由递推关系求通项公式的数列问题
巧用递推关系式求数列通项

巧用递推关系式求数列通项摘要:数列是数学教学中的重要内容,通项公式的求解有很强的技巧性,本文从不同方面,归纳出由递推公式求数列通项的六种常见方法。
关键词:数列递推公式通项数列是数学教学中的重要内容之一,也是初等数学与高等数学的一个重要的衔接点,这一章占有不可忽视的地位。
对于特殊数列——等差数列与等比数列的通向公式较易掌握,而由递推公式求数列的通项问题,学生往往较难掌握。
本人从多年的教学实践中发现,在遇到有关由递推公式求数列通项时,只要注意挖掘已知条件的特点,通过递推公式的变换,转化为特殊数列,往往能事半功倍,收到良好的解题效果。
下面就通过几个题目,浅谈由递推关系式求数列通项的几种常见方法。
一、配常数构建等比数列求通项题1:已知数列an满足a1=2,an+1=an+,求数列an的通项公式。
解:因为an+1=an+,故可将其变形为:an+1-1=(an-1)即=,又a1-1=1所以数列an-1是以1为首项,公比为的等比数列,所以an-1=n-1从而an=1+n-1二、取倒数构建等差数列求通项题2:已知数列an满足a1=2,an=求数列an的通项公式。
解:因为a1=2,an=(n≥2)(*),在(*)两边取倒数得:=即=1+,所以当n≥2时-=1,又=,所以数列是以为首项,公差为1的等差数列,所以=+(n-1)×1,即an=。
三、取对数构建等比数列求通项题3:已知数列an满足a1=10,an+1=an2求数列an的通项公式。
解:因为an+1=an2,从而可知数列an的每一项必为正数,所以两边取以10为底的对数得:1gan+1=21gan即=2,又1ga1=1,所以数列1gan是以1为首项,公比为2的等比数列,所以1gan=1×2n-1,从而an=102n-1。
当然,以上方法也有可能在一个题中同时并用才能达到解题目标,如:题4:已知数列an中,满足a1=8,an+12=4,求数列an的通项公式。
由递推关系求通项公式的类型与方法

由递推关系求通项公式的类型与方法递推公式是给出数列的基本方式之一,在近几年高考题中占着不小的比重。
2008年高考数学19份理科试卷,共19道数列部分的解答题,其中有17道涉及递推数列,(福建卷理科有两道题涉及数列问题,江苏卷、江西卷中数列题不涉及递推),说每卷都有数列问题,数列必出递推也不为过。
不能不感受到高考数学试题中“递推”之风的强劲。
为此本文主要以2008年试题为例重点研究由递推关系求数列通公式的类型与求解策略。
一、递推关系形如:1()n n a a f n +=+的数列利用迭加或迭代法得:1(1)(2)(1)n a a f f f n =++++-L ,(2n ≥)例1(08天津文20)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)略(Ⅰ)证明:由题设11(1)n n n a q a qa +-=+-(2n ≥),得11()n n n n a a q a a +--=-,即1n n b qb -=,2n ≥.又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为q 的等比数列. (Ⅱ)解法:由(Ⅰ)211a a -=,32a a q -=,22121321()()()11n n n n a a a a a a a a q q q --=+-+-++-=+++++L L ,(2n ≥).所以当2n ≥时,11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩上式对1n =显然成立.二、递推关系形如:1()n n a a f n +=的数列利用迭乘或迭代法可得: 1(1)(2)(1)n a a f f f n =-L ,(2n ≥)例2 (2008天津理22)在数列{}n a 与{}n b 中,4,111==b a ,数列{}n a 的前n 项和n S 满足()031=+-+n n S n nS ,12+n a 为n b 与1+n b 的等比中项,*N n ∈.(Ⅰ)求22,b a 的值;(Ⅱ)求数列{}n a 与{}n b 的通项公式; 解:(Ⅰ)易得23a =,29b =.(Ⅱ)由题设 1(3)n n nS n S +=+ ① (2n ≥)时 1(1)(2)n n n S n S --=+ ② ①式减去②式,整理得1(2)n n na n a +=+, 即12n n a n a n++=,2n ≥所以 3n ≥时, 132122114(1)312322n n n n n a a a n n n n n a a a a a n n n ---+-+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=--- 此式对1,2n =也成立. (1)2n n n a +∴=由题设有2114n n n b b a ++=,所以221(2)(1)n n b b n n +=++,即1221(1)(2)n n b b n n +⋅=++,*n N ∈. 