先导化合物的发现及结构优化策略
新药设计与开发的基本途径和方法 先导化合物的优化

引入烯键
插烯原理(Vinylogy principle):插烯物 A(CH=CH)n-B,A、B 之间的电性可通过共轭双 键传递。 可应用于其他共轭体系:亚胺、乙炔基、苯环、 芳杂环等。
O H3C C O H3C C CH2 CHO H3C OH O C C H C H OH
引入烯键
在饱和碳链上引入双键,分子的构型和构象改 变较大,生物活性变化也较大。
可卡因
O O H2N Procaine
普鲁卡因
N
H
剖裂物-简化复杂结构
H3CO2C O O Cocaine 可卡因 O O Eucaine 优卡因 NH N CH3
H2N O
N
O Procaine 普鲁卡因
普鲁卡因Procaine的发现
从Cocaine到Procaine
苯甲酸酯占有重要地位 甲氧羰基并非活性所必须的基团 莨菪烷双环结构并不是必须的 氨基苯甲酸酯具有局部麻醉作用
插烯物与原药物相比,通常易代谢降解、活性 降低和毒性可能增大(共轭双键的反应性)。 插烯物变换时,A-(CH=CH)n-B,改变了A、B 间的距离。
引入烯键
N O
N O CH2CH2CH2CH3 O
N
N O CH2CH2CH2CH3
保泰松 Phenylbutazone
Styrylbutazone
O O O N(C2H5)2
奥昔拉定 Oxeladin 止咳
O O O N(C2H5)2
喷托维林 Pentoxyverine
止咳
合环和开环
H3C CH OH CH CH3 O 芬美曲秦 Phenmetrazine 食欲抑制剂 H N
NHCH3
药物设计基本原理和方法

❖ 主要内容: 先导化合物的发现 先导化合的优化
一、新药开发的两阶段
❖先导化合物的发现 (Lead Generation) ❖先导化合物优化
NCE
(Lead Optimization)
两者相辅相成
lead discovery
lead optimization
先导化合物Lead compound
❖ 经研究后发现是由于异烟肼具有 抑制单胺氧化酶的副作用,于是 以异烟肼为先导化合物,发展了 单胺氧化酶抑制剂类抗抑郁药, 异丙烟肼是其中一例。
CONHNH2
N 异 烟 肼 Iso n ia z id
C O N H N H C H (C H 3 )2
N 异 丙 烟 肼 Ip r o n ia z id
❖The structure of the lead compound is then modified by synthesis to amplify the desired activity and to minimize or eliminate the unwanted properties.
❖原型药物(Prototype Drug) ❖ 随之出现了大量的“Me-too”药物
A me-too drug is a compound that is structurally very similar to already known drugs, with only minor pharmacological differences.
二、先导化合物的发现
Approaches for lead discovery
1 改进和优化已有药物 2 筛选途径 3 利用自然界生物资源 4 合理药物设计
药物化学 先导化合物的发现

O
利尿药
米诺地尔(minoxidil)
直接作用于血管平滑肌,扩张外周血管 临床用作降血压药 副作用:长期服用会促进毛发生长,特别是头 部面部毛发生长旺盛(机理可能是开启钾离子 通道) 该药已作为局部用药治疗脱发症
NH N N minoxidil N OH NH2
异丙烟肼
2、药物代谢研究得到先导物
体内代谢
可能被活化 也可能被失活 甚至转化成有毒的化 合物
代谢活化
转运型
代谢降解
治疗活性型药物 治疗活性型药物 无治疗活性产物 细胞外液
蛋白质结合
治疗活性型药物 转运型药物 无治疗活性产物
药物研究的先导物
选择其活化形式 避免代谢失活或毒化的结构
为寻求新的先导化合物(Lead Compound)
类型衍化
对先导化合物进行优化(Lead Optimization) 寻找该先导化合物系列衍生物中的最佳化合物 系列设计
Lead generation
发现先导化合物
Lead generation is the term applied to strategies developed to identify compounds which possess a desired but non-optimized biological activity.
