高斯烟羽模型扩散面积的算法研究
高斯扩散模式-大气污染控制工程

20
一、烟气抬升高度的计算
(2)Briggs公式:适用不稳定及中性大气条件
当QH 21000kW时 x 10 H s x 10 H s H =0.362QH x u
1/3 2/3 1/3 2/3 1 1
和 z
26
1.P-G曲线法的应用
地面最大浓度估算
由 H 和
H z |x xcmax z 2
由 z ~ x 曲线(图4-5)反查出 xcmax 由 y ~ x 曲线(图4-4)查 y 由式(4-10)求出Cmax
H———σz———X———σy———Cmax 式4-11 图4-5 图4-4 式4-10
max
z
x x c
H 2
14
四、地面连续点源扩散模式
由高架连续点源模式,令其有效源高H=0而得,即:
15
五、颗粒物扩散模式
粒径小于15μm的颗粒物可按气体扩散计算 大于15μm的颗粒物:倾斜烟流模式
(1 a )q y2 ( H vt x / u ) 2 c( x, y ,0, H ) exp( 2 ) exp[ ] 2 2 y 2 z 2πu y z
2
湍流扩散理论
梯度输送理论、湍流统计理论 1.梯度输送理论
研究方法:利用欧拉提出的方法,在充满流体的空 间固定多个点,测量各固定点上的各个参数的变化。 理论基础:质量守恒定律,把扩散类似分子扩散,
脉动值用平均值代替。
3
湍流扩散理论
2.湍流统计理论
研究方法:拉格朗日方法,空间有一微团,跟 随微团流动时各个流动点的规律。 理论基础:解决扩散参数时用二元相关理论: 方差、概率。
高斯扩散模型几何意义的研究

高斯扩散模型几何意义的研究摘要:高斯模型是大气预测的基本模型,我们平时用的EIAproA2008也是基于高斯模型的,只不过是同时加入了一些地形、气象的修正。
本发明通过分析高斯扩散模型的几何意义,了解高架点源排放烟气的扩散特点,根据研究结果观察不同烟羽形状对应的大气稳定度,并结合观察所得的大气稳定度,预测分析污染物经高架点源排放后在评价范围内的浓度。
关键词:高斯模型正态分布影响预测几何意义1.高斯扩散模型简介C(x、y、z)=式中:C(x,y,z)—表示坐标为x,y,z处污染物浓度;He—烟囱的有效高度,m;Q—烟囱排放源强(污染物单位时间排放量,mg/s);σy—垂直于主导风向的横向扩散参数,m;σz—铅直扩散参数,m;u—排气筒高度处的风速,m/s。
高斯模式的四点假设为:(1)假定大气流动是稳定的、有主导方向的;(2)假定污染物在大气中只有物理运动、没有化学和生物变化;(3)假定在所要预测的范围内没有其他同类污染源和汇,也就是说源强是连续均匀的;(4)在有主导风的情况下,主导风对污染物的输送应远远大于湍流运动引起的污染物在主导风向上的扩散,即在x方向只考虑迁移,不考虑扩散。
2.正态函数的特点及几何意义简介①正态分布密度函数:,(σ>0,-∞<x<∞)其中π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差。
正态分布一般记为。
②正态分布的图像是由μ和σ决定。
当μ=0,σ分别为0.5、1、2时的正态函数图像见图1;当μ=1,σ分别为0.5、1、2时的正态函数图像见图2;由图1及图2可见,正态函数的图像依赖于两个变量: σ和μ,其中σ确定了函数图像的扁平情况;μ确定了函数图像偏离y轴的距离,当μ=0时函数f(x)关于y轴对称。
图1当μ=0,σ分别为0.5、1、2时的正态函数图图2当μ=1,σ分别为0.5、1、2时的正态函数图3.烟羽扩散过程的分解与高斯模型的拆分由几何知识可知,点动成线,线动成面,面动成体。
云团扩散模型

1 云团扩散模型根据物质泄漏后所形成的气云的物理性质的不同,可以将描述气云扩散的模型分为非重气云模型和重气云模型两种[5-13]。
1.1 非重气云模型高斯模型是一种常用的非重气扩散模型,高斯烟羽(Plume model)模型又称高架点连续点源扩散模型,适用于连续源的扩散,即连续源或泄放时间大于或等于扩散时间的扩散。