令2(1)n n b x n =+,则11n n x x +=,即11n n x x +=.由11x =得1n x =,1n ≥.所以21(1)n b n =+,即2(1)n b n =+,1n ≥.三、递推关系形如:1n n a pa q +=+(p,q 为常数且1p ≠,0q ≠)的数列(线性递推关系) 利用不动点求出x px q =+的根1qx p =--,递推关系可化为1()11n n q q a p a p p ++=+--,利用等比数列求出1n q a p +-的表达式,进而求出n a 例3(2008安徽文21)设数列{}n a 满足*11,1,,n n a a a ca c c N +==+-∈其中,a c 为实数,且0c ≠(Ⅰ)求数列{}n a 的通项公式解 :*11,,n n a ca c c N +=+-∈Q 11(1)n n a c a +∴-=-∴当1a ≠时,{}1n a -是首项为1a -,公比为c 的等比数列。
求数列的通项公式的八种方法(强烈推荐)

怎样由递推关系式求通项公式一、基本型:(1)a n =pa n-1+q (其中pq ≠0 ,p ≠1,p 、q 为常数)型:——运用代数方法变形,转化为基本数列求解.利用待定系数法,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x ⇒a 1+n + x = p(a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p(a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例1. 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.-1练1.已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n ∈ N +,求通项a n .a n = 2 -2n-1 ,n ∈N + 练2.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.21nn a ∴=- 二、可化为基本型的数列通项求法: (一)指数型:a n=ca n-1+f(n)型 1、a 1=2,a n =4a n-1+2n (n ≥2),求a n .2、a 1=-1,a n =2a n-1+4〃3n-1(n ≥2),求a n .3、已知数列{}n a 中,1a =92,113232+-+=n n n a a (n ≥2),求n a .∴ n a =13)21(2+--n n(二)指数(倒数)型 1、a 1=1,2a n -3a n-1=(n ≥2),求a n .2、a 1=,a n+1=a n +()n+1,求a n . (三)可取倒数型:将递推数列1nn n ca a a d+=+(0,0)c d ≠≠,1、(2008陕西卷理22)(本小题满分14分)已知数列{a n }的首项135a =,1321n n n a a a +=+,12n = ,,. (Ⅰ)求{a n }的通项公式; 332nn n a ∴=+2、已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.∴121n a n =-. 3、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . a n =4、 若数列{n a }中,1a =1,n S 是数列{n a }的前n 项之和,且nnn S S S 431+=+(n 1≥),求数列{n a }的通项公式是n a . 131-=n n S ⎪⎩⎪⎨⎧+⋅-⋅-=123833212n n n n a )2()1(≥=n n 三、叠加法:a n=a n-1+f(n)型:1.已知数列{a n }中, 11a =,1n-13n n a a -=+(2)n ≥。
利用递推关系求解数列通项公式的解题策略

一、形如 an + 1 = pan + q 型
例 1 已知数列 {an }满足 a1 = 1,an +1 = 3an + 1,求数
列{an }的通项公式.
解 因为 an +1 = 3an + 1,
所以 an +1 +
1 2
= 3( an +
1 2
)
,设
bn
=
ቤተ መጻሕፍቲ ባይዱ
an
+
1 2
,则有
bn +1
收稿日期: 2019 - 06 - 05 作者简介: 许万成,男,中学教师,从事中学数学教学研究.
{ x≥0,
例 3 若 a≥0,b≥0,且当 y≥0,时,恒有 ax + by≤ x + y≤1
1,则以 a,b 为坐标的点 P( a,b) 所形成的平面区域的面积 等于 .
