最新人教版八年级数学下册第二十章数据的集中趋势1
人教版八年级数学下册教案:20.1数据的集中趋势

一、教学内容
人教版八年级数学下册教案:20.1数据的集中趋势
本节课我们将学习以下内容:
1.平均数的定义和计算方法;
2.中位数的定义及其在数据中的作用;
3.众数的定义及其在数据集中的意义;
4.如何利用平均数、中位数和众数描述一组数据的集中趋势;
5.比较不同数据集的平均数、中位数和众数,分析它们的优缺点和适用场景。
五、教学反思
在今天的教学过程中,我发现同学们对平均数、中位数和众数的概念掌握程度不一。有些同学能够迅速理解并运用这些统计量,而另一些同学则在计算和应用上存在一定的困难。这让我意识到,在今后的教学中,我需要更加关注学生的个别差异,提供更具针对性的指导。
在讲授新课的过程中,我尽量用生动的例子和实际数据来解释这些概念,使同学们能够更好地理解它们在现实生活中的应用。通过案例分析,同学们对统计量的选择和使用有了更深刻的认识。但同时,我也发现对于一些难点内容,如中位数的确定方法和众数的多值情况,需要进一步通过更多实例和练习来巩固。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平均数、中位数和众数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何利用平均数、中位数和众数来描述一组数据,以及它们如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调平均数的计算方法和中位数的确定这两个重点。对于难点部分,比如在数据包含极端值时如何选择合适的统计量,我会通过举例和比较来帮助大家理解。
最新人教版八年级数学下册第二十章《数据的集中趋势》课堂探究

课堂探究基础知识基本技能 1.平均数 (1)平均数的概念:一般地,对于n 个数x 1,x 2,x 3,…,x n ,我们把1n (x 1+x 2+…+x n )叫做这n 个数的平均数.(2)平均数的表示:一组数据的平均数用“x ”表示. (3)平均数表示的意义:平均数表示一组数据的“平均水平”. 谈重点 理解平均数(1)求平均数,只需要把所有数据加起来求出总和,再除以这些数据的总个数即可;(2)当一组数据较大,并且这些数据都在某一个常数a 附近上下波动时,一般选用化简公式x =x ′+a ,其中x ′为一组新数据的平均数,a 为选定的接近这组数据的平均数的较“整”的一个数;(3)平均数的大小与一组数据里的每个数据都有关系,其中任一数据的变动都会引起平均数的变动;(4)平均数反映了一组数据的集中趋势,若要了解一组数据的平均水平,就可用这组数据的平均数来表示;(5)平均数的缺点是容易受特殊值的影响,有时不能较为准确地反映一组数据的平均水平.【例1】某中学举行歌咏比赛,六位评委对某班的打分如下:分析:注意去掉一个最高分和一个最低分后,总人数发生了变化,成为4人了.只要代入平均数的计算公式121()n x x x x n=+++ 即可. 解:去掉一个最高分95分,去掉一个最低分75分,平均分为1(77827883)804+++= (分).答案:80分 2.加权平均数 (1)加权平均数的概念:在求n 个数的平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+f 2+…+f k =n ),那么这n 个数的平均数x =x 1f 1+x 2f 2+…+x k f kn ,也叫做x 1,x 2,…,x k 这k个数的加权平均数,其中f 1,f 2,…,f k 分别叫做x 1,x 2,…,x k 的“权”.(2)加权平均数的另一公式:一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n叫做这n 个数的加权平均数.(3)权的意义:在实际问题中,一组数据里的多个数据的“重要程度”不一定相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”.破疑点 加权平均数的意义(1)相同数据x i 的个数w i 叫做“权”,w i 越大,表示x i 的数据越多,“权”就越重;(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的一种简便运算.【例2】三名大学生A ,B ,C 竞选系学生会主席,对他们的笔试成绩和口试成绩(单位:分)进行了统计,如下表:(没有弃权票,每名学生只能推荐一人).(1)请计算每人的得票数;(2)若每票计1分,系里将笔试、口试、得票三项测试得分按4∶3∶3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.解:(1)A 得票数为300×35%=105(票). B 得票数为300×40%=120(票). C 得票数为300×25%=75(票). (2)A 的最后成绩为8549031053433⨯+⨯+⨯++=92.5(分).B 的最后成绩为9548031203433⨯+⨯+⨯++=98(分).C的最后成绩为904853753433⨯+⨯+⨯++=84(分).所以根据成绩判断B能当选.3.中位数中位数的概念:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.谈重点中位数的理解(1)一组数据的中位数不一定出现在这组数据中;(2)一组数据的中位数是一个唯一的数;(3)中位数仅仅与数据的排列位置有关,当一组数据中的个别数据较大或较小时,可用中位数来描述这组数据的集中趋势.【例3】小东所在班50名学生右眼视力的检查结果如下:(1)(2)小东的右眼视力为0.9,他的右眼视力如何?解:将这组视力数据按由小到大的顺序排列,由于有50名学生,故中位数取按由小到大排列第25,26位数的平均值,故该组数据的中位数为0.80.82+=0.8,即这50名同学的右眼视力的中位数为0.8.(2)小东的右眼视力为0.9,根据(1)中得到的数据的结论,推测他的右眼视力情况良好.4.众数一组数据中出现次数最多的数据称为这组数据的众数.众数是对各数据出现频数的考查,其大小只与这组数据中部分数据有关,当一组数据中个别数据多次重复出现时,以至于其他数据的作用显得相对较小,众数可以在某种意义上代表这组数据的整体情况.破疑点众数的理解(1)一组数据的众数一定出现在这组数据中;(2)一组数据的众数可能不止一个;(3)众数是一组数据中出现次数最多的数据,而不是数据出现的次数;(4)一组数据也可能没有众数,因为每个数据出现的频数相等.【例4】一家服装厂经市场调查可知,其在一段时间内,A,B,C,D,E,F六种品牌服装的销售量如下表:解:由表格可以看出C,E,F三种品牌的销售量最多,均为10千件,所以这组数据的众数为C,E,F三个品牌服装的销售量,因此一般认为该服装厂应多生产这三种品牌的服装.基本方法基本能力5.平均数与加权平均数的联系与区别联系:若各个数据的权数相同,则加权平均数就是平均数,因而可以看出平均数实质上是加权平均数的一种特例.区别:平均数是指一组数据的和除以数据个数,加权平均数是指在实际问题中,一组数据的“重要程度”未必相同,即各个数据的权数未必相同,因而在计算上与平均数有所区别.【例5】计算下面一组数据的平均数:2,2,4,7,4,8,10,8,4,10,3,2,2,2,10,2.分析:题目中所给数据较多,并且一些数据多次重复出现,适宜用加权平均数计算求解.解:因为这组数据中,2出现6次,3出现1次,4出现3次,7出现1次,8出现2次,10出现3次,所以2631437182103613123x⨯+⨯+⨯+⨯+⨯+⨯=+++++=5.6.众数、中位数与平均数的联系与区别(1)联系:众数、中位数和平均数都反映了一组数据的集中趋势,其中以平均数最为重要.(2)区别:①平均数的大小与这组数据里每个数据均有关系,任一数据变动都会引起平均数的变动;②众数主要研究各数据出现的频数,其大小只与这组数据中的某些数据有关,当一组数据中有不少数据多次重复出现时,我们往往关注众数;③中位数仅与数据的排列(大小顺序)位置有关,某些数据的变动对它的中位数没有影响,当一组数据中的个别数据变动较大时,可用中位数来描述其集中趋势.【例6】公园里有甲、乙两群游客正在做团体游戏.甲群游客的年龄分别是12,12,12,13,14,15,16,16,27;乙群游客的年龄分别是3,4,4,5,5,6,6,6,55,60.(1)分别求出两群游客年龄的平均数、众数和中位数;(2)甲、乙两群游客年龄的平均数能代表他们各自的年龄特征吗?如果不能代表,那么哪个统计量能代表?解:(1)甲群游客:平均数1x=++++++++≈15(岁),众数是12岁,中位数是14 (121212131415161627)9岁;乙群游客:平均数1x=+++++++++≈15(岁),(344556665560)10众数是6岁,中位数是5.5岁.(2)甲群游客的年龄的平均数能代表他们的年龄特征,乙群游客的年龄的平均数不能代表他们的年龄特征.因为只说“两群平均年龄约15岁的游客在公园里游戏”,别人会认为两群中学生在公园里游戏.因此乙群游客的年龄的中位数能代表这群游客的年龄特征.。