高斯烟团(Puff model)模型适用于短时间泄漏的扩散,即泄放时间相对于扩散时间比较短的情形,如突发性泄放等。
若假设气体云内空间上的分布为高斯分布,则地面地处风向的烟团浓度分布算式为式中,c(x,y,H)——点(x,y,H)处浓度值,mg/m3;Q——源强,即单位时问的排放量,mg/s;u——环境平均风速,m/s;σx,σy,σz——扩散参数;H——源高(烟团高度),m;x——下方向到泄漏原点的距离,m;y,z——侧风方向、垂直向上方向离泄漏原点的距离,m。
高斯模式的实际应用效果很大程度上依赖于如何给定模式中的一些参数,尤其要注意源强、扩散参数等的确定。
源强与污染物的物理化学属性、扩散方式、释放点的地理环境等有关。
扩散参数表征大气边界层内湍流扩散的强弱,是高斯模式的一项重要数据。
高斯扩散模式所描述的扩散过程(实质上也包含了在实际应用中对高斯模式的一些限制)主要有:1)下垫面平坦、开阔、性质均匀,平均流场稳定,不考虑风场的切变。
2)扩散过程中,污染物本身是被动、保守的,即污染物和空气无相对运动,且扩散过程中污染物无损失、无转化,污染物在地面被反射。
3)扩散在同一温度层结中发生,平均风速大于1.0 m/s。
4)适用范围一般小于10~20 km。
1.2 重气云模型由于重气本身的特殊性,在重气扩散领域也有大量基于不同理论的模型。
鉴于重气扩散与中性或浮性气体扩散有着明显的区别,目前国内外已开发大量的不同复杂程度的重气扩散模型,如箱模型、相似模型、LTA-HGDM模型、CFD模型等。
1.2.1 箱(BOX)模型箱模型是指假定浓度、温度和其他场,在任何下风横截面处为矩形分布等简单形状,这里的矩形分布是指在某些空间范围内场是均匀的,而在其他地方为零。
高斯烟羽模型

模型假设:1、 坐标系高斯模型的坐标系如图2.1所示,原点为排放点(若为高架源,原点为排放点在地面的投影),x 轴正向为风速方向,y 轴在水平面上垂直于x 轴,正向在x 轴的左侧,z 轴垂直于水平面xoy ,向上为正向。
在此坐标系下烟流中心线或烟流中心线在xoy 面的投影与x 轴重合。
2、模型假设(1)污染物的浓度在y 、z 轴上的分布是高斯分布(正态分布)的;(2)污染源的源强是连续且均匀的,初始时刻云团内部的浓度、温度呈均匀分布;(3)扩散过程中不考虑云团内部温度的变化,忽略热传递、热对流及热辐射; (4)泄漏气体是理想气体,遵守理想气体状态方程; (5)在水平方向,大气扩散系数呈各向同性;(6)取x 轴为平均风速方向,整个扩散过程中风速的大小、方向保持不变,不随地点、时间变化而变化;(7)地面对泄漏气体起全反射作用,不发生吸收或吸附作用;(8)整个过程中,泄漏气体不发生沉降、分解,不发生任何化学反应等。
3、模型公式推导由正态分布假设可以导出下风向任意一点X (x,y,z )处泄漏气体浓度的函数为:22(,,)()aybzX x y z A x ee--= (1)由概率统计理论可以写出方差的表达式为:22022y z y XdyXdyz Xdz Xdzσσ∞∞∞∞==⎧⎪⎪⎪⎨⎪⎪⎪⎩⎰⎰⎰⎰(2) 由假设可以写出源强的积分公式:⎰⎰∞∞-∞∞-=uXdydz Q (3)式中:y σ、z σ为泄漏气体在y 、z 方向分布的标准差,单位为 m ;X (x,y,z )为任一点处泄漏气体的浓度,单位为 kg/m 3;u 为平均风速,单位为 m/s ;Q 为源强(即泄漏速度),单位为 kg/s ;将(1)式代入(2)式,积分可得:221212y za b σσ==⎧⎪⎪⎨⎪⎪⎩ (4)将(1)式和(4)式代入(3)式,积分可得:zy u Qx A σσπ2=)( (5)再将(4)式和(5)式代入(1)式,可得:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-=222222exp 2,,z y z y zy u Qz y x X σσσσπ)( (6) 上式为无界空间连续点源扩散的高斯模型公式,然而在实际中,由于地面的存在,烟羽的扩散是有界的。
大气污染物扩散高斯模型模拟