图3
解析 如图 3,作出不等式组对应的平面区域,要使 得恒有 ax + by≤1 成立,令 ax + by = z,只须平面区域顶点
{z( 0,0) ≤1,
A,O,B 的坐标都满足不等式 z≤1,则 z( 0,1) ≤1,0 ≤ z( 1,0) ≤1
a≤1,0≤b≤1,所以 P ( a,b) 所 形 成 的 平 面 区 域 的 面 积 等于 1.
参考文献:
[1]王建宏. 线性规划命题的九个新视角[J]. 数学通 讯,2010( 24) : 43 - 46.
an +1
+
p
q -1
=
p(
an
+
p
q -
1)
(
数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题) 解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n1. 三、换元法例3 已知数列{n a },其中913,3421==a a ,且当n ≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为: }{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b )31()31(91)31(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
由递推关系给出的数列通项公式的求法

+2
特 征 : 一a a+ n=f 1 后一 项 与前 (, n
一
n- 1 I -
项 的 差 是 一 个 与 n 有 关 的 常 方法 : — 累加法 —
方 法 : a+ a q的等价 形式 为: 设 nx p. l +
令 C a ・C l2 n2 . : … . : 缔坦 王 波
数。
方法: —— 叠乘 法
f 的等 比数列 L
3
例 2数列f n 中 ,l】 +=(+ ) } a-, I n 2 a ,
0 0 陕西教育 - 2 1/ 期 5 00 5
一
I
方 法 , 结合具 体 问题 , 以具 体分析 。 现 加
’
.
.
nn 1 (+ )
2' -
_
n +1
1
=
n
一+ 一
1
,
2
各项 同乘 2 , 有
’
一
、
a =a十() 1 nf n
三 、型 如 a, p q n= a+ 1
.
一 a :2.
I i
.
.
C 12 2Cn2 叶+ = ( 十 )
数 列 { + j 首 项 为 C+ = xJ2 4 C 2是 】2 2 a : 十
Pg ±
P
公 比为 2的等 比数 列。
・
分 析 : 由 + 一 n n l 知 a一 1 1a + , = 2a=
.
1 +1
.
( + + ± =( + ± a I 卫 生)p n 卫 ) n a
种 基 本 模 型 。 但 在 近 年 的 高 考 中 , 出 给 递 推 式 求 通 项 问 题 几 乎 每 年 都 出 . 于 对 这 类 问 题 虽 然 可 以 由 观 察 — — 归 纳 — — 猜 想 — — 数 学 归 纳 法 . 可 以 解
常见递推数列求通项公式的七种方法
解A争 1_. l 1 边 - 得 一 :—-= , : q 两 加2 :l =L 2. } I . ‘+ 在 ,
例 5已知数列 ‘ l a 2 = . 中,t , =
)C k十 l
。 求数列 { ) 的
类 型 二 : 知 口: 口 ) 。, ・ 型 . 用 累 乘 法 求 已 I ≠o , = ( | 可
‘ ・
例. 数 {J,} =,数 {) 4知 列 中8 , 列 的 已 - + 求 = -
通项公式.
由 口- 叶
。 可知 :
u l
1 )
u
, , …
t t. t ̄ 1
一
1 ) ・
解法一 : 已知 + 两边 同除 以 2 J 给 a 肿, }一 得
把上面各项两边分别相乘 , 得
’ 1 ,b 参- + 冷6 则 . } 1 ,
・
= l ) 2… ・ 一 ) 口・ 【) 1 ≥2 1 . )
.
.
例 2设 I l 首 项 为 1的 正 项 数 列 , (+ ) . 是 且 ,1 l
至多 有 1 是 二 等 品 ” 件 的概 率 P A)O9 . ( = .6
解 法 二 : I 2 两 边 同除 以 ( 1 , ( 1“ 广 对 + = l I 一 ) 得 一 )
=
・
}^ ‘‘=. ・ }争争} ・
E . Ⅳ) .
