术
第一节 进气系统新技术
三、可变进气岐管长度
3、故障诊断分析 进气岐管转换阀常见故障主要是进气岐管卡在关闭位置或开启位
置,故障表现为EPC灯亮同时仪表提示“发动机转速最高不能超过 4000转”(不同车型有一定差异)。
五、可变气门升程 (1)结构组成
第一章 发动机新技术 第一节 进气系统新技术
五、可变气门升程 (1)结构组成
第一章 发动机新技术
第一节 进气系统新技术
五、可变气门升程
(2)工作原理 1)部分负荷 在部分负荷时(采用较小的凸轮外形),气门开启是不对称的。 一方面是因为凸轮的形状使得一个进气门比另一个进气门开启得大 (2mm和5.7mm),另一方面是因为较小凸轮外形的气门开启时间也是 不同的。另外气门小升程的凸轮形状是按照让进气门同时打开这一原则 来设计的。但第二个气门的关闭却稍晚。再加上缸盖中进气门特殊的遮 蔽形状,就可使得吸入燃烧室的气体呈高流速和旋转运动状态。配合专 用活塞形成滚流进气,最终获得极佳的混合效果(图1-28,图1-29)。

第三章第四节 可变配气相位


汽车发动机构造与维修
第三章 配气机构构造与维修
23
三、雅阁F22B1 3.0L V6发动机VTEC
辅助进 气摇臂 中间进 气摇臂 进气门
凸轮轴 主进气 摇臂 排气门
汽车发动机构造与维修
第三章 配气机构构造与维修
24
1.低转速时VTEC的工作原理
汽车发动机构造与维修
第三章 配气机构构造与维修
25
2.高转速时VTEC的工作原理
可变气门正时、可变气门升程
汽车发动机构造与维修 第三章 配气机构构造与维修 1
本次课程任务
1.大众可变进气相位原理:2方面 2. VVT结构原理:2方面 3.VTEC功用及原理:2方面
汽车发动机构造与维修
第三章 配气机构构造与维修
2
当前在中国生产、采用可变气门技术的轿车
车型 花冠 皇冠 威姿 雅阁 奥德赛 飞度 CR-V 天籁 颐达 骐达 制造商 天津丰田 天津丰田 天津一汽 广本 广本 广本 东风本田 东风日产 东风日产 东风日产 供应商 电装 电装 电装 本田 本田 本田 本田 日立 日立 日立 车型 凯迪拉克CTS 凯迪拉克SRS 宝马3系 宝马5系 马自达6 御翔 宝来A4 奥迪A4 高尔夫Plus 帕萨特 途安 制造商 上海通用 上海通用 华晨宝马 华晨宝马 一汽 北京现代 一汽大众 一汽大众 一汽大众 上海大众 供应商 爱幸 爱幸 爱幸 爱幸 Melco 电装 Hilite Hilite Hilite Hilite
1.VTEC功用及原理:2方面 2.大众可变进气相位原理:2方面 3.丰田的VVTL-i结构原理:2方面 4.BMW的Valvetronic结构原理:2方面
汽车发动机构造与维修
第三章 配气机构构造与维修

配气机构主要零部件

配气机构主要零部件²一、配气机构的零件和组件²二、可变配气正时及气门升程机构(雅阁VTEC)²二、配气相位²三、气门间隙V ariable V alve Timing System可变气门正时系统,是能改变气门正时或升程,以适应不同转速下扭矩最佳化要求的配气机构。

普通的发动机的气门正时(即配气相位)及气门升程是固定不变的,即进气时进、排气门的重叠角是不变的。

但是,在高转速时,由于进气流速快,燃烧时间短,希望进气门早开,气门重叠角大一些,才能保证进人足够的混合气;而在低速运转时,如果气门重叠角大,混合气又容易从排气门漏出,影响发动机的动力性能和经济性能。

所以,普通发动机难以保证发动机在高速和低速都能得到最佳的性能。

为此,人们开发了可变气门正时系统,大致分为两种方式:①德国宝马公司开发了一种可变凸轮轴转角的控制系统(V ACC)。

用电子控制液压机构使进气凸轮在高转速时可向前转动,从而加大进气门开启的提前角度(不改变气门升程),达到在高转速下进气充足,保持扭矩最大的目的。

②本田公司开发了一种可变气门及升程的电控系统(VTEC)。

每缸有四个气门,每个气门有两个摇臂,每个摇臂有各自的凸轮。

在转速不同的情况下,各气门的动作不同,以保证发动机在高速和低速时的扭矩最佳化,都有良好的动力性和经济性。

低转速时,副进气门几乎不打开,由主进气门进人的混合气在燃烧室中产生强烈的涡流,使混合气分层,其较浓的部分集中到燃烧室的中央,从而保证了稀混合气的燃烧,使低速时也能产生较大的扭矩。