初中数学《八下》 第二十章 数据的分析-数据的集中趋势 考试练习题

初中数学《八下》第二十章数据的分析-数据的集中趋势考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7 份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表甲、乙两种西瓜得分统计表(1 )___________ ,___________ ;(2 )从方差的角度看, ___________ 种西瓜的得分较稳定(填“ 甲” 或“ 乙” );(3 )小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.知识点:数据的集中趋势【答案】(1 )a =88 ,b =90 ;(2 )乙;(3 )见解析【分析】(1 )根据中位数、众数的意义求解即可;(2 )根据数据大小波动情况,直观可得答案;(3 )从方差、中位数、众数的比较得出答案.【详解】解:(1 )甲品种西瓜测评得分从小到大排列处在中间位置的一个数是 88 ,所以中位数是 88 ,即a =88 ,将乙品种西瓜的测评得分出现次数最多的是90 分,因此众数是 90 ,即b =90 ,故答案为:a =88 ,b =90 ;(2 )由甲、乙两种西瓜的测评得分的大小波动情况,直观可得S 乙2<S 甲2,故答案为:乙;(3 )小明认为甲种西瓜的品质较好些,是因为甲的得分众数比乙的得分众数高;小军认为乙种西瓜的品质较好些,是因为乙的得分方差小和得分中位数比甲的高.【点睛】本题考查统计表,中位数、众数、平均数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.2、现有一组数据4 、 5 、 5 、 6 、 5 、 7 ,这组数据的众数是 ___ .知识点:数据的集中趋势【答案】5【分析】根据众数的意义求解即可.【详解】这组数据中出现次数最多的是5 ,共出现 3 次,因此众数是 5 ,故答案为: 5 .【点睛】本题考查的是众数:一组数中出现次数最多的数,熟练掌握众数的意义是解决本题的关键.3、一组数据:5,7,10,5,7,5,6. 这组数据的中位数和众数()A . 7 和 10B . 7 和 5C . 7 和 6D . 6 和 5知识点:数据的集中趋势【答案】D【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【详解】将这组数据重新排列为5 、 5 、 5 、 6 、 7 、 7 、 10 ,所以这组数据的众数为5 、中位数为 6 ,故选D .【点睛】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.4、在5 月 31 日世界禁烟日到来之际,某校为了提高禁烟意识,在七、八年级举办了“ 关爱健康,远离香烟” 的知识竞赛,两个年级分别有 500 人为了了解本次竞赛成绩情况,现从中各随机抽取了部分同学的测试成绩x(得分均为整数,满分为100 分)进行调查分析,过程如下:第一步:收集数据七年级:68 88 100 100 79 94 89 85 100 88 81 69 98 7977 94 96 75 92 67八年级:69 97 78 89 98 100 99 100 95 99 99 69 75 1 00 99 78 79 87 85 79第二步:整理、描述数据第三步:分析数据第四步:应用数据(1 )直接写出a的值和八年级抽取了多少个同学的成绩进行分析(2 )在此次测试中,七年级甲学生的成绩为 89 分,八年级乙学生成绩为 90 分,甲、乙两人的成绩在各自年级中哪一个更靠前?请说明理由.(3 )若成绩在 90 分至 99 分之间(含 90 分, 99 分)的学生为二等奖,请估计七、八年级一共获得二等奖的学生总人数.知识点:数据的集中趋势【答案】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )甲的成绩在自己年级中更靠前;(3 )七、八年级一共获得二等奖的学生总人数为 300 人.【分析】(1 )根据众数的定义分别进行解答即可;(2 )把甲、乙两人的成绩与各自年级的中位数比较即可得到结论;(3 )七、八年级的总人数乘以 90 分至 99 分之间(含 90 分, 99 分)的学生数所占的百分比即可的结论.【详解】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )∵七年级同学的成绩的中位数是 88 ,八年级同学的成绩的中位数是 92 ,∴甲的成绩在自己年级中更靠前;(3 ) 1000×=300 人,答:七、八年级一共获得二等奖的学生总人数为300 人【点睛】本题主要考查了平均数、众数、中位数在实际问题中的正确应用,熟练掌握定义和计算公式是解题的关键.5、北京市6 月某日 10 个区县的最高气温如下表: ( 单位:℃)则这10 个区县该日最高气温的中位数是() .A . 32B . 31C . 30D . 29知识点:数据的集中趋势【答案】A【详解】∵从小到大排列后,排在中间位置的两个数都是 32 ,∴中位数是 32.故选A.6、某小组个人在一次数学小测试中,有个人的平均成绩为,其余个人的平均成绩为,则这个小组的本次测试的平均成绩为 ________.知识点:数据的集中趋势【答案】89【分析】先求出总成绩,再运用求平均数公式即可求出平均成绩.【详解】∵有 3 个人的平均成绩为 96 ,其余 7 个人的平均成绩为 86 ,∴这个小组的本次测试的总成绩为: 3×96+7×86=890 ,∴这个小组的本次测试的平均成绩为: 890÷10=89 .【点睛】本题主要考查的是平均数的求法,属于基础题型.熟记计算公式是解决本题的关键.7、甲、乙、丙、丁四人10 次随堂测验的成绩如图所示,从图中可以看出这 10 次测验平均成绩较高且较稳定的是()A .甲B .乙C .丙D .丁知识点:数据的集中趋势【答案】C【分析】利用平均数和方差的意义进行判断.【详解】解:由折线统计图得:丙、丁的成绩在92 附近波动,甲、乙的成绩在 91 附近波动,∴丙、丁的平均成绩高于甲、乙,由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,∴这四人中丙的平均成绩好又发挥稳定,故选:C .【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越差,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了折线统计图.8、某校开展了以“爱我家乡”为主题的艺术活动,从九年级 5 个班收集到的艺术作品数量(单位:件)分别为 48 , 50 , 47 , 44 , 50 ,则这组数据的中位数是()A . 44B . 47C . 48D . 50知识点:数据的集中趋势【答案】C【分析】根据中位数的意义,排序后处在中间位置的数即可.【详解】解:将这五个数据从小到大排列后处在第3 位的数是 48 ,因此中位数是 48 ;故选:C.【点睛】本题考查中位数的意义,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.9、在庆祝中国共产党成立100 周年的“红色记忆”校园歌咏比赛中, 15 个参赛班级按照成绩(成绩各不相同)取前 7 名进入决赛,小红知道了自己班级的比赛成绩,如果要判断自己的班级能否进入决赛,还需要知道这 15 个参赛班级成绩的()A .平均数B .中位数C .众数D .方差知识点:数据的集中趋势【答案】B【分析】由于比赛取前7 名参加决赛,共有 15 名选手参加,根据中位数的意义分析即可.【详解】解:15 个不同的成绩按从小到大排序后,中位数之后的共有 7 个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.10、已知一组数据,,的平均数为5 ,方差为 4 ,那么数据,,的平均数和方差分别为__ .知识点:数据的集中趋势【答案】3 , 4【分析】根据平均数,方差定义进行解答即可.【详解】解:数据,,的平均数为5 ,,,数据,,的平均数是3 ;数据,,的方差为4 ,,,,的方差.故答案为:3 , 4 .【点睛】本题考查了平均数和方差,解题的关键是灵活运用平均数和方差.11、为了纪念建党100 周年,学校组织了“建党 100 周年党史知识竞赛”,张同学根据评分为小李的分数制作了如下表格:如果去掉一个最高分和最低分,那么下列哪个数据不会发生变化()A .众数B .平均数C .中位数D .方差知识点:数据的集中趋势【答案】C【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】解:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数,故选C .