} 等 比数 列. 为
(1 = (2^ _ ) 一- ) . 令 6 - ) , 6 l(1 ‰ l (1 则 =_ ,
常见递推数列 求通项公 式的七种方法
由递推公式求通项公式五类型
由递推公式求通项公式类型一 累加相消法(“)(1n f a a n n +=+型”)例1.设数列{}n a 满足),3,2,1(12,111 =++==+n n a a a n n 求{}n a 的通项公式 解:由(1)),3,2,1(121 =+=-+n n a a n n 可知,;11212+⨯=-a a ;12223+⨯=-a a ;1)1(2;1+-⨯=--n a a n n上述等式累加可得,21)1())1(21(2n a n n a a n n =⇒-+-+++⨯=-类型二 累乘相消法(“)(1n f a a n n ⋅=+型”)例2.设数列{}n a 满足),3,2,1(2,111 =⋅==+n a a a n n n ,求{}n a 的通项公式 解:由(2)),3,2,1(21 =⋅=+n a a n n n 可知,212=a a ;2232=a a ;3342=a a112--=n n n a a 上述等式累乘可得,2)1(132122222--=⇒⋅⋅=n n n n n a a a类型三 倒数法 CBa Aa a n nn +=型数列(C B A ,,为非零常数)例3.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a a n nn 求{}n a 的通项公式 解:211211+=+=+nn n n a a a a ∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即351=n a +2(n -1)=316-n ∴a n =163-n 类型四 构建新数列( 待定系数法) (1)q a p a n n +⋅=+1型例4.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a n n ,求{}n a 的通项公式 解 :设)(21x a x a n n +=++,即x a a n n +=+21与递推式比较,可得1=x ,所以递推式转化为)1(211+=++n n a a 则可构造新数列,令1+=n n a b ,有⎩⎨⎧===+=+),3,2,1(221111 n b b a b n n ),3,2,1(122 =-=⇒=⇒n a b n n n n (2)a n +1 = p a n + f (n )型例5.已知数列{a n }中,a 1=1,且a n =a n -1+3n -1,求{a n }的通项公式.解:设a n +p ·3n =a n -1+p ·3n -1则a n =a n -1-2p ·3n -1,与a n =a n -1+3n -1比较可知p =-21. 所以⎭⎬⎫⎩⎨⎧-23n n a 是常数列,且a 1-23=-21.所以23n n a -=-21,即a n =213-n .(3) 11-++=n n n qa pa a 型(其中p ,q 为常数)例6. 已知数列{}n a 满足06512=+-++n n n a a a ,且5,121==a a ,且满足,求n a .解:令)(112n n n n xa a y xa a -=-+++,即0)(12=++-++n n n xya a y x a ,与已知06512=+-++n n n a a a 比较,则有⎩⎨⎧==+65xy y x ,故⎩⎨⎧==32y x 或⎩⎨⎧==23y x 下面我们取其中一组⎩⎨⎧==32y x 来运算,即有)2(32112n n n n a a a a -=-+++,则数列{}n n a a 21-+是以3212=-a a 为首项,3为公比的等比数列,故n n n n a a 333211=⋅=--+,即n n n a a 321+=+,利用类型(2)的方法,可得n n n a 23-=.类型五 取对数 r n n pa a =+1(其中p ,r 为常数)型例6. 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式. 解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n an b ,则12-=n n b b ,{}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log12-=-n a n ,∴1212--=n n a。