9.2.2大气污染物扩散的高斯模型模拟:可视化模拟点源大气污染的扩散9.2.2 Gaussian Atmospheric Dispersion Model突发性大气污染事故时有发生,对大气污染扩散进行模拟和分析,有利于减小事故的危害,减轻人员伤亡和财产损失。
高斯扩散模型是国际原子能机构(IAEA)推荐使用于重气云扩散模拟的数学模型,该模型在非重气云扩散的应用日益广泛。
高斯扩散模型是描述大气对有害气体的输移、扩散和稀释作用的物理或数学模型,是进行灾害预测和救援指挥的有力手段之一。
9.2.2.1高斯扩散模型高斯模型又分为高斯烟团模型和高斯烟羽模型。
大气污染物泄漏分为瞬时泄漏和连续泄漏,瞬时泄漏是指污染物泄放的时间相对于污染物扩散的时间较短如突发泄漏等的情形,连续泄漏则是指污染物泄放的时间较长的情形。
瞬时泄漏采用高斯烟团模型模拟,而连续泄漏采用高斯模型烟羽模型模拟。
高斯模型适用于非重气云气体,包括轻气云和中性气云气体。
要求气体在扩散过程中,风速均匀稳定。
在高斯烟团模型中,选择风向建立坐标系统,即取泄漏源为坐标原点,x轴指向风向,y轴表示在水平面内与风向垂直的方向,z轴则指向与水平面垂直的方向,具体公式见式(9.1):(9.1)(mg/s); x、y、z轴上的扩散系数,需根据大气稳定度选择参数计算得到(m);x、y、z表示x、y、z上的坐标值(m);u表示平均风速(m/s);t表示扩散时间(s);H 表示泄漏源的高度(m)。
同理,高斯烟羽模型的表达式如:(9.2)9.2.2.2 技术方法若用高斯模型算出空间每一个点在一个时刻的污染浓度,这个计算量是很大的。
因此所设计的系统一般都是采用先进行图层网格化,由高斯模型计算出有限个网格点的上的污染物浓度,在进行空间内插得到面上每一个点的污染物浓度,并由此得到污染物浓度的等值线。
整个过程的示意图如图9.2.1所示图9.2.1 大气污染扩散的高斯模拟的步骤1) 图层网格化图层网格格式分为结构化网格、非结构化网格。
放射性气体的扩散预估模型

放射性气体扩散的预估模型摘要本文对从核电站泄漏的放射性气体扩散模式及其影响因素进行了阐述,利用气体湍流扩散微分方程, 建立了地面瞬时和连续泄漏源气体扩散的高斯烟羽模型, 并用于解决易燃易爆或有毒气体泄漏扩散危险区范围预测中的问题。
针对问题一:利用气体扩散规律建立高斯烟羽模型估测泄漏气体扩散危险区范围是一种快捷的方法。
本文利用传质学、流体力学、大气扩散学的基本原理, 对泄漏气体的扩散行为进行模化和简化, 建立一种放射性气体扩散浓度分布的高斯模型, 并应用于解决放射性气体沿地面扩散危险区范围预测中的问题。
根据放射性气体扩散安全区域距离计算结果,结合各地平面布置图及地形的情况,确定放射性气体扩散安全区域。
在核电站发生泄漏时事故点周边人员应尽快撤到离电站039.8438r km=以外。
由0 01.54rts==天得,在核电站发生泄漏之后,距核电站距离为0r地区的人员应该在01.54t=天内撤离该地区。
针对问题二,要探究风速对放射性物质浓度分布的影响。
本文运用概率学[1]知识,通过图解和数学推导得出“连续点源放射性物质高斯扩散模型”。
本文依次考虑了“重力沉积”、“雨水沉积”、“核衰变”等因素对浓度分布的影响。
并通过构建“耗减因子”、“衰变因子”等方法将耗减和衰变的放射性物质“投影”到泄漏源浓度中,得到了经多次合理修正后的“优化高斯模型”,并据此分析了泄漏源周边地区放射性物质的浓度变化。
针对问题三,本文在问题二的基础上,结合考虑风速和放射性物质扩散速度在空间中的矢量运算。
得出在对上风口分析时,要分类讨论风速和自然扩散速度之间的大小关系,当风速小于自然扩散速度时,放射性物质是无法到达上风口的。
针对问题四,本文参阅整理大量气象、地理、新闻资料,选择我国东海岸典型地域---山东半岛作为研究对象,综合考虑对应海域平均风速及风向、地理距离、海水对放射性物质扩散的部分反射系数等因素,并通过计算,预测出放射性核物质将经过6.5天到达我国东海岸,不会扩散到美国。
高斯模型