在高转速时,两个摇臂锁在一起,两个进气门同时工作,以保证发动机的高功率。

正时齿带或正时链条Toothed Timing Belt(Timing Chain)正时齿带(或链条)是用于顶置凸轮轴式配气机构的传动机构。

凸轮轴正时齿带轮(或链轮)安装在凸轮轴前端,由曲轴正时齿带轮(或链轮)通过齿带(或链条)驱动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管道内气体流动阻力 摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:

ΔPm=λν2ρl/8Rs

对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 本田的VTEC

根据ΔPm=λν2ρl/8Rs 只能采取增大进气截面积s和减小进气速度v。 当发动机低速运转时,油气混和气进入气缸的动力来自于气缸内外气压差形成的负压,由于油气混和气的流速较慢,需要较大的气压差,也就是说需要气门行程较小;

相反,当发动机高速运转时,进气速度v很大,想要减小进气阻力,唯一的办法就是增加进气截面积s,也就是需要气门行程较大;

行程较小 行程较大

如上图所示,在VTEC系统中,其进气凸轮轴上分别有三个凸轮面,分别顶动摇臂轴上的三个摇臂,当发动机处于低转速或者低负荷时,三个摇臂之间无任何连接,左边和右边的摇臂分别顶动两个进气门,使两者具有不同的正时及升程,以形成挤气作用效果。此时中间的高速摇臂不顶动气门,只是在摇臂轴上做无效的运动。当转速在不断提高时,发动机的各传感器将监测到的负荷、转速、车速以及水温等参数送到电脑中,电脑对这些信息进行分析处理。当达到需要变换为高速模式时,电脑就发出一个信号打开VTEC电磁阀,使压力机油进入摇臂轴内顶动活塞,使三只摇臂连接成一体,使两只气门都按高速模式工作。当发动机转速降低达到气门正时需要再次变换时,电脑再次发出信号,打开VTEC电磁阀压力开头,使压力机油泄出,气门再次回到低速工作模式。 工作原理 在中低转速时,发动机需要的混合气量并不高,以保持转速的稳定以及减少燃油消耗和污染物排放。但到达高转速时便需要更大的进气量来满足高动力输出的需求,而发动机进气门的相位(开闭的时机)和升程(开度的大小)便是决定汽缸进气量的最直接因素。普通的发动机在制造出来后,配气相位和气门升程就固定不变了,无法适应不同转速下发动机对进排气的需求。本田公司在1989年推出了自行研制的“可变气门正时和气门升程电子控制系统”,英文全“Variable Valve Timing and Valve Life Electronic Control System”,缩写就是“VTEC”,是世界上第一个能同时控制气门开闭时间及升程等两种不同情况的气门控制系统。

与很多普通发动机一样,VTEC发动机每缸有4气门(2进2排)、凸轮轴和摇臂等,但与普通发动机不同的是凸轮与摇臂的数目及控制方法。中、低转速用小角度凸轮,在中低转速下两气门的配气相位和升程不同,此时一个气门升程很小,几乎不参与进气过程,进气通道基本上相当于单进气门发动机。而在高转速时,通过VTEC电磁阀控制液压油的走向,使得两进气摇臂连成一体并由开启时间最长、升程最大的进气凸轮来驱动气门,此时两进气门按照大凸轮的轮廓同步进行。与低速运行相比,大大增加了进气流通面积和开启持续时间,从而提高了发动机高速时的动力性。这两种完全不同性能表现的输出曲线,本田的工程师使它们在同一个发动机上实现了 保时捷Variocam技术 Variocam以及后继者Variocam Plus系统最早出现在1991年,保时捷第一次将Variocam技术正式应用的车型是968。Variocam以及Variocam Plus最大区别在于后者使用液压来调控cam,达到变气门升程的效果。从下面右边的图中可以看到,每个气门是由三个凸轮所管理的。当中的比较小,两边比中间大却一样大。用挺杆来推动达到不用凸轮控制气门的效果。小的凸轮自然升程就小(3mm),而大凸轮自然升程就比较大(10mm)。