相互关系
先导化合物的发现
为寻找最佳化合物提供了基础和新的结构类型
先导化合物优化
先导化合物的深入和发展
两者相辅相成
先导化合物(Leading Compound)
又称原形物prototype compound
是指有独特结构的具所期望的生物或药理活性 的化合物 但会存在一些其他所不合适的性质
2-2,3 先导化合物

常用的生物电子等排体
• 组胺H2受体拮抗剂中环内等价电子等排体的应用较为成功, 例如以呋喃和噻唑置换咪唑环得雷尼替丁和法莫替丁,它们 的H2受体拮抗作用均比西米替丁强。
2、前药设计
• 药物经过化学结构修饰后得到的化合物,在体外没有或很少有 活性,但在生物体或人体内通过酶的作用又转化为原来的药物 而发挥药效时,则称原来的药物为母体药物(Parent Drug),修 饰后得到的化合物为前体药物,简称前药(Prodrug)。 • 概括起来前药设计的目的主要有以下四个方面:
H H N
O
S
NH2
O 硫霉素
OH
克拉维酸 Clavulanic Acid
2、以现有的药物作为先导物
• 已有的药物中有些可被选作先导物,进一步优化得到新药。 这可有以下的几种类型。
– (1)由药物副作用发现先导化合物:在某些情况下,一药物的 毒副作用可能对另一种疾病有治疗作用。例如吩噻嗪类抗精神 失常药氯丙嗪及其类似物,是由结构类似的抗组胺药异丙嗪的 镇静副作用发展而来的。
• 于是内源性的神经递质,内源性的受体激动剂就顺理成章的 成了药物研究的先导化合物。 • 例如氟脲嘧啶的研究以DNA或RNA合成的核苷酸尿嘧啶作 为先导化合物,将5位的氢换成氟,使之成为生物体的正常 代谢物的代谢拮抗剂,用做抗肿瘤药。
O HN O N H 氟尿嘧啶 F HN O N H 尿嘧啶 O H
4、改善药物水溶性、稳定性、克服不良气味或 理化性质以适应制剂的需要
• 如羧苄青霉素口服时对胃酸不稳定,易被分解失效。将其侧链 上的羧基酯化为茚满酯则对酸稳定,可供口服,吸收得以改善。
O NH COOH O S N COOH O
O NH O N O 茚满酯 S COOH
先导化合物的概念及发现途径

先导化合物的概念及发现途径.
先导化合物(lead compound)是指在药物研发过程中,作为药物候选的化合物。
它通常具有一定的生物活性,并且可以通过化学修饰或优化来进一步开发成为更有效的药物。
发现先导化合物的途径有以下几种:
1. 高通量筛选(HTS):使用自动化设备对大规模化合物库进行快速筛选,检测化合物与特定生物靶点之间的相互作用,并确定具有一定活性的化合物。
2. 细胞系筛选:使用细胞系进行药物筛选,检测化合物对细胞增殖、存活或其他生物学效应的影响,找到具有生物活性的化合物。
3. 虚拟筛选(in silico screening):利用计算机辅助药物设计(computer-aided drug design)方法,通过模拟化合物与靶点之间的相互作用,预测和筛选具有潜在生物活性的化合物。
4. 经验性发现:通过对自然产物、药物衍生物或相关化合物的研究,发现具有一定生物活性的化合物。
5. 报道的先导化合物:参考已发表文献中报道的具有一定生物活性的化合物,进行进一步研究和开发。
这些途径常常结合运用,以发现具有潜在药理活性的先导化合物,为进一步的研发和优化提供基础。
先导化合物优化方法

先导化合物优化方法首先,了解作用机制是优化的基础。
通过深入研究药物与靶点的结构互动信息,确定药物的作用模式和关键结构,为后续的优化工作提供指导。
其次,结构修饰是先导化合物优化的核心工作。
常用的结构修饰方法包括:1.同系物合成法:通过合成同系物,对比其药物活性,寻找结构-活性关系,从而确定优化方向。
2.结构异构体设计法:通过合成化合物的异构体,改变化合物的构象或立体结构,探索活性片段的空间取向,以获得更好的活性。