【点睛】本题主要考查了中位数,解决本题的关键是掌握中位数定义.12、已知一组数据,,,,的平均数是4 ,方差是 5 ,将这组数据中的每个数据都减去 2 ,得到一组新数据,则这组新数据的方差是 ______ .知识点:数据的集中趋势【答案】5【分析】根据一组数据的平均数与方差的定义和性质即可求解.【详解】解:由题意得:数据,,,,的平均数是4 ,方差是 5 ,新数据是,,,,,所以新数据的平均数是4-2=2 ,方差是:==5 .故答案为:5 .【点睛】本题考查了平均数和方差,解题的关键是掌握平均数和方差的变换特点.13、如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1 )根据图中信息分别求出上午和下午四个整点时间的平均气温.(2 )请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.知识点:数据的集中趋势【答案】(1 ) 24 , 24 ;(2 )上午的气温更加稳定,理由见解析.【分析】(1 )根据平均数的定义进行求解即可;(2 )分别求出上午和下午四个整点时间的方差然后进行比较即可.【详解】解:(1 )∴∴上午的气温更加稳定.【点睛】本题主要考查了平均数与方差,解题的关键在于能够熟练掌握相关知识进行求解.14、车间有22 名工人,某一天他们生产的零件个数统计如下:(1 )求这一天 22 名工人生产零件的平均个数.(2 )为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,请你确定这个“定额”,并说明理由.知识点:数据的集中趋势【答案】(1 ) 13 个;(2 )如果我是管理者,会将 13 个作为“定额”,因为平均数、众数、中位数都是 13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【分析】(1 )根据平均数的计算方法进行计算即可;(2 )求出中位数、众数、平均数,从大多数员工能够完成任务为标准“定额”.【详解】解:(1 )(个)∴这一天 22 名工人生产零件的平均个数为 13 个.(2 )如果我是管理者,会将 13 个作为“定额”.因为平均数、众数、中位数都是13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【点睛】本题考查平均数、中位数、众数,理解中位数、众数、平均数的意义和计算方法是正确解答的关键.15、开学前,根据学校防疫要求,小芸同学连续14 天进行了体温测量,结果统计如下表:这14 天中,小芸体温的众数是 ____________.知识点:数据的集中趋势【答案】36.6【分析】根据众数的定义就可解决问题.【详解】根据表格数据可知众数是36.6℃,故答案为:36.6 .【点睛】本题主要考查了众数的求解,正确理解众数的意义是解决本题的关键.16、东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为: 85 , 87 , 89 , 91 , 85 , 92 , 90 .则这组数据的中位数为 ______ .知识点:数据的集中趋势【答案】89【分析】根据中位数的定义即可得.解:将这组数据按从小到大进行排序为,则中位数为89 ,故答案为:89 .【点睛】本题考查了中位数,熟记定义是解题关键.17、“最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区参加美化社区活动. 6 名志愿者参加劳动的时间(单位:小时)分别为: 3 , 2 , 2 , 3 , 1 , 2 ,这组数据的中位数是 ______ .知识点:数据的集中趋势【答案】2【分析】根据中位数的求解方法求解即可.【详解】解:将所给6 个数据从小到大排列: 1 , 2 , 2 , 2 , 3 , 3 ,则中位数为=2 ,故答案为:2 .【点睛】本题考查中位数,熟练掌握中位数的求解方法是解答的关键.18、在2021 年初中毕业生体育测试中,某校随机抽取了 10 名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是()A .中位数是 10.5B .平均数是 10.3C .众数是 10D .方差是 0.81知识点:数据的集中趋势【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9 , 9 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 12 ;位于最中间的两个数是10 , 10 ,它们的平均数是 10 ,所以该组数据中位数是10 ,故 A 选项符合题意;该组数据平均数为:,故B 选项不符合题意;该组数据10 出现次数最多,因此众数是 10 ,故 C 选项不符合题意;该组数据方差为:,故D 选项不符合题意;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.19、某学校八年级(2 )班有 20 名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 ___ .知识点:数据的集中趋势【答案】95.5【分析】利用加权平均数的定义计算即可.【详解】解:由题意可得:=95.5 ,故答案为:95.5 .【点睛】本题考查了加权平均数的求法,解题的关键是结合统计图,掌握运算法则.20、如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为11 岁,最大为 15 岁,根据统计图所提供的数据,该小组组员年龄的中位数为 ________ 岁.知识点:数据的集中趋势【答案】13【分析】直接根据中位数定义求解即可.【详解】解:根据题意排列得:11 , 11 , 12 , 12 , 12 , 13 , 13 ,13 , 13 , 13 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 ,个数为偶数,中间的两个数为:13 , 13 ,∴中位数为 13 ,故答案为:13【点睛】本题主要考查中位数的定义,将一组数据按照从小到大( 或从大到小 ) 的顺序排列,如果这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.。
八年级数学下册第二十章数据的分析知识点归纳新版新人教版

第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。
2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。
3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。
4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。
5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。
一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。
人教版初中数学第二十章第1节《数据的集中趋势》训练卷 (5)(含答案解析)

2
4
5
人数
2
2
10
6
A.4次,4次B.3.5次,4次C.4次,3.5次D.3次,3.5次
10.九年级1班30名同学的体育素质测试成绩统计如下表所示,其中有两个数据被遮盖,下列关于成绩统计量中,与被遮盖的数据无关的是()
成绩
24
25
26
27
28
29
30
人数
2
3
6
7
9
A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数
B.初中参赛女教师定点投篮投球个数在C组: 这一组的数据是:5、5、5、6;
C.高中参赛女教师定点投篮投球成绩统计表
参赛教师编号
1
2
3
4
5
6
7
8
9
10
投中球数
8
3
4
5
4
10
3
6
4
7
D.初、高中参赛女教师定点投篮投球个数的平均数、中位数、众数如下:
年级
平均数
中位数
众数
初中
5.4
n
5
高中
m
4.5
t
根据以上信息,解答下列问题:
4.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表:
颜色
黄色
绿色
白色
紫色
红色
数量(件)
100
180
220
80
550
百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释多进红色女装的统计知识是()
A.方差B.平均数C.中位数D.众数
初中数学人教版八年级下册第二十章《数据的分析》课时作业(含答案)