高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)
4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。
相邻三项线性递推关系数列通项的简便求法
2024年5月上半月㊀解法探究㊀㊀㊀㊀相邻三项线性递推关系数列通项的简便求法∗◉陕西省西安市第七十一中学㊀尚㊀萍㊀㊀摘要:熟练掌握数列通项公式的求解是高考以及各类考试的基本要求.在高中阶段,相邻三项线性递推关系数列通项公式的求解是一个难点,需要构造相邻两项的差为特殊数列进行求解,具有一定的难度.本文中在常规解法的基础上,用特征方程法快速准确地求解通项公式,大大缩短了求解时间.关键词:递推数列;特征方程;通项公式1一个实例及解法例1㊀已知数列{a n }满足a 1=1,a 2=2,且a n +1=2a n +3a n -1(n ȡ2,n ɪN +).求数列{a n }的通项公式.解法1:常规解法.因为a n +1=2a n +3a n -1(n ȡ2,n ɪN +),所以a n +1+a n =3(a n +a n -1)(n ȡ2).又因为a 2+a 1=3,所以{a n +1+a n }是以3为首项,3为公比的等比数列.所以a n +1+a n =3ˑ3n -1=3n ,从而a n +13n +1+13 a n 3n =13.进一步,a n +13n +1-14=-13(a n3n -14).又因为a 13-14=112,所以数列a n 3n -14{}是首项为112,公比为-13的等比数列.故a n 3n -14=112ˑ(-13)n -1.所以a n =3n -(-1)n4.解法2:特征方程法.设a n +1-x 1a n =x 2(a n -x 1a n -1),与a n +1=2a n +3a n -1比较系数,得x 1+x 2=2,x 1x 2=-3.{由韦达定理可知,x 1,x 2是方程x 2-2x -3=0的两根-1和3.取x 1=-1,x 2=3,有a n +1+a n =3(a n +a n -1).又因为a 2+a 1=3,所以{a n +1+a n }是以3为首项,3为公比的等比数列,所以a n +1+a n =3ˑ3n -1=3n.取x 1=3,x 2=-1,有a n +1-3a n =-(a n -3a n -1).又因为a 2-3a 1=-1,所以{a n +1-3a n }是以-1为首项,-1为公比的等比数列,则a n +1-3a n =(-1)ˑ(-1)n -1=(-1)n .于是有a n +1+a n =3n,a n +1-3a n =(-1)n,{由方程组解法可知a n 是(-1)n 和3n的线性组合.因此,设a n =c 1 (-1)n +c 23n .又因为a 1=1,a 2=2,代入方程解得c 1=-14,c 2=14.ìîíïïïï所以a n =3n-(-1)n4.2利用特征方程法解题的步骤由例1解法2的解析可以看出,特征方程法是将相邻两项的线性组合构造成等比数列[1],而对应的系数刚好是题目中相邻三项线性递推关系数列的特征方程的根,通过解特征方程可以直接写出最终a n 的表达形式,再根据数列中的任意两项,求出线性组合的系数,最终得到数列{a n }的通项公式[2].因此可以将解题过程简化为以下三个步骤:(1)写出特征方程并求出两根x 1,x 2;(2)设a n =c 1 x n 1+c 2 x n 2;(3)将a 1,a 2的值代入求出系数c 1,c 2,进而写出数列{a n }的通项公式.例2㊀已知数列{a n }满足a 1=a 2=2,且a n +1=3a n +4a n -1(n ȡ2,n ɪN +).求数列{a n }的通项公式.301∗课题信息:2022年陕西省教育科学规划课题基于核心素养的高中数学教育与 立德树人 的实践研究 ,课题批准号为S G H 22Y 0140.解法探究2024年5月上半月㊀㊀㊀解析:特征方程法.由题可知,数列的特征方程为x 2-3x -4=0,解方程得x 1=4,x 2=-1.因此,设a n =c 1 (-1)n +c 24n,将a 1=a 2=2代入,解得c 1=-65,c 2=15.所以a n =4n -6 (-1)n5.由例2的解析[3]可以看出,利用特征方程法解决此类问题具有简洁快速的明显优势,同时在解题过程中不容易出现错误,非常适合高中阶段的学生学习和理解.3特征方程法应用中的问题及对策利用特征方程法求解这类问题,关键是构造特征方程.