3.反应活性关系法:通过合成不同反应活性的化合物,分析其药物活性和反应活性之间的关系,寻找新的活性片段和合适的反应类型。
4.构效关系法:通过小分子片段的添加、删除和改变,探索结构与活性之间的关系,为优化提供方向。
接下来,属性优化是先导化合物优化的重要目标。
属性优化主要包括药物活性、药代动力学性质和毒理学性质的优化。
1.药物活性优化:通过结构修饰,寻找更好的结构-活性关系,加强与靶点的相互作用,提高药物的选择性和亲和性。
2.药代动力学性质优化:包括溶解度、渗透性、代谢稳定性、药物输送以及血浆半衰期等。
合理设计化合物的化学结构,可通过改变官能团、阻隔基团和杂环结构等方式进行优化。
3.毒理学性质优化:提前预测毒性和副作用可能性,通过减少毒性团以及提高化合物的选择性和安全性来进行优化。
此外,信息学方法在先导化合物优化中发挥了重要作用。
1.虚拟筛选:通过计算机模拟和结构基于药物设计等方法,从大量化合物数据库中筛选出具有潜在活性的化合物。
2.药代动力学预测:通过计算机模拟和机器学习等方法,预测化合物的药代动力学性质,从而指导优化设计。
3.毒性预测:通过计算机模拟和结构-活性模型,预测化合物的毒性和副作用,以此指导优化设计。
最后,先导化合物的优化是一个循环迭代的过程。
优化的过程需要不断地进行药物活性评价、药代动力学评价与毒理学评价,根据评价结果不断地进行结构修饰,直到达到预期的药物性质。
综上所述,先导化合物的优化方法主要包括结构修饰、属性优化以及信息学方法的应用。
简述先导化合物的发现方法和途径
简述先导化合物的发现方法和途径先导化合物是指在药物研发中,用于指导更进一步的研究和发现的化合物。
先导化合物的发现方法和途径主要有以下几种:1. 高通量筛选(High-throughput screening,HTS):这是一种常用的先导化合物发现方法,通过快速筛选大量化合物来寻找对特定疾病具有潜在活性的化合物。
HTS通常通过自动化技术将大量的化合物与靶标进行高通量快速筛选,然后对活性化合物进行进一步的验证和优化。
2. 目标导向设计(Target-based design):这种方法是基于对疾病靶标的深入了解,通过结构活性关系(Structure-Activity Relationship)的分析和计算机辅助设计,设计和合成具有高度选择性和活性的化合物。
这种方法通常需要有对靶点的详细了解以及相关的生物信息学和计算机模拟工具。
3. 化学文库筛选(Library screening):利用化学文库中已经合成的化合物进行筛选,有可能发现具有新的活性的化合物。
这种方法可以利用已有的化合物文库进行验证,或者自行合成新的化合物进行筛选。
4. 天然产物筛选(Natural product screening):天然产物是源于自然界的有机化合物,具有多样的结构和生物活性。
通过从植物、微生物等天然来源中分离和提取化合物,然后进行活性筛选,可以发现具有潜在药物活性的先导化合物。
5. 前体化合物的优化:在一些情况下,已有的药物或化合物可能可以作为先导化合物进行进一步的优化。
通过对已有化合物的结构进行修改和合成类似的化合物,可以优化化合物的活性、选择性、毒性和药代动力学性质。
以上方法和途径常常是相互结合的,根据药物研发的需求和具体情况进行选择和应用。
先导化合物
先导化合物发现的方法和途径
从天然产物活性成分中发现先导化合物 通过分子生物学途径发现先导化合物 如青霉素,β受体阻断剂 如由偶氮化合物磺胺米柯定发现磺 通过随机机遇发现先导化合物 胺类药物,阿司咪唑进一步发现诺 阿司咪唑 由异丙嗪发现吩噻嗪类抗精神病药 从代谢产物中发现先导化合物 物 从临床药物的副作用或者老药新用途中发现 从药物合成的中间体药物中特殊的一 类,它被设计成易代谢失活,在完成治疗作用 后,按预先规定的代谢途径和可以控制的速率 分解,失活并迅速排出体外,从而避免药物的 蓄积毒性.