初中数学人教版八年级下册实用资料第二十章 数据的分析 20.1 数据的集中趋势20.1.1 平均数 第1课时 平均数01 基础题 知识点1 平均数1.(2017·桂林)一组数据2,3,5,7,8的平均数是(D)A .2B .3C .4D .5 2.(2017·六盘水)国产大飞机C 919用数学建模的方法预测的价格是(单位:美元):5 098,5 099,5 001,5 002,4 990,4 920,5 080,5 010,4 901,4 902,这组数据的平均数是(A)A .5 000.3B .4 999.7C .4 997D .5 0033.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(3)班的演唱打分情况(满分:100分)为:89,92,92,95,95,96,97,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为94分.4.(2017·大庆)已知一组数据:3,5,x ,7,9的平均数为6,则x =6. 5.水果店一周内某种水果每天的销量(单位:kg )如下:请计算该种水果本周每天销量的平均数. 解:该种水果本周每天销量的平均数为 (45+44+48+42+57+55+66)÷7=51(kg ).知识点2 加权平均数6.有8个数的平均数是11,另外有12个数的平均数是12,则这20个数的平均数是(A )A .11.6B .2.32C .23.2D .11.5 7.已知一组数据4,13,24的权数分别是16,13,12,则这组数据的加权平均数是17.8.(2017·张家界)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树4棵.9.甲、乙两名大学生竞选班长,现对甲、乙两名候选人从笔试、口试、得票三个方面表现进行评分,各项成绩如表所示:(1)如果按笔试占总成绩20%,,试判断谁会竞选上?(2)如果将笔试、口试和得票按2∶1∶2来计算各人的成绩,那么又是谁会竞选上?解:(1)甲的成绩为:85×20%+83×30%+90×50%=86.9(分),乙的成绩为:80×20%+85×30%+92×50%=87.5(分),∵87.5>86.9,∴乙会竞选上.(2)甲的成绩为:85×2+83×1+90×2=86.6(分),2+1+2乙的成绩为:80×2+85×1+92×2=85.8(分),2+1+2∵85.8<86.6,∴甲会竞选上.02中档题10.某同学使用计算器求15个数的平均数时,错将其中一个数据15输入为45,那么由此求得的平均数与实际平均数的差是(A)A.2 B.3C.-2 D.-311.已知数据x1,x2,x3的平均数是5,则数据3x1+2,3x2+2,3x3+2的平均数是(D)A.5 B.7C.15 D.1712.学校广播站要招聘1名记者,小亮和小丽报名参加了三项素质测试,成绩如下:5∶3∶2计算,总分变化情况是(B)A.小丽增加多B.小亮增加多C.两人成绩不变化D.变化情况无法确定13.某学校把学生的纸笔测试、实践能力两项成绩分别按60%,40%的比例计入学期总成绩.小明实践能力这一项成绩是81分,若想学期总成绩不低于90分,则纸笔测试的成绩至少是96分.14.洋洋九年级上学期的数学成绩如下表所示:(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩. 解:(1)x 平时=106+102+115+1094=108(分).答:洋洋该学期的数学平时平均成绩为108分. (2)洋洋该学期的数学总评成绩为:108×10%+112×30%+110×60%=110.4(分).03 综合题15.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A ,B ,C ,D ,E 五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评,结果如下表所示:表1 演讲答辩得分表(单位:分)规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1-a)+民主测评分×a(0.5≤a ≤0.8).(1)当a =0.6时,甲的综合得分是多少?(2)在什么范围内,甲的综合得分高;在什么范围内,乙的综合得分高?解:(1)甲的演讲答辩得分为90+92+943=92(分),甲的民主测评得分为40×2+7×1+3×0=87(分), 当a =0.6时,甲的综合得分为92×(1-0.6)+87×0.6=36.8+52.2=89(分). (2)∵乙的演讲答辩得分为89+87+913=89(分),乙的民主测评得分为42×2+4×1+4×0=88(分),∴乙的综合得分为89(1-a)+88a.由(1),知甲的综合得分为92(1-a)+87a.当92(1-a)+87a>89(1-a)+88a时,则a<0.75. 又∵0.5≤a≤0.8,∴当0.5≤a<0.75时,甲的综合得分高.当92(1-a)+87a<89(1-a)+88a时,则a>0.75. 又∵0.5≤a≤0.8,∴当0.75<a≤0.8时,乙的综合得分高.第2课时用样本平均数估计总体平均数01基础题知识点1组中值与平均数1.下列各组数据中,组中值不是10的是(D)A.0≤x<20 B.8≤x<12C.7≤x<13 D.3≤x<72.小王每个周一到周五的早上都会乘坐石家庄的110路公交车从柏林庄站到棉六站,小王统计了他40次乘坐的110路公交车在此路段上行驶的时间,并把数据分组整理,结果如下表,利用组中值,可得小王40次乘坐110路公交车所用的平均时间为20.4min.3.一个班有(1)填写表中“组中值”一栏的空白;(2)求该班本次考试的平均成绩.解:平均成绩为:54.5×4+64.5×8+74.5×14+84.5×18+94.5×64+8+14+18+6=77.3(分).答:该班本次考试的平均成绩为77.3分.知识点2用样本平均数估计总体平均数4.某“中学生暑期环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):7,5,7,8,7,5,8,9,5,9.根据提供的数据,该小区2 000户家庭一周内需要环保方便袋约(B) A.2 000只B.14 000只C.21 000只D.98 000只5.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中随机选取20名同学统计了各自家庭一个月节约水情况.见表:请你估计这400A.130 m3B.135 m3C.6.5 m3D.260 m36.某地区有一条长100千米,宽0.5千米的防护林.有关部门为统计该防护林的树林量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木数量如下(单位:棵):65 100,63 200,64 600,64 700,67 400.根据以上的数据估算这一防护林总共约有6__500__000棵树.7.某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了40只灯泡,它们的使用寿命如表所示,则这批灯泡的平均使用寿命是1__500__h.02中档题8.某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10.则可估计这批食品罐头质量的平均数约为(C)A.453 B.454C.455 D.4569.为了了解中学生的电脑打字成绩,某校在八年级450名学生中随机抽取了50名学生进行一分钟打字测试(字符数单位:个),将所得数据整理后,画出了频数分布直方图,如图所示(有缺失).已知图中从左到右分为5个小组.根据图中信息计算:在这次测试中,该50名学生一分钟打字的平均成绩是179.5个.10.果农老张进行桃树科学管理试验.把一片桃树林分成甲、乙两部分,甲地块用新技术管理,乙地块用老办法管理,管理成本相同.在甲、乙两地块各随机选取40棵桃树,根据每棵树的产量把桃树划分成A,B,C,D,E五个等级(甲、乙两地块的桃树等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:甲地块桃树等级频数分布直方图乙地块桃树等级扇形统计图(1)补全直方图,求α的值及相应扇形的圆心角的度数;(2)试从平均数的角度比较甲、乙两块地的产量水平,并说明试验结果. 解:(1)如图. α=10.相应扇形的圆心角为360°×10%=36°.(2)x 甲=95×10+85×12+75×10+65×6+55×240=80.5,x 乙=95×15%+85×10%+75×45%+65×20%+55×10%=75. ∴x 甲>x 乙.由样本平均数估计总体平均数的思想,说明通过新技术管理的甲地块桃树平均产量高于乙地块桃树平均产量.11.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况,小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A .