那么挺杆是怎么工作的呢?从图中可以看到,进气侧的两极气门形成控制是通过电动液压可变换挺杆实现的。每个挺杆各配有两个同心提升件,它们可以锁在一起形成一个单元或相互独立地运动。內挺杆有一个小型凸轮操纵,外挺杆有两个较大的凸轮操纵。进气门正时由各个进气门凸轮轴上的一个旋转叶片装置无极调节。通俗的讲就是,有两个挺杆,一个在内,看不到,一个在外,是环状。他们可以被相互锁柱,如果被锁住,大凸轮就可以工作,就像左面的图,如果没有被锁住,小凸轮就工作,就像右面的图。 图为采用了Vario Cam可变气门行程技术的保时捷911发动机 了解完VTEC和VarioCam的工作原理,简要的概括这两者的异同点就是VarioCam用凸轮轴直接驱动气门,气门行程的改变是由不同的凸轮轴顶起挺杆外的两个同心提升件来改变,变换过程中锁死的是两个同心提升件;而VTEC在凸轮轴和气门之间存在一个传动装置——摇臂,气门行程的改变是由不同的凸轮轴顶起不同的摇臂,变换过程中锁死的是摇臂。也正是因为这个摇臂的存在,发动机在运转的过程中产生了更多的噪音和振动。另外由于增加了运动部件的质量,也不利于发动机转速的提高,而保时捷VarioCam是直接驱动气门的,于是就可以避免由于存在摇臂带来的问题。 优点:可以减小噪音和振动,减少运动部件质量从而提高发动机转速 既然保时捷的VarioCam这种直接用凸轮轴驱动气门的方式,可以减小噪音和振动,减少运动部件质量从而提高发动机转速。为什么本田不用保时捷这种呢?这得从本田的发动机发展历史说起。本田一直热衷于单顶置凸轮轴技术的发动机,过去的本田发动机都是单顶的,即使到现在,本田的发动机在小于2.0的四缸机和所有的六缸机也都是单顶的,例如1.8L CIVIC的R18A1,2.0L新CR-V的R20A1和3.0雅阁的J30A4等,因此在单顶基础上开发的VTEC是通过驱动摇臂来实现行程可变,即使现在发展到了双顶,仍然通过摇臂,原因很简单,比起重新开发来,在原有技术上革新既节约成本又可以使技术更成熟。 宝马的Valvetronic 宝马永远是走在技术的前沿的。在2001年1月,第一代Valvetronic系统被首次运用于3系E46上的直列4缸N42发动机。Valvetronic扬程可变系统搭配Bi-Vanos气门正时系统使得N42发动机在当时业内显得非常先进。第二代Valvetronic被应用于宝马N46、N52、N62等发动机上。而N52这款直列六缸自然吸气发动机则是最受到人们关注的型号,被搭配于E60、E66、E90等同代车型上。而第三代Valvetronic系统则配合最新的涡轮增压发动机被应用于最新一代的N55发动机上。 Valvetronic的核心是中间杠杆技术,凸轮轴通过驱动相位可调节的中间杠杆实现气门扬程的无级调节。下图为宝马最新第三代Valvetronic机构结构图,Valvetronic机构由5个重要部分组成:偏心轴驱动电机、偏心轴驱动齿轮、偏心轴、凸轮轴、中间杠杆。 从下图中可以看到,Valvetronic可以通过调节中间杠杆的位置实现了气门扬程的无级调节。在负荷较低的发动机工况下,Valvetronic控制气门开度较小,吸入的空气量较少,燃油使用量较少;当发动机负载增加,Valvetronic控制气门开度较大,吸入的空气量较大,燃油吸入量多,做功较多,输出动力更大。有了Valvetronic,节气门的负载控制功能则被取代了,在正常工作时,发动机进气量由Valvetronic机构控制,节气门全开。节气门只在发动机出问题时进入紧急模式后才控制发动机进气量。这样一来,由于节气门全开,使得空气进入气缸畅通无阻,不会在进气门背面产生负压,也极大减少了发动机进气损失,最终达到提高燃油经济性和提升发动机效能的目的。

优点:减少节气损失,减少油耗。 缺点:结构较大;增加的机构增加了摩擦损失和惯性使得此机构不适用于超高转速发动机。 日产的VVEL 宝马的Valvetronic曾经是连续可变气门扬程系统的“唯一”。但擅长吸收别人经验的日本人在相隔几年后纷纷拿出自己的连续连续可变气门扬程系统,虽则各厂商通过不同的结构实现气门扬程连续可变功能,但似乎“后生更加可畏”。日产在英菲尼迪G37轿跑车的VQ37发动机上,首次装备了VVEL可变气门升程,配合C-VTC,就像宝马的Bi-VANOS+Valvetronic一样,让发动机的气门控制更加接近理想化。英菲尼迪G37搭载的VQ37发动机最大马力330bhp,升功率达89.2bhp,峰值扭力也达到38.1kgm,相比宝马N52的升功率还要稍微高一点。 日产VVEL的核心是偏心轴机构,偏心轮轴并不直接驱动气门,偏心轮轴上面的偏心轮驱动连接A,链接A驱动摇臂,摇臂驱动连接B,连接B驱动输出凸轮推动气门顶筒使得气门打开(输出凸轮并不是刚性连接在驱动轴)。此机构看起来比较复杂,摩擦副也相对较多,但是由于所有构件采取刚性连接,没有弹簧类的回位机构,使得VVEL更适合于高转速发动机而无需考虑惯性的问题。

从下图可以清晰地看出VVEL在不同工况下的动作情况。可以看到VVEL偏心轴在不同工况下的转角是不同的,VVEL偏心凸轮位置不同导致摇臂的支点出现变化从而控制了气门的开度。至于控制逻辑方面,VVEL也是通过在不同的负载控制不同的气门开度从而实现减少进气损失,最终达到优化燃油经济性的目的。据日产的资料,在低负载工况下VVEL能够减少10%的燃料损耗。但在峰值功率上,VVEL并没有太大的贡献,这是因为VVEL的进气效率被VVEL机构新增的摩擦给抵消掉了。但VQ37发动机的最高转速可以达到7500rpm,不像Valvetronic发动机那样受到高转速的限制。

相关文档
最新文档