拼合原理(combination principles)主要是 指将两种具有生物活性的化合物通过共价键 连接起来,进入体内分解成两个有效成分, 以期减小两种药物的毒副作用,求得二者作用 的联合效应.
�
公司及产品
OcuCure Therapeutics, Inc., lead compound OC-10X ,eye disease DiaKine Therapeutics ,Lisofylline,diabetes BiPar Sciences, Inc., BSI-201,cancer therapies Cognetix Inc., CGX-1160 ,chronic intractable pain Targacept, Inc. ,NNR Therapeutics ,smoking cessation program VIA Pharmaceuticals,VIA-2291,cardiovascular disease Lixte Biotechnology,LB-1.2 ,Standard Cancer Chemotherapy Cantab ,LM-CD45, treatment for kidney transplant Pfizer Inc ,PF-03187207,treatment of glaucoma SIMPSON BIOTECH CO., LTD.,HEPASIM ,anti-fibrosis & antiinflammation
先导化合物的概念以及发现途径
先导化合物的概念以及发现途径
先导化合物是指对新药物的研发具有潜力的化合物。
它们通常是经过初步活性筛选和生物评估后被确定为具有抗病原体、抗肿瘤、抗炎等活性的化合物。
先导化合物的发现途径包括:
1. 天然产物筛选:通过从动植物、微生物等自然来源中分离和筛选具有生物活性的化合物。
2. 合成化学:通过有机合成反应来合成新的化合物,可以根据已知的结构和活性模式设计和合成潜在的先导化合物。
3. 高通量筛选:利用自动化技术和高通量筛选平台,对大规模样品进行高效的筛选,以发现具有特定生物活性的化合物。
4. 仿制药物:根据已有药物的结构和活性信息,设计和合成结构类似但具有改进性质的化合物。
5. 结构活性关系(SAR):通过对一系列相关化合物进行活性评估和结构优化,以揭示化合物的结构与活性之间的关系,从而设计和合成具有更好活性的先导化合物。
以上是一些常用的发现先导化合物的途径,不同途径都有其特点和局限性,研究人员常常根据具体的研究目标和需求选择合适的发现途径。
先导化合物的优化方法
先导化合物的优化方法
先导化合物是指在药物研发过程中,通过对目标蛋白的结构和功能进行分析,设计出具有一定活性的化合物。
这些化合物可以作为药物研发的起点,通过优化和改良,最终得到具有良好药效和安全性的药物。
因此,先导化合物的优化方法对于药物研发具有重要意义。
1. 结构优化
结构优化是指通过对先导化合物的结构进行改良,提高其药效和选择性。
这一过程需要结合药物的靶点结构和药效评价结果,进行有针对性的改良。
例如,可以通过引入不同的官能团、改变分子的立体构型等方式,优化先导化合物的结构。
2. 代谢稳定性优化
药物在体内的代谢稳定性是影响其药效和毒副作用的重要因素。
因此,对于先导化合物的代谢稳定性进行优化也是非常重要的。
可以通过改变分子的亲水性、引入稳定性官能团等方式,提高先导化合物的代谢稳定性。
3. 药物动力学优化
药物动力学是指药物在体内的吸收、分布、代谢和排泄等过程。
对于先导化合物的药物动力学进行优化,可以提高其在体内的药效和安全性。
例如,可以通过改变分子的亲脂性、分子量等方式,优化
先导化合物的药物动力学性质。
4. 毒副作用优化
药物的毒副作用是影响其临床应用的重要因素。
因此,对于先导化合物的毒副作用进行优化也是非常重要的。
可以通过改变分子的结构、引入选择性官能团等方式,降低先导化合物的毒副作用。
先导化合物的优化方法是药物研发过程中不可或缺的一部分。
通过有针对性的优化,可以提高先导化合物的药效和安全性,为药物研发提供有力支持。