饭和菜全部吃完;B .有剩饭但菜吃完;C .饭吃完但菜有剩;D .饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题:(1)这次被抽查的学生共有120人,扇形统计图中,“B 组”所对应的圆心角的度数为72°;(2)补全条形统计图;(3)已知该中学共有学生2 500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?解:(2)补全条形统计图如图.(3)这日午饭有剩饭的学生人数为:2 500×(1-60%-10%)=750(人),750×10=7 500(克)=7.5(千克).答:这日午饭将浪费7.5千克米饭.03综合题12.某地区在一次九年级数学检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区4 500名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=25,b=20,并把条形统计图补全;(2)请估计该地区此题得满分(即8分)的学生人数;(3)已知难度系数的计算公式为L=XW,其中L为难度系数,X为样本平均得分,W为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L<1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?解:(1)补全条形统计图如图.(2)由(1)可知,得满分的占20%,∴该地区此题得满分(即8分)的学生人数是4 500×20%=900(人).(3)由题意可得L=0×10%+3×25%+5×45%+8×20%10%+25%+45%+20%8=4.68=0.575.∵0.575处于0.4与0.7之间,∴此题对于该地区的九年级学生来说属于中等难度试题.20.1.2 中位数和众数第1课时 中位数和众数01 基础题 知识点1 中位数1.(2017·百色)在以下一列数3,3,5,6,7,8中,中位数是(C)A .3B .5C .5.5D .6 2.(2017·铁岭)在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10,则这组数据的中位数是(B)A .5B .6C .7D .10 3.(2017·淮安)九年级这15名男同学引体向上数的中位数是(C)A .2B .3C .4D .5 4.(2016·德州)某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计他们假期参加社团活动的时间,绘成频数直方图(如图),则参加社团活动时间的中位数所在的范围是(B )A .4~6小时B .6~8小时C .8~10小时D .不能确定第4题图 第5题图5.小明根据去年4~10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是32人.6.在一次测试中,抽取了10名学生的成绩(单位:分)为:86,92,84,92,85,85,86,94,94,83.(1)这个小组本次测试成绩的中位数是多少?(2)小聪同学此次的成绩是88分,他的成绩如何?解:(1)将这组数据按从小到大的顺序排列为83,84,85,85,86,86,92,92,94,94,则中位数是86+862=86.(2)根据(1)中得到的样本数据的中位数,可以估计,在这次测试中,大约有一半学生的成绩高于86分.小聪同学的成绩是88分,大于中位数86分,可以推测他的成绩比一半以上同学的成绩好.知识点2众数7.(2017·宿迁)一组数据:5,4,6,5,6,6,3,这组数据的众数是(A)A.6 B.5C.4 D.38.(2017·温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中A.5个B.6个C.7个D.8个9.(2016·宜昌)在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动,其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是(C)A.18 B.19C.20 D.2110.为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的众数决定.(在横线上填写:平均数或中位数或众数)02中档题11.(2017·福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是(D)A.10,15B.13,15C.13,20D.15,1512.(2016·黔南)一组数据:1,-1,3,x,4,它有唯一的众数3,则这组数据的中位数为(C) A.-1 B.1C.3 D.413.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:A.众数是4B.平均数是4.6C.调查了10户家庭的月用水量D.中位数是4.514.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为40,图1中m的值为15;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 解:(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都为36, ∴中位数为36+362=36.(3)200×30%=60(双).答:建议购买35号运动鞋60双.03 综合题15.如图是连续十周测试甲、乙两名运动员体能情况的折线统计图,教练组规定:体能测试成绩70分以上(包括70分)为合格.(1)请根据图中所提供的信息填写下表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,乙的体能测试成绩较好; ②依据平均数与中位数比较甲和乙,甲的体能测试成绩较好;(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.解:从折线图上看,两名运动员体能测试成绩都呈上升的趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格的次数比甲多,所以乙训练的效果较好.第2课时平均数、中位数和众数的应用01基础题知识点平均数、中位数和众数的应用1.(2017·郴州)在创建“全国园林城市”期间,郴州市某中学组织共青团员去植树,其中七位同学植树的棵数分别为:3,1,1,3,2,3,2,这组数据的中位数和众数分别是(B)A.3,2 B.2,3 C.2,2 D.3,32.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(D)A.众数B.最高分C.平均数D.中位数3.(2017·黄石)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)则这组成绩的中位数和平均数分别为(B)A.137,138 B.138,137C.138,138 D.137,1394.(2016·安顺)A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分5.(2017·眉山)下列说法错误的是(C)A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个6.(2017·牡丹江)一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是(C)A.6 B.5C.4.5 D.3.57.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5 mg/L,则第3次检测得到的氨氮含量是1mg/L.水质检测中氨氮含量统计图8.丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分那么表中数据一定不发生变化的是中位数(填“平均数”“众数”或“中位数”).9.为降低金融危机给企业带来的风险,某工厂加强了管理,准备采取每天任务定额和超产有奖的措施,以提高工作效率,下面是该车间15名工人过去一天中各自装配机器的数量(单位:台):6,6,7,8,8,8,9,9,10,10,11,13,14,15,16.(1)求这组数据的平均数、众数和中位数;(2)管理者为了提高工人的工作效率,又不能挫伤其积极性,应确定每人标准日产量为多少台比较恰当?解:(1)平均数:10;众数:8;中位数:9.(2)确定每人标准日产量为8台或9台比较恰当.02中档题10.在2017年3月12日植树节到来之际,某学校教师分为四个植树小组参加了“大美南阳”的植树节活动,其中三个小组植树的棵数分别为8,10,12,另一个小组的植树棵数与他们中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是(B)A.8 B.10C.12 D.10或1211.