2.1 高斯模型燃气泄漏后会在泄漏源附近形成气团,气团在大气中的扩散计算通常采用高斯模型。
高斯模型的基本形式是在如下的假设条件下推导出来的[1、9]:假定燃气在扩散的过程中没有沉降、化合、分解及地面吸收的发生;燃气连续均匀地排放;扩散空间的风速、大气稳定度都均匀、稳定;在水平和垂直方向上都服从正态分布。
泄漏燃气相对密度小于或接近1的连续泄漏采用高斯烟羽模型。
以泄漏点为原点,风向方向为x轴的空间坐标系中的某一点(x,y,z)处的质量浓度计算公式如下[9]:平均风速>1m/s时:平均风速=0.5~1m/s时:平均风速<0.5m/s时,假设气团围绕泄漏点浓度均匀分布,则距离泄漏点r处的燃气质量浓度为:式中ρd(x,y,z)——扩散燃气在点(x,y,z)处的质量浓度,kg/m3x、y、z——x、y、z方向上距泄漏点的距离,mua——平均风速,m/sδx 、δy、δz——x、y、z方向的扩散系数,mh——泄漏点高度,mρd(r)——距离泄漏点r处的燃气质量浓度,kg/m3r——空间内任意一点到泄漏点的距离,ma、b——扩散系数,mt——静风持续时间,s,取3600的整数倍扩散系数可查HJ/T 2.2—93《环境影响评价技术导则大气环境》得到。
2.2 重气扩散模型液化石油气密度比空气密度大,属于重气。
该类气体泄漏时在重力的作用下会下沉,这时使用高斯模型计算的结果会使泄漏燃气扩散速度偏大,泄漏源附近的浓度偏小。
为了解决这个问题,可以引入最早由Van Ulden提出,并由Manju Mohan等发展的箱式模型[1]。
箱式模型分为两个阶段:泄漏后的重气扩散阶段和重气效应消失后的被动气体扩散阶段。
重气泄漏后首先是重气扩散阶段。
在这个阶段,重气云团由于重力作用逐渐下沉并不断卷吸周围的空气,在卷吸空气的同时,气云受热,最终当重气云团与空气的密度差<0.001kg/m3时,可认为气云转变成中性状态。
随着重气的继续扩散,气云所受的重力不再是影响扩散的主要因素,而大气湍流扩散逐渐占主要地位,这时便是被动气体扩散阶段,可以应用高斯模型计算泄漏燃气的扩散。
云团扩散模型
1 云团扩散模型根据物质泄漏后所形成的气云的物理性质的不同,可以将描述气云扩散的模型分为非重气云模型和重气云模型两种[5-13]。
非重气云模型高斯模型是一种常用的非重气扩散模型,高斯烟羽(Plume model)模型又称高架点连续点源扩散模型,适用于连续源的扩散,即连续源或泄放时间大于或等于扩散时间的扩散。
高斯烟团(Puff model)模型适用于短时间泄漏的扩散,即泄放时间相对于扩散时间比较短的情形,如突发性泄放等。
若假设气体云内空间上的分布为高斯分布,则地面地处风向的烟团浓度分布算式为式中,c(x,y,H)——点(x,y,H)处浓度值,mg/m3;Q——源强,即单位时问的排放量,mg/s;u——环境平均风速,m/s;σx,σy,σz——扩散参数;H——源高(烟团高度),m;x——下方向到泄漏原点的距离,m;y,z——侧风方向、垂直向上方向离泄漏原点的距离,m。
高斯模式的实际应用效果很大程度上依赖于如何给定模式中的一些参数,尤其要注意源强、扩散参数等的确定。
源强与污染物的物理化学属性、扩散方式、释放点的地理环境等有关。
扩散参数表征大气边界层内湍流扩散的强弱,是高斯模式的一项重要数据。
高斯扩散模式所描述的扩散过程(实质上也包含了在实际应用中对高斯模式的一些限制)主要有:1)下垫面平坦、开阔、性质均匀,平均流场稳定,不考虑风场的切变。
2)扩散过程中,污染物本身是被动、保守的,即污染物和空气无相对运动,且扩散过程中污染物无损失、无转化,污染物在地面被反射。
3)扩散在同一温度层结中发生,平均风速大于 m/s。
4)适用范围一般小于10~20 km。
重气云模型由于重气本身的特殊性,在重气扩散领域也有大量基于不同理论的模型。
鉴于重气扩散与中性或浮性气体扩散有着明显的区别,目前国内外已开发大量的不同复杂程度的重气扩散模型,如箱模型、相似模型、LTA-HGDM模型、CFD模型等。