对于形如a n +2=a a n +1+b a n (a ,b 为常数)的递推数列,它的特征方程是x 2=a x +b ,即x 2-a x -b =0.另外,既然是二次方程就可能存在两个相等的根和无实根的情形,下面对这两种情形进行探究.例3㊀已知数列{a n }满足a 1=1,a 2=2,且a n +1=6a n -9a n -1(n ȡ2,n ɪN +).求数列{a n }的通项公式.对于此题,首先用特征方程法求解.由题可知,数列的特征方程为x 2-6x +9=0,解得x 1=x 2=3.因此设a n =c 1 3n +c 2 3n,将a 1=1,a 2=2代入,得3c 1+3c 2=1,9c 1+9c 2=2,{无解.因此,例3无法用特征方程法快速求出通项公式.下面继续用构造等差数列的方法重新求解,探求新思路[2].解析:常规解法.因为a n +1=6a n -9a n -1(n ȡ2,n ɪN +),所以a n +1-3a n =3(a n -3a n -1)(n ȡ2).又因为a 2-3a 1=-1,所以{a n +1-3a n }是首项为-1,公比为3的等比数列.所以a n +1-3a n =(-1)ˑ3n -1,从而a n +13n +1-a n3n =-19.又因为a 131=13,所以数列a n 3n {}是首项为13,公差为-19的等差数列.所以a n 3n =13+(n -1) (-19)=4-n9.故a n =(4-n )3n9.由例3可以看出,当特征方程有两个相等的根时,无法用特征方程法求出数列的通项公式,此时需要构造一个新的等差数列,求出这个等差数列的通项公式是A n +B 的形式,进而求出数列{a n }的通项公式a n =(A n +B ) x n .例4㊀已知数列{a n }满足a 1=1,a 2=2,且a n +1=a n -a n -1(n ȡ2,n ɪN +).求a 2024.解析:由题可知,数列的特征方程为x 2-x +1=0,此方程无实数根.由a 1=1,a 2=2,a n +1=a n -a n -1分别计算可得a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,所以{a n }是周期为6的周期数列,又2024ː6=337 2,所以a 2024=a 2=2.由例4可以看出,当特征方程无实数根时,数列{a n }是一个周期数列[2].这一结论具有普遍性,在这里省略证明.4特征方程法的解法总结根据例2~例4的解答过程可以将相邻三项线性递推关系数列通项公式的求解归纳如下:(Ⅰ)当特征方程有两个不相等的实根时(1)写出特征方程并求出两根x 1,x 2;(2)设a n =c 1 (x 1)n +c 2 (x 2)n ;(3)将a 1,a 2的值代入,求出系数c 1,c 2,进而写出数列{a n }的通项公式.(Ⅱ)当特征方程有两个相等的实根时(1)写出特征方程并求出根x ;(2)设a n =(A n +B ) x n ;(3)将a 1,a 2的值代入,求出系数A ,B ,进而写出数列{a n }的通项公式.(Ⅲ)当特征方程无实数根时分别计算前几项的值,判断数列{a n }的周期性,进而求出{a n }的通项公式.参考文献:[1]卢海英.相邻三项线性递推数列的解法[J ].中学生数学,2019(15):9,8.[2]黎真.特征方程法求数列通项[J ].数理天地(高中版),2022(21):19G22,28.[3]王益洲,李燕.常见构造数列法的探究[J ].数理化解题研究,2023(21):2G4.Z 401。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由递推关系求通项公式的数列问题
通过递推关系求出数列的通项公式,是解决数列问题时经常遇到的,这类问题的处理方
法是向特殊数列转化,利用特殊数列的性质求数列的通项公式,下面提供几类有规律的变形。
一、递推关系行如:1()nnaafn的数列
利用迭加的方法直接求解或利用迭加,迭代法得1(1)(2)(1)naafffn,
(2n)然后求解。
例1 数列{}na中11a,且221212(1),3kkkkkkaaaa,其中1,2,3,k,求数
列{}na的通项公式。
解:2123kkkaa=21(1)kka3k
21ka-21ka
=(1)k3k
同理21ka-23ka=13k+1(1)k,,313(1)aa