(2016·威海)某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是(C)A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,2012.有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,那么这7个数的中位数是34.13.(2016·巴中)两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为7.14.质量检测部门对甲、乙、丙三家公司销售产品的使用寿命进行了跟踪调查,统计结果如下(单位:年):甲公司:4,5,5,5,5,7,9,12,13,15;乙公司:6,6,8,8,8,9,10,12,14,15;丙公司:4,4,4,6,7,9,13,15,16,16.请回答下列问题:(1)填空:(2)(3)如果你是丙公司的推销员,你将如何结合上述数据及统计量,对本公司的产品进行推销?(至少说两条)解:(2)乙公司.因为从平均数、众数和中位数三项指标上看,都比其他的两个公司要好,他们的产品质量更高.(3)答案不唯一,如:①丙公司的平均数和中位数都比甲公司高;②从产品寿命的最高年限考虑,购买丙公司的产品的使用寿命比较长的机会比乙公司产品大一些.03综合题15.在喜迎建党九十七周年之际,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分;方案2:在所有评委给分中,去掉一个最高分和一个最低分,再计算剩余评委给分的平均分;方案3:所有评委给分的中位数;方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计,下图是这个同学的得分统计图.(1)分别按上述四种方案计算这个同学演唱的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?解:(1)方案1最后得分:110×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7(分);方案2最后得分:18×(7.0+7.8+3×8+3×8.4)=8(分);方案3最后得分:8分;方案4最后得分:8分或8.4分.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.20.2 数据的波动程度01 基础题知识点1 方差的计算1.数据-2,-1,0,1,2的方差是(C )A .0B . 2C .2D .42.在样本方差的计算式s 2=110[(x 1-5)2+(x 2-5)2+…+(x 10-5)2]中,数字“10”表示样本容量,数字“5”表示样本平均数. 3.(2017·绥化)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为2.知识点2 方差的应用 4.(2017·山西)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的(D)A .众数B .平均数C .中位数D .方差 5.(2016·凉山)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各打了5发子弹,命中环数如下:甲:9,8,7,7,9;乙:10,8,9,7,6.应该选(A )A .甲B .乙C .甲、乙都可以D .无法确定 6.(2017·葫芦岛)甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为s 2甲=16.7,乙比赛成绩的方差为s 2乙=28.3,那么成绩比较稳定的是甲(填“甲”或“乙”). 7.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投的成绩如图所示,那么三人中成绩最稳定的是乙.8.从甲、乙两种饮料中各抽取10盒250毫升的果汁饮料,检查其中的维生素C 的含量,所得数据如下(单位:毫克):甲:120,123,119,121,122,124,119,122,121,119; 乙:121,119,124,119,123,124,123,122,123,122.通过计算说明哪种饮料维生素C 的含量高?哪种饮料维生素C 的含量比较稳定? 解:x 甲=120+123+119+121+122+124+119+122+121+11910=121(毫克),x 乙=121+119+124+119+123+124+123+122+123+12210=122(毫克), ∵x 甲<x 乙,∴乙种饮料维生素C 的平均含量高.s 2甲=(121-120)2+…+(121-119)210=2.8,s 2乙=(122-121)2+…+(122-122)210=3,∵s 2甲<s 2乙,∴甲种饮料维生素C 的含量比较稳定.9.某商场统计了今年1~5月A 、B 两种品牌的冰箱的销售情况,并将获得的数据绘制成折线统计图:(1)分别求该商场这段时间内A 、B 两种品牌冰箱月销售量的中位数和方差; (2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性. 解:(1)∵A 种品牌:13,14,15,16,17;B 种品牌:10,14,15,16,20, ∴该商场这段时间内A 、B 两种品牌冰箱月销售量的中位数分别为15台、15台. ∵x A =15×(13+14+15+16+17)=15(台),x B =15×(10+14+15+16+20)=15(台),∴s 2A =15×[(13-15)2+(14-15)2+(15-15)2+(16-15)2+(17-15)2]=2, s 2B =15×[(10-15)2+(14-15)2+(15-15)2+(16-15)2+(20-15)2]=10.4. (2)∵x -A =x -B ,s 2A <s 2B, ∴该商场1~5月A 种品牌冰箱月销售量较稳定.02 中档题 10.(2017·通辽)若数据10,9,a ,12,9的平均数是10,则这组数据的方差是(B)A .1B .1.2C .0.9D .1.411.在2017年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是(A )A .18,18,1B .18,17.5,3C .18,18,3D .18,17.5,112.已知一组数据-3,x ,-2,3,1,6的中位数为1,则其方差为9. 13.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:,该工程队员工月工资的方差变大(填“变小”“不变”或“变大”).14.八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)9.5分10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是乙队. 解:x 乙=10+8+7+9+8+10+10+9+10+910=9(分). s 2乙=110×[(10-9)2+(8-9)2+…+(10-9)2+(9-9)2] =1.03 综合题15.元旦假期,小明一家游览仓圣公园,公园内有一座假山,假山上有一条石阶小路,其中有两段台阶的高度如图所示(图中的数字表示每一级台阶的高度,单位:cm ).请你运用所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下甲、乙两段台阶有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.解:(1)将甲、乙两台阶高度值从小到大排列如下:甲:10,12,15,17,18,18;乙:14,14,15,15,16,16. 甲的中位数是(15+17)÷2=16,平均数是16×(10+12+15+17+18+18)=15;乙的中位数是(15+15)÷2=15,平均数是16×(14+14+15+15+16+16)=15.故两台阶高度的平均数相同,中位数不同.(2)s 2甲=16×[(10-15)2+(12-15)2+(15-15)2+(17-15)2+(18-15)2+(18-15)2]=283, s 2乙=16×[(14-15)2+(14-15)2+(15-15)2+(15-15)2+(16-15)2+(16-15)2]=23. ∵s 2乙<s 2甲,∴乙台阶上行走会比较舒服. (3)修改如下:为使游客在两段台阶上行走比较舒服,需使方差尽可能小,最理想应为0,同时不能改变台阶数量和台阶总体高度,故可使每个台阶高度均为15 cm(原平均数),使得方差为0.20.3 课题学习 体质健康测试中的数据分析01 基础题知识点 完成调查活动1.