箱(BOX)模型箱模型是指假定浓度、温度和其他场,在任何下风横截面处为矩形分布等简单形状,这里的矩形分布是指在某些空间范围内场是均匀的,而在其他地方为零。
核电事故中核素气溶胶烟羽扩散的模拟研究
核 电事 故 中核 素气 溶 胶 烟 羽扩 散 的模 拟研 究 术
王 孔森
( 中国人 民武装警 察部 队学 院, 廊坊 0 50 ) 6 00
摘 要: 本文选用高斯模型对放射性气 溶胶扩散特性进 行了模拟研究 , 分析 了影 响气溶胶 扩散 的
主要几何参数 和气 象因素 , 探求 了放射 性污 染物在 地面上 的浓度 分布 , 大浓度 位置 以及 安全范 最 围的划分 等问题 。模拟 研究 结果与相关文献相一致 , 证明了高斯扩散模 型对此类扩散模 拟的合理 性和有效性 ; 这为全面 了解放射性气溶胶扩散 的特性 、 对快速 、 有效地处置核事故具有指导意义 。 关键词 : 射性 气溶胶 ; 放 高斯模 型 ; 浓度分布 ; 辐射安全 区
Ke y wor ds:r d o c ie a r s l a s d l a i a t e o ;g u s mo e ;de st srb to v o n iy diti u in;s f t o e o a ito aey z n fr d ain
0 引 言
中图分类号 : 96 X 4 文献标识码 : A
Th i u a i t y O t e d fu i n o a o c i e a r s li uce r p we c i e e sm l tng sud H h i so fr di a tv e o o n n la o r a c d nt
W ANG n — e Ko g s n
( h hns epe r e o c o e cdmy L nfn 6 00 C ia T eC ieeP olgA m dP l eFr sA a e , agag 5 0 , h ) i c 0 n
高斯模型
高斯模型介绍高斯模式是一种应用较为广泛的气体扩散模型,适用于均一的大气条件,以及地面开阔平坦的地区、点源的扩散模式。
排放大量污染物的烟囱、放散管、通风口等,虽然其大小不一,但是只要不是讨论例如烟囱底部很近距离的污染问题,均可视其为点源。
本附录A 介绍高斯模型坐标系、模型假设及模型公式等内容。
F.1坐标系高斯模型的坐标系如图A-1所示,原点为排放点(若为高架源,原点为排放点在地面的投影),x 轴正向为风速力一向,y 轴在水平面上垂直于x 轴,正向在x 轴左侧,z 轴垂直于水平面xoy ,向上为正向。
在此坐标下烟流中心线或烟流中心线在xoy 面的投影与x 轴重合。
图A-1 高斯模型坐标系F.2 模型假设高斯模型有如下假设条件:(1)污染物的浓度在y 、z 轴上的分布是高斯分布(正态分布)的;(2)污染源的源强是连续且均匀的,初始时刻云团内部的浓度、温度呈均匀分布;(3)扩散过程中不考虑云团内部温度的变化,忽略热传递、热对流及热辐射;(4)泄漏气体是理想气体,遵守理想气体状态方程;(5)在水平方向,大气扩散系数呈各向同性;(6)取x 轴为平均风速方向,整个扩散过程中风速的大小、方向保持不变,不随地点、时间变化而变化;(7)地面对泄漏气体起全反射作用,不发生吸收或吸附作用;(8)整个过程中,泄漏气体不发生沉降、分解,不发生任何化学反应等。
F.3 模型公式距地面一定高度连续点源烟羽扩散模式的高斯修正模型为:()()()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=22222221exp 21exp 21exp 2,,,z z y z y H z H z y k x Q H z y x C σασσσσπ(A-1)式(A-1)中:C (x,y,z,H)——表示横向x、纵向y、地面上方z处气体浓度,kg/m3;Q(x)——表示源强(即源释放速率),kg/s;k——表示平均风速,m/s;σy——表示水平扩散参数,m;σz——表示垂直扩散参数,m;H——表示泄漏源有效高度,m;y——表示横向距离,m;z——表示纵向距离,m。