(21ka-21ka)+(21ka-23ka)++31aa
=(123333kk)+[1(1)(1)(1)kk]
从而21ka-1a=31(31)[(1)1]22kk
易得到{}na的通项公式:
n为奇数时:121231(1)122nnna
n为偶数时:2231(1)122nnna
二、递推关系形如:1()nnaafn的数列
利用迭乘或迭代法可得:1(1)(2)(1)()naafffnfn(n2)
例2 数列{}na的前n项的和为ns,且1a1,2*()nnanNns,求数列{}na的通
项公式
解:由2nnans知21(1)nnan-1s(n2)
22
1(1)nnnanann-1
s-s
又n2时nn-1s-sna
则(1)n1(1)nnana(n2)
由110a知各项都不等于0,得:111nnanan
32121121,,,341nnaaanaaan 各项相乘得:12(1)n
a
ann
2
(1)nann
(n2)
又n=1时适合上式,所以数列{}na的通项公式2(1)nann
三、递推关系形如:11nnnnaapaa(p为常数且0p)的数列
可化为111nnaa=p求出1na的表达式,再求na
例3 数列{}na中11a,当n2时其前n项和ns满足21()2nannss-,求数列{}na的通
项公式。
解:当n2时,21()()2nnn-1nssss-即2nsn-1s=n-1sns
11
1sa
0 ns0
*
()nN
1112nnss
数列1{}ns是以2为公差,11s1为首项的等差数列,
1ns=2n-1
n
s
1
21n
当n2时nann-1ss=121n123n=2(23)(21)nn
1
2
(23)(21)(1)nnnna
(n2)
这种类型还有如:1nnnmaapaq可采用取倒数方法转化成为111nnmmaqap形式利
用后面的第四类方法解决;又如已知数列{}na中12a且21nnaa,求数列{}na 的通项
公式可采用两边取对数方法即12lglgnnaa则数列{lg}na是以lg2为首项,12为公比的
等比数列。
四、递推关系形如:1nnapaq(为p,q为常数且1p)的数列
(Ⅰ)可化为1()11nnqqapapp,利用等比数列求出1nqap的表达式,进而求
出na
(Ⅱ)可由1nnapaq得nap1naq两式相减可得:1nnaa1()nnpaa,利
用1{}nnaa成等比数列求出1nnaa,再利用迭代或迭加求出na
(Ⅲ)利用迭代法可得:na12321nnnpapqpqpqpqq求和得na
例4 数列{}na中11a, 121nnaa*()nN求数列na
解:由题设可得112(1)nnaa,又112a
{1}na
是以2为首项,以2为公比的等比数列。
1na2n
n
a
21n
注:该题还可以转化为(Ⅱ)或(Ⅲ)求na。
五、递推数列形如:1nnnapaq的数列(pq、为常数且0q)
(Ⅰ)可化为111nnnnaapqqqq ,利用第四种类型求出nnaq后解出na;
(Ⅱ)也可利用迭代:
2221)nnpappaq( 33232()nnpappaq
22123()nnnpappaq 212()nnnpappaq 11nnnapaq
由上1n个等式相加得:na11npa+2npq32npq+21npq+2npq+1nq
=11npa+121(1)1nnnqpqpqp1nnpqqpq+11npa
例5 数列{}na中11a,123nnnaa*()nN,求数列{}na的通项公式。
解:依题设两边同除以13n可得:11213333nnnnaa 即1132133nnnnaa
由类型四可得:113(1)2(1)33nnnnaa
令13nnnab 则112133b 且132nnbb
{}nb
是以23为首项,以23为公比的等比数列,
nb2()3n
32nnna
六、递推数列形如:212133nnnaaa的数列
可变形为211()nnnnaaaa就是21()nnnaaa则可从
p,q
解得、于是1{}nnaa是公比为的等比数列,这样就转化为类
型五。
例6 数列{}na中11a,22a,212133nnnaaa求数列{}na的通项公式。
解:在212133nnnaaa两边减去1na得2111()3nnnnaaaa
1{}nnaa是以21
aa
1
为首项,以13为公比的等比数列,
111()3nnnaa
令上式123(1)nn、、、、,再把个1n等式累加得:
1n
aa
221111()()()333n=111()3113n=131[1()]43n
n
a
1311[1()]43n