要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是(D )A .选取该校一个班级的学生B .选取该校50名男生C .选取该校50名女生D .随机选取该校50名九年级学生2.设计调查活动要经历的5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但这5个步骤的排序不对,正确排序为②①④⑤③.(填序号) 3.(2016·呼和浩特)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164134 155 152 168 162 148 (1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据该样本数据的中位数,推断他的成绩如何?解:(1)将这组数据按从小到大的顺序排列如下:125,134,140,143,146,148,152,155,162,164,168,175.∵这组数据按从小到大的顺序排列后,处于最中间的两个数为148,152, ∴该样本数据的中位数为148+1522=150(分钟),x -=112×(125+134+140+143+146+148+152+155+162+164+168+175)=151(分钟).(2)由该样本数据的中位数为150分钟,说明在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟.这名选手的成绩为147分钟,快于中位数150分钟,可以断定他的成绩比一半以上选手的成绩好.4.阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 41 51 36 44 46 40 53 37 47 45 46(1)前10株西红柿秧上小西红柿个数的平均数是47,中位数是49.5,众数是60; (2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图;(3)通过频数分布直方图试分析此大棚中西红柿的长势.解:此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.02中档题5.小敏的妈妈下岗后开了一个牛奶销售店,主要经营“学生奶”“酸牛奶”“原味奶”.可由于经验不足,经常出现有的牛奶没卖完,有的牛奶又不够卖,一段时间下来,通过盘点,不但没有挣钱反而亏损了.小敏结合所学的现阶段统计知识帮妈妈统计了一个星期牛奶的销售情况,并绘制了下表:(1)(2)计算各品种牛奶的方差(结果保留小数点后两位),并比较哪种牛奶销量最稳定?(3)假如你是小敏,你对妈妈有哪些好的建议?解:(1)“学生奶”的日平均销售量为(2+1+1+9+8)÷7=3,“酸牛奶”的日平均销售量为(70+70+80+75+85+80+100)÷7=80,“原味奶”的日平均销售量为(40+30+35+30+38+47+60)÷7=40,则“酸牛奶”的销量最高.(2)“学生奶”的方差:s2=17×[(2-3)2+(1-3)2+(0-3)2+(1-3)2+(0-3)2+(9-3)2+(8-3)2]≈12.57,“酸牛奶”的方差:s2=17×[(70-80)2+(70-80)2+(80-80)2+(75-80)2+(85-80)2+(80-80)2+(100-80)2]≈92.86,“原味奶”的方差:s2=17×[(40-40)2+(30-40)2+(35-40)2+(30-40)2+(38-40)2+(47-40)2+(60-40)2]≈96.86,则“学生奶”的销量最稳定.(3)酸牛奶每天进80瓶,原味奶每天进40瓶,学生奶平时不进或少进,周末多进一些,进8~9瓶.。
八年级数学下册第二十章数据的集中趋势中位数和众数 教案新人教版
20.1.2中位数和众数第1课时【教学目标】知识与技能:1.理解中位数和众数的意义,并会求一组数据的众数和中位数.2.会利用中位数、众数分析数据信息,做出决策.过程与方法:经历探索中位数、众数的概念的过程,学会根据数据做出总体的初步思想、合理论证,领会平均数、中位数、众数等特征数的联系和区别.情感态度与价值观:培养良好的数字信息处理的意识,建立学好数学的自信心,体会发展的内涵与价值.【重点难点】重点:理解中位数和众数的意义,并会求一组数据的众数和中位数.会利用中位数、众数分析数据信息,做出决策.难点:会求一组数据的众数和中位数.会利用中位数、众数分析数据信息,做出决策.【教学过程】一、创设情境,导入新课李明找工作中看到如下广告:本公司员工的月平均工资是6 276元,工作条件好,……其实际情况如下:某公司员工月收入资料表月收45 00018 00010 000 5 500 5 000 3 400 3 000 1 000入/元人数111361111(1)请根据表中的数据,计算该公司员工的月平均工资是多少?(2)如果用(1)算得的平均数能否客观反映公司全体员工月实际收入水平?(3)用什么数据反映一般员工的收入比较合适?(4)用什么数据反映多数员工的收入比较合适?你会解答上面问题吗?这一节课我们就来探究.二、探究归纳活动1:中位数与众数的概念1.问题:(1)某次数学测验中,某班六位同学的成绩分别是:86,79,81,86,90,84,这组数据的众数是________,中位数是________.提示:8685(2)在一次中学生田径运动会上,参加男子跳高的15名运动员成绩如表:则这些运动员成绩的中位数是________,众数是________.提示:1.651.752.思考:一组数据的个数是奇数与偶数时,中位数怎样确定?提示:(1)如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数.(2)如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.3.归纳:(1)中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数的平均数为这组数据的中位数. (2)众数:一组数据中出现次数最多的数据称为这组数据的众数.活动2:例题讲解【例1】某校篮球班21名同学的身高如表:则该校篮球班21名同学身高的中位数是________cm.分析:将一组数据按照由小到大(或由大到小)的顺序排列,因数据的个数是奇数,则处于中间位置的数就是这组数据的中位数解:表中数据已按由小到大的顺序排列,因数据的个数是21,所以处于中间位置的第11个数据就是这组数据的中位数,而第11个数据是187,所以该校篮球班21名同学身高的中位数是187 cm.答案:187总结:求一组数据中位数的方法:(1)排序:将一组数据按照由小到大(或由大到小)的顺序排列.(2)找中位数:如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【例2】某公司有10名工作人员,他们的月工资情况如下表,根据表中信息,该公司工作人员的月工资的众数是________.分析:分析数据,找出出现次数最多的数,就是这组数据的众数.解:众数是“一组数据中出现次数最多的数据”,由表可知,0.6的人数为4,人数最多,所以该公司工作人员的月工资的众数是0.6.答案:0.6总结:先观察或统计每个数据出现的次数,再看次数是否相同,如果次数不同,再找出出现次数最多的数,就是这组数据的众数;如果每个数据出现的次数相同,那么这组数据就没有众数.三、交流反思这节课我们学习了中位数和众数的概念、求法.求中位数时,必须先将这组数据按照由小到大(或由大到小)的顺序排列.一组数据的中位数是唯一的,一组数据的众数可能不止一个.平均数、中位数和众数都是数据的代表,它们从不同方面描述了数据的集中趋势.四、检测反馈1.一组数据3,2,1,2,2的众数,中位数分别是 ()A.2,1B.2,2C.3,1D.2,12.近年来快递业发展迅速,下表是2020年1~3月份山西部分地市邮政快递业务量的统计结果(单位:万件)1~3月份山西省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件3.(2020·宁波中考)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.34.种菜能手李大叔种植了一批新品种黄瓜.为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜根数,得到如图所示的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是()A.13.5,20B.15,5C.13.5,14D.13,145.一组数据3,-3,2,4,1,0,-1的中位数是________.6.我市某一周的每一天的最高气温统计如表:最高气温(℃)26 26 27 28天数 1 1 2 3则这组数据的中位数是________,众数是________.7.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别是:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是______,众数是________.(2)计算这10位居民一周内使用共享单车的平均次数.(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.8.我市某校九年级一班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成后面的问题:(1)该班共有多少名学生?(2)求该班学生体考成绩的众数和男生体考成绩的中位数.(3)若女生体考成绩在37分及其以上,男生体考成绩在38分及其以上被认定为体尖生,则该班共有多少名体尖生?五、布置作业教科书第121页练习第1,2题六、板书设计20.1.2中位数和众数第1课时一、中位数1.定义:2.求法:二、众数1.定义:2.求法:三、例题讲解四、板演练习七、教学反思本节课学习了中位数与众数的定义与求法,从统计学生现在的平均年龄入手,引导学生想像十年后找工作的情景,紧接着从身边的李明找工作中看到的广告:某公司员工月收入的资料,让学生在解读广告中获取信息,进而引出某公司员工月收入的工资表.这些都是贴近学生生活的事例,学生感兴趣,又显得亲切自然,再从工资表与广告的冲突,激发学生的探究欲望.当学生跃跃欲试时,教师提出要求给出自学方向,让学生少走弯路.随后学生按照教师提供的自学指导,进行有针对性地自学.汇报、交流后让学生把“平均数、中位数、众数”进行联系与区别,再让学生用所学的知识解决如何准确表示某公司员工月收入,学生用所学知识解决了问题,初次尝到了成功的喜悦.中位数和众数的应用.这一环节,由浅入深设置练习,使学生思维分层递进,目的是突出本节重点,分解了难点.练习时,在同一具体问题中分别求平均数,中位数,众数,目的是为了比较三个量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别.这样更具有很强的生活色彩,让学生体会了众数、中位数在日常生活中的应用.。
八年级数学下册 20.1 数据的集中趋势课标解读素材 (新版)新人教版
数据的集中趋势课标解读
1.数据集中趋势是指一组数据向某一中心值靠拢的倾向,度量集中趋势就是寻找数据一般水平的代表值或中心值.在刻画一组数据的集中趋势的统计量中,以平均数最为重要,其应用最为广泛,因为平均数是一组数据的“重心”,是度量一组数据的波动大小的基准,但它易受到极端值的影响.要理解权的意义和形式,会求一组数据的加权平均数.中位数是一个反映数据集中趋势的位置代表值,能够表明一组数据排序最中间的统计量,可以提供这组数据中,约有一半的数据大于(或小于)中位.众数是表明一组数据出现次数最多的统计量,当一组数据有较多的重复数据时,众数往往是人们所关心的一个统计量,它提供了哪个(或哪些)数据出现的次数较多.我们往往可通过排序或列表等方式得出一组数据的中位数和众数.
2.通过较多的实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可以得到不同的结果,能够用样本的平均数推断总体平均数.3.了解平均数、中位数、众数所反映数据的各自特征,能结合实例获取更多的信息,选用适当的统计量对数据的集中趋势进行描述,并对统计结果进行合理的解释,作出简单的判断和预测.
1。
最新人教版八年级数学下册第二十章《数据的集中趋势》自主广场
自主广场 我夯基 我达标 1.某公司员工的月工资统计如下表,那么该公司员工月工资的平均数、中位数和众数分别是( ) A.1 600,1 500,1 500 B.2 000,1 000,1 000 C.1 600,1 500,1 000 D.2 000,1 500,1 000 月工资(元) 3 000 2 000 1 000 人数(人) 1 4 5 思路解析:根据平均数、中位数和众数的概念,直接求出. 答案:C 2.某超市购进了一批不同价格的运动鞋,根据近几年统计的平均数据,运动鞋单价为40元,35元,30元,25元的销售百分率分别为60%,75%,82%,98%.要使该超市销售运动鞋收入最大,该超市应多购单价为_______________的运动鞋.( ) A.40元 B.35元 C.30元 D.25元 思路解析:根据不同单价运动鞋的价格和销售百分率,计算出销售额. 答案:B 3.(2006山东滨州中考)为建设生态滨州,我市某中学在植树节那天,组织初三年级八个班的学生到西城新区植树,各班植树情况如下表: 班级 一 二 三 四 五 六 七 八 合计 棵数 15 18 22 25 29 14 18 19 160 下列说法错误的是( ) A.这组数据的众数是18 B.这组数据的中位数是18.5 C.这组数据的平均数是20 D.以平均数20棵为标准评价这次植树活动中各班植树任务完成情况比较合理 思路解析:计算出的平均数、中位数和众数的结果都是正确的.用平均数20棵来衡量完成情况是不合理的,因为这组数据波动性较大,用平均数20棵来衡量只有3个班级完成. 答案:D 4.某工厂生产同一型号的电池.现随机抽取了6节电池,测试其连续使用时间(小时)分别为:47,49,50,51,50,53.这6节电池连续使用时间的平均数为_____________小时. 思路解析:根据平均数计算公式可以求出. 答案:50 5.(2006广东肇庆中考)数据a,a+1,a+2,a+3,a-3,a-2,a-1的中位数是_______________. 思路解析:这七个数中间的一个是a. 答案:a 6.某学校决定招聘一位数学教师,对应聘者进行笔试和试教两项综合考核,根据重要性,笔试成绩占30%,试教成绩占70%.应聘者张宇、李明两人的得分如下表: 张宇 李明 笔试 78 92 试教 94 80 如果你是校长,你会录用____________________. 思路解析:利用加权平均数计算公式,张宇的综合考核得分为78×30%+94×70%=89.2分;李明的综合考核得分为92×30%+80×70%=83.6分. 答案:张宇 7.(2006福建龙岩中考)某县为了了解初三6 000名学生初中毕业考试数学成绩(分数为整数)从中抽取了200名学生的数学成绩进行分析,下面是200名学生数学成绩的频率分布表: 分组 频数 频率 89.5—99.5 12 a 99.5—109.5 24 0.12 109.5—119.5 36 0.18 119.5—129.5 68 0.34 129.5—139.5 b 0.2 139.5—149.5 20 0.1 合计 200 1 根据所给信息回答下列问题: (1)频率分布表中的数据a=______________,b=______________; (2)中位数落在______________分数段内; (3)若成绩不低于120分的为优秀,试估计该县初三学生初中毕业考试数学成绩优秀的学生有______________人. 思路解析:(1)根据频数的和为200,频率和为1,可以求出a=0.06,b=40; (2)按照大小顺序排列,中位数应该是第100个数和第101个数的平均数,观察表格知,第100个数和第101个数应该在第5组,即119.5—129.5范围内; (3)在119.5—129.5范围内的有68人,不包含119.5分,可以认为都不低于120分,因此
新人教版数学八年级下册(初二下)精品教案,导学案:第二十章 数据的分析
人教版八年级下数学精品教案:第二十章数据的分析20.1数据的集中趋势20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解三、例习题意图分析1、教材P124的问题及讨论栏目在教学中起到的作用。
(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。
(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。
在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。
(3)、客观上,教材P124的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。
(4)、P125的云朵其实是复习平均数定义,小方块则强调了权意义。
2、教材P125例1的作用如下:(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。
(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。
3、教材P126例2的作用如下:(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。
(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。
(3)、它也充分体现了统计知识在实际生